cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A106448 Table of (x+y)/gcd(x,y) where (x,y) runs through the pairs (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...

Original entry on oeis.org

2, 3, 3, 4, 2, 4, 5, 5, 5, 5, 6, 3, 2, 3, 6, 7, 7, 7, 7, 7, 7, 8, 4, 8, 2, 8, 4, 8, 9, 9, 3, 9, 9, 3, 9, 9, 10, 5, 10, 5, 2, 5, 10, 5, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 6, 4, 3, 12, 2, 12, 3, 4, 6, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 7, 14, 7, 14, 7, 2, 7, 14, 7, 14, 7, 14
Offset: 1

Views

Author

Antti Karttunen, May 21 2005

Keywords

Comments

Can also be viewed as a triangular table T(n,k) (n>=1, 1<=k<=n) read by rows: T(1,1); T(2,1), T(2,2); T(3,1), T(3,2), T(3,3); T(4,1), T(4,2), T(4,3), T(4,4); ... where T(n,k) gives the least value v>0 such that v*k = 0 modulo n+1, i.e., in other words, T(n,k) = (n+1)/gcd(n+1,k).

Examples

			The top left corner of the square array is:
   2  3  4  5  6  7  8  9 10 11 ...
   3  2  5  3  7  4  9  5 11 ...
   4  5  2  7  8  3 10 11 ...
   5  3  7  2  9  5 11 ...
   6  7  8  9  2 11 ...
   7  4  3  5 11 ...
   8  9 10 11 ...
   9  5 11 ...
  10 11 ...
  11 ...
		

Crossrefs

GF(2)[X] analog: A106449. Row 1 is n+1, row 2 is LEFT(LEFT(LEFT(A026741))), row 3 is LEFT^4(A051176). Essentially the same as A054531, but without its right-hand edge of all-1's.

Formula

T(n, k) = numerator((n+k)/n) = numerator((n+k)/k). - Michel Marcus, Dec 29 2013

A106610 Numerator of n/(n+9).

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 2, 7, 8, 1, 10, 11, 4, 13, 14, 5, 16, 17, 2, 19, 20, 7, 22, 23, 8, 25, 26, 3, 28, 29, 10, 31, 32, 11, 34, 35, 4, 37, 38, 13, 40, 41, 14, 43, 44, 5, 46, 47, 16, 49, 50, 17, 52, 53, 6, 55, 56, 19, 58, 59, 20, 61, 62, 7, 64, 65, 22, 67, 68, 23, 70, 71, 8, 73, 74, 25, 76, 77
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

Apart from 0, also numerator of Sum_{i=1..n} (1/((i+2)*(i+3))) = n/(3n+9). - Bruno Berselli, Nov 07 2012
In addition to being multiplicative, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 21 2019

Examples

			For n = 12, n/(n+9) = 12/21 = 4/7. So, a(12) = 4. - _Indranil Ghosh_, Jan 31 2017
From _Peter Bala_, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - (2*3)*G(x^3) - (2*9)*G(x^9) , where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (2/3)*H(x^3) - (2/9)*H(x^9), where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (2/3^2)*L(x^3) - (2/9^2)*L(x^9), where L(x) = Log(1/(1 - x)).
Sum_{n >= 1} (1/a(n))*x^n = L(x) + (2/3)*L(x^3) + (2/3)*L(x^9). (End)
		

References

  • Raffaello Giusti, editore, Supplemento al Periodico di Matematica (Livorno), Jul 1902, p. 138 (Problem 421, case k=3).

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109050(n)/9.
Dirichlet g.f. zeta(s-1)*(1-2/3^s-2/9^s).
Multiplicative with a(3^e) = 3^max(0,e-2), a(p^e) = p^e if p<>3. (End)
a(n) = 2*a(n-9) - a(n-18). - G. C. Greubel, Feb 19 2019
From Peter Bala, Feb 21 2019: (Start)
a(n) = n/gcd(n,9), where gcd(n,9) = [1, 1, 3, 1, 1, 3, 1, 1, 9, ...] is a periodic sequence of period 9: a(n) is thus quasi_polynomial in n.
O.g.f.: Sum_{n >= 0} a(n)*x^n = F(x) - 2*F(x^3) - 2*F(x^9), where F(x) = x/(1 - x)^2.
More generally, for m >= 1, Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) + (1 - 3^m)*( F(m,x^3) + F(m,x^9) ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse to the o.g.f. for the sequence produces generating functions for the sequences n^m*a(n), m in Z. Some examples are given below. (End)
Sum_{k=1..n} a(k) ~ (61/162) * n^2. - Amiram Eldar, Nov 25 2022

A106618 a(n) = numerator of n/(n+17).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 2, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 3, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 4, 69, 70, 71, 72, 73, 74
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

a(n) <> n iff n = 17 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

Dirichlet g.f.: zeta(s-1)*(1 - 16/17^s). - R. J. Mathar, Apr 18 2011
a(n) = 2*a(n-17) - a(n-34). - G. C. Greubel, Feb 19 2019
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(17^e) = 17^(e-1), and a(p^e) = p^e if p != 17.
Sum_{k=1..n} a(k) ~ (273/578) * n^2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 33*log(2)/17. - Amiram Eldar, Sep 08 2023

A129202 Denominator of 3*(3+(-1)^n) / (n+1)^2.

Original entry on oeis.org

1, 2, 3, 8, 25, 6, 49, 32, 27, 50, 121, 24, 169, 98, 75, 128, 289, 54, 361, 200, 147, 242, 529, 96, 625, 338, 243, 392, 841, 150, 961, 512, 363, 578, 1225, 216, 1369, 722, 507, 800, 1681, 294, 1849, 968, 675, 1058, 2209, 384, 2401, 1250, 867, 1352, 2809, 486
Offset: 0

Views

Author

Paul Barry, Apr 03 2007

Keywords

Comments

A divisibility sequence, that is, if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019

Crossrefs

Cf. A026741, A051176, A129196, A129197 (numerators), A060789.

Programs

  • Magma
    [Denominator(3*(3+(-1)^n)/(n+1)^2): n in [0..50]]; // G. C. Greubel, Oct 26 2017
  • Maple
    A129202:=n->numer((n+1)/2)*numer((n+1)/3): seq(A129202(n), n=0..100); # Wesley Ivan Hurt, Jul 18 2014
  • Mathematica
    Table[Numerator[(n + 1)/2] Numerator[(n + 1)/3], {n, 0, 100}] (* Wesley Ivan Hurt, Jul 18 2014 *)
    LinearRecurrence[{0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 1}, {1, 2, 3, 8, 25, 6, 49, 32, 27, 50, 121, 24, 169, 98, 75, 128, 289, 54}, 60] (* Harvey P. Dale, Nov 20 2016 *)
  • PARI
    for(n=0,50, print1(denominator(3*(3+(-1)^n)/(n+1)^2), ", ")) \\ G. C. Greubel, Oct 26 2017
    

Formula

a(n) = A129196(n)/(n+1).
(1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*(n+1)*t)*((t-Pi)/i)^3 dt = (a(n)*Pi^2-A129203(n))/A129196(n), i=sqrt(-1).
a(n) = ( Numerator of (n+1)/2 ) * ( Numerator of (n+1)/3 ) = A026741(n+1) * A051176(n+1). - Wesley Ivan Hurt, Jul 18 2014
G.f.: -(x^16 +2*x^15 +3*x^14 +8*x^13 +25*x^12 +6*x^11 +46*x^10 +26*x^9 +18*x^8 +26*x^7 +46*x^6 +6*x^5 +25*x^4 +8*x^3 +3*x^2 +2*x +1) / ((x -1)^3*(x +1)^3*(x^2 -x +1)^3*(x^2 +x +1)^3). - Colin Barker, Jul 18 2014
a(n+18) = 3*a(n+12)-3*a(n+6)+a(n). - Robert Israel, Jul 18 2014
a(n) = 2*(n+1)^2 * (7-4*cos(2*Pi*(n+1)/3)) / (9*(3-(-1)^n)). - Vaclav Kotesovec, Jul 20 2014
From Peter Bala, Feb 27 2019: (Start)
The following remarks assume an offset of 1.
a(n) = n^2/gcd(n,6) = n*A060789(n).
a(n) = n^2/b(n), where b(n) is the purely periodic sequence [1,2,3,2,1,6,...] with period 6. Thus a(n) is a quasi-polynomial in n:
a(6*n+1) = (6*n + 1)^2;
a(6*n+2) = 2*(3*n + 1)^2;
a(6*n+3) = 3*(2*n + 1)^2;
a(6*n+4) = 2*(3*n + 2)^2;
a(6*n+5) = (6*n + 5)^2;
a(6*n) = 6*n^2.
O.g.f.: F(x) - 2*F(x^2) - 6*F(x^3) + 12*F(x^6), where F(x) = x*(1 + x)/(1 - x)^3 is the generating function for the squares. (End)
Sum_{n>=0} 1/a(n) = 55*Pi^2/216. - Amiram Eldar, Sep 27 2022

Extensions

More terms from Wesley Ivan Hurt, Jul 18 2014

A194767 Denominator of the fourth increasing diagonal of the autosequence of second kind from (-1)^n / (n+1).

Original entry on oeis.org

2, 2, 12, 20, 10, 42, 56, 24, 90, 110, 44, 156, 182, 70, 240, 272, 102, 342, 380, 140, 462, 506, 184, 600, 650, 234, 756, 812, 290, 930, 992, 352, 1122, 1190, 420, 1332, 1406, 494, 1560, 1640, 574, 1806, 1892, 660, 2070, 2162, 752, 2352, 2450, 850, 2652, 2756, 954, 2970, 3080, 1064, 3306, 3422, 1180, 3660
Offset: 0

Views

Author

Paul Curtz, Sep 02 2011

Keywords

Comments

The autosequence of first kind from (-1)^n/(n+1) is A189733.
For the second kind (the second increasing diagonal is (-1)^n/(n+1), half of the main one):
2, 1, 0, -1/2, -1/3, 1/6, 1/2, 5/12,
-1, -1, -1/2, 1/6, 1/2, 1/3, -1/12, -7/20,
0, 1/2, 2/3, 1/3, -1/6, -5/12, -4/15, 1/12,
1/2, 1/6, -1/3, -1/2, -1/4, 3/20, 7/20, 13/60,
-1/3, -1/2, -1/6, 1/4, 2/5, 1/5, -2/15, -3/10,
-1/6, 1/3, 5/12, 3/20, -1/5, -1/3, -1/6, 5/42,
1/2, 1/12, -4/15, -7/20, -2/15, 1/6, 2/7, 1/7,
-5/12, -7/20, -1/12, 13/60, 3/10, 5/42, -1/7, -1/4.
Main diagonal: (period 2:repeat 2, -1)/A026741(n+1).
Second (increasing) diagonal: (-1)^n / (n+1).
Third (increasing) diagonal: (-1)^(n+1)*A026741(n) / A045896(n).
Fourth (increasing) diagonal: (-1)^(n+1)*A146535(n)/ a(n).

Crossrefs

Programs

  • Mathematica
    c = Table[1/9 (7 n + 7 n^2 + 2 n Cos[2 n *Pi/3] + 2 n^2 Cos[2 n *Pi/3] + 2 Sqrt[3] n Sin[2 n *Pi/3] + 2 Sqrt[3] n^2 Sin[2 n *Pi/3]), {n, 1, 50}] (* Roger Bagula, Mar 25 2012 *)
    a[n_] := (n+1) * Numerator[(n+2)/3]; Array[a, 60, 0] (* Amiram Eldar, Sep 17 2023 *)
    LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{2,2,12,20,10,42,56,24,90},60] (* Harvey P. Dale, May 15 2025 *)

Formula

a(3*n) = (3*n+1)*(3*n+2), a(3*n+1) = (n+1)*(3*n+2), a(3*n+2) = 3*(n+1)*(3*n+4).
G.f.: 2*(1+x+6*x^2+7*x^3+2*x^4+3*x^5+x^6)/(1-x^3)^3. - Jean-François Alcover, Nov 11 2016
a(n+2) = 2 * A306368(n) for n >= 0. - Joerg Arndt, Aug 25 2023
a(n) = (n+1) * A051176(n+2) for n >= 0. - Paul Curtz, Sep 13 2023
Sum_{n>=0} 1/a(n) = 1 + log(3) - Pi/(3*sqrt(3)). - Amiram Eldar, Sep 17 2023

A214392 If n mod 4 = 0 then a(n) = n/4, otherwise a(n) = n.

Original entry on oeis.org

0, 1, 2, 3, 1, 5, 6, 7, 2, 9, 10, 11, 3, 13, 14, 15, 4, 17, 18, 19, 5, 21, 22, 23, 6, 25, 26, 27, 7, 29, 30, 31, 8, 33, 34, 35, 9, 37, 38, 39, 10, 41, 42, 43, 11, 45, 46, 47, 12, 49, 50, 51, 13, 53, 54, 55, 14, 57, 58
Offset: 0

Views

Author

Jeremy Gardiner, Jul 15 2012

Keywords

Comments

Equivalent to A065883 for n mod 16 != 0. - Peter Kagey, Sep 02 2015

Examples

			a(16) = 16/4 = 4;
a(17) = 17.
		

Crossrefs

Programs

Formula

From Bruno Berselli, Oct 16 2012: (Start)
G.f.: x*(1+2*x+3*x^2+x^3+3*x^4+2*x^5+x^6)/(1-x^4)^2.
a(n) = ( 1 - (3/16)*(1+(-1)^n)*(1+i^(n(n+1))) )*n, where i=sqrt(-1).
a(n) = a(-n) = 2*a(n-4) - a(n-8). (End)
From Werner Schulte, Jul 08 2018: (Start)
a(n) for n > 0 is multiplicative with a(2^e) = 2^e if e < 2 and a(2^e) = 2^(e-2) if e > 1 otherwise a(p^e) = p^e for prime p > 2 and e >= 0.
Dirichlet g.f.: Sum_{n>0} a(n)/n^s = (1-3/4^s)*zeta(s-1).
Dirichlet inverse b(n) is multiplicative with b(2^e) = (-1)^e * A038754(e), e >= 0, and for prime p > 2: b(p) = -p and b(p^e) = 0 if e > 1. (End)
Sum_{k=1..n} a(k) ~ (13/32) * n^2. - Amiram Eldar, Nov 28 2022

A106616 Numerator of n/(n+15).

Original entry on oeis.org

0, 1, 2, 1, 4, 1, 2, 7, 8, 3, 2, 11, 4, 13, 14, 1, 16, 17, 6, 19, 4, 7, 22, 23, 8, 5, 26, 9, 28, 29, 2, 31, 32, 11, 34, 7, 12, 37, 38, 13, 8, 41, 14, 43, 44, 3, 46, 47, 16, 49, 10, 17, 52, 53, 18, 11, 56, 19, 58, 59, 4, 61, 62, 21, 64, 13, 22, 67, 68, 23, 14, 71, 24, 73, 74, 5, 76, 77, 26
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

Multiplicative and also a strong divisibility sequence: gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Feb 24 2019

Crossrefs

Cf. Other sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

Dirichlet g.f.: zeta(s-1)*(1-4/5^s-2/3^s+8/15^s). - R. J. Mathar, Apr 18 2011
a(n) = gcd((n-2)*(n-1)*n*(n+1)*(n+2)/15, n) for n>=1. - Lechoslaw Ratajczak, Feb 19 2017
From Peter Bala, Feb 24 2019: (Start)
a(n) = n/gcd(n,15), a quasi-polynomial in n since gcd(n,15) is a purely periodic sequence of period 15.
O.g.f.: F(x) - 2*F(x^3) - 4*F(x^5) + 8*F(x^15), where F(x) = x/(1 - x)^2.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = Sum_{d divides 15} (phi(d)/d) * log(1/(1 - x^d)) = log(1/(1 - x)) + (2/3)*log(1/(1 - x^3)) + (4/5)*log(1/(1 - x^5)) + (8/15)*log(1/(1 - x^15)), where phi(n) denotes the Euler totient function A000010. (End)
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(3^e) = 3^max(0,e-1), a(5^e) = 5^max(0,e-1), and a(p^e) = p^e otherwise.
Sum_{k=1..n} a(k) ~ (49/150) * n^2. (End)

A194880 The numerators of the inverse Akiyama-Tanigawa algorithm from A001045(n).

Original entry on oeis.org

0, -1, -1, -4, -5, -2, -7, -8, -3, -10, -11, -4, -13, -14, -5, -16, -17, -6, -19, -20, -7, -22, -23, -8, -25, -26, -9, -28, -29, -10, -31, -32, -11, -34, -35, -12, -37, -38, -13, -40, -41, -14, -43, -44, -15, -46, -47, -16, -49, -50, -17, -52, -53, -18, -55, -56, -19, -58, -59, -20
Offset: 0

Views

Author

Paul Curtz, Sep 07 2011

Keywords

Comments

0, -1, -1, -4/3, -5/3, -2, -7/3, -8/3, -3, -10/3, -11/3, -4, -13/4, -14/3, -5, = a(n)/b(n),
1, 0, 1, 4/3, 5/3, 2, 7/3, 8/3, 3,
1, -2, -1, -4/3, -5/3, -2, -7/3, -8/3, -3,
3, -2, 1, 4/3, 5/3, 2, 7/3, 8/3, 3,
5, -6, -1, -4/3, -5/3, -2, -7/3, -8/3, -3,
11, -10, 1, 4/3, 5/3, 2, 7/3, 8/3, 3,
21, -22, -1, -4/3, -5/3, -2, -7/3, -8/3, -3,
Vertical: A001045(n), -A078008(n), (-1)^(n+1)*A000012(n), (-1)^(n+1)*A010709(n)/A010701(n), (-1)^(n+1)*A010716(n+1)/A010701(n), A007395(n), .. .
a(n)=0, 1 before (-A145064(n+1)=-A051176(n+3).
b(n)=1, 1 before A169609(n). b(n)=1, 1, 1 before A144437(n+1).
a(n+5)-a(n+2)=b(n+5) (=-1,-3,-3,=-A169609(n)).

Programs

  • Mathematica
    a[0]=0; a[1]=-1; a[n_] := (-n-1)/Max[1, 2*Mod[n, 3]-1]; Table[a[n], {n, 0, 59}] (* Jean-François Alcover, Sep 18 2012 *)

Formula

a(3*n)=-3*n-1 except a(0)=0; a(3*n+1)=-3*n-2 except a(1)=-1; a(3*n+2)=-n-1.
From Chai Wah Wu, May 07 2024: (Start)
a(n) = 2*a(n-3) - a(n-6) for n > 7.
G.f.: x*(x^6 + x^5 - 3*x^3 - 4*x^2 - x - 1)/(x^6 - 2*x^3 + 1). (End)

A283971 a(n) = n except a(4*n + 2) = 2*n + 1.

Original entry on oeis.org

0, 1, 1, 3, 4, 5, 3, 7, 8, 9, 5, 11, 12, 13, 7, 15, 16, 17, 9, 19, 20, 21, 11, 23, 24, 25, 13, 27, 28, 29, 15, 31, 32, 33, 17, 35, 36, 37, 19, 39, 40, 41, 21, 43, 44, 45, 23, 47, 48, 49, 25, 51, 52, 53, 27, 55, 56, 57, 29, 59, 60, 61, 31, 63, 64, 65, 33, 67
Offset: 0

Views

Author

Paul Curtz, Mar 18 2017

Keywords

Comments

From Federico Provvedi, Nov 13 2018: (Start)
For n > 1, a(n) is also the cycle length generated by the cycle lengths of the digital roots, in base n, of the powers of k, with k > 0.
Example for n=10 (decimal base): for every h >= 0, the digital roots of 2^h generate a periodic cycle {1,2,4,8,7,5} with period 6; 3^h generates {1,3,9,9,9,9,...} so the periodic cycle {9} has period 1; 4^h generates the periodic cycle {1,4,7} with period 3; etc. So, for n=10 (decimal base representation) the sequence generated by the periods of the digital roots of powers of k (with k > 0) is also periodic {1,6,1,3,6,1,3,2,1} with period 9, hence a(10) = 9. (End)

Crossrefs

Programs

  • GAP
    a:=[0,1,1,3,4,5,3,7];; for n in [9..85] do a[n]:=2*a[n-4]-a[n-8]; od; a; # Muniru A Asiru, Jul 20 2018
    
  • Maple
    seq(coeff(series(x*(1+x+3*x^2+4*x^3+3*x^4+x^5+x^6)/((1-x)^2*(1+x)^2*(1+x^2)^2), x,n+1),x,n),n=0..80); # Muniru A Asiru, Jul 20 2018
  • Mathematica
    Table[If[Mod[n, 4] == 2, (n - 2)/2 + 1, n], {n, 67}] (* or *)
    CoefficientList[Series[x (1 + x + 3 x^2 + 4 x^3 + 3 x^4 + x^5 + x^6)/((1 - x)^2*(1 + x)^2*(1 + x^2)^2), {x, 0, 67}], x] (* Michael De Vlieger, Mar 19 2017 *)
    LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {0, 1, 1, 3, 4, 5, 3, 7}, 70] (* Robert G. Wilson v, Jul 23 2018 *)
    Table[Length[FindTransientRepeat[(Length[FindTransientRepeat[Mod[#1^Range[b]-1,b-1]+1,2][[2]]]&)/@Range[2, 2*b], 2][[2]]], {b, 2, 100}] (* Federico Provvedi, Nov 13 2018 *)
  • PARI
    a(n)=if(n%4==2, n\4*2 + 1, n) \\ Charles R Greathouse IV, Mar 18 2017
    
  • PARI
    concat(0, Vec(x*(1 + x + 3*x^2 + 4*x^3 + 3*x^4 + x^5 + x^6) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2) + O(x^40))) \\ Colin Barker, Mar 19 2017
    
  • Python
    def A283971(n): return n if (n-2)&3 else n>>1 # Chai Wah Wu, Jan 10 2023

Formula

a(2*n) = A022998(n), a(1+2*n) = 1 + 2*n.
a(n) = 2*a(n-4) - a(n-8).
From Colin Barker, Mar 19 2017: (Start)
G.f.: x*(1 + x + 3*x^2 + 4*x^3 + 3*x^4 + x^5 + x^6) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = -((-1)^n - (-i)^n - i^n - 7)*n/8, where i = sqrt(-1).
(End)
a(n) = A060819(n) * periodic sequence of length 4: repeat [4, 1, 1, 1].
a(n) = a(n-4) + periodic sequence of length 4: repeat [4, 4, 2, 4].
From Werner Schulte, Jul 08 2018: (Start)
For n > 0, a(n) is multiplicative with a(p^e) = p^e for prime p >= 2 and e >= 0 except a(2^1) = 1.
Dirichlet g.f.: (1 - 1/2^s - 1/2^(2*s-1)) * zeta(s-1).
(End)
a(n) = n*(7 + cos(n*Pi/2) - cos(n*Pi) + cos(3*n*Pi/2))/8. - Wesley Ivan Hurt, Oct 04 2018
E.g.f.: (1/4)*x*(4*cosh(x) - sin(x) + 3*sinh(x)). - Franck Maminirina Ramaharo, Nov 13 2018
Sum_{k=1..n} a(k) ~ (7/16) * n^2. - Amiram Eldar, Nov 28 2022

A130770 One third of the least common multiple of 3 and n^2+n+1.

Original entry on oeis.org

1, 1, 7, 13, 7, 31, 43, 19, 73, 91, 37, 133, 157, 61, 211, 241, 91, 307, 343, 127, 421, 463, 169, 553, 601, 217, 703, 757, 271, 871, 931, 331, 1057, 1123, 397, 1261, 1333, 469, 1483, 1561, 547, 1723, 1807, 631, 1981, 2071, 721, 2257, 2353, 817, 2551, 2653, 919
Offset: 0

Views

Author

W. Neville Holmes, Jul 14 2007

Keywords

Comments

This is a subset of A051176 and is also one third of A130723.

Examples

			a(4)=7 because 4^2+4+1 =21, the LCM of 3 and 21 is 21 and 21/3=7.
		

Crossrefs

Programs

  • Magma
    [Lcm(3,n^2+n+1)/3: n in [0..50]]; // G. C. Greubel, Oct 26 2017
  • Maple
    seq(denom((n-1)^2/(n^2+n+1)), n=0..52) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Table[LCM[3,n^2+n+1]/3,{n,0,60}] (* or *) LinearRecurrence[ {0,0,3,0,0,-3,0,0,1},{1,1,7,13,7,31,43,19,73},60] (* Harvey P. Dale, Apr 10 2014 *)
  • PARI
    for(n=0,50, print1(lcm(3, n^2 + n +1)/3, ", ")) \\ G. C. Greubel, Oct 26 2017
    

Formula

Conjecture: a(n) = A046163(n), n>0. - R. J. Mathar, Jun 13 2008
a(n) = 3*a(n-3)-3*a(n-6)+a(n-9), with a(0)=1, a(1)=1, a(2)=7, a(3)=13, a(4)=7, a(5)=31, a(6)=43, a(7)=19, a(8)=73. - Harvey P. Dale, Apr 10 2014
Previous Showing 21-30 of 34 results. Next