A155877
Sums of three Fermat numbers.
Original entry on oeis.org
9, 11, 13, 15, 23, 25, 27, 37, 39, 51, 263, 265, 267, 277, 279, 291, 517, 519, 531, 771, 65543, 65545, 65547, 65557, 65559, 65571, 65797, 65799, 65811, 66051, 131077, 131079, 131091, 131331, 196611, 4294967303, 4294967305, 4294967307
Offset: 1
a(1) = 3 + 3 + 3 = 9.
a(2) = 3 + 3 + 5 = 11.
a(3) = 3 + 5 + 5 = 13.
a(4) = 5 + 5 + 5 = 15.
a(5) = 3 + 3 + 17 = 23.
a(6) = 3 + 5 + 17 = 25.
a(7) = 5 + 5 + 17 = 27.
a(8) = 3 + 17 + 17 = 37.
a(9) = 5 + 17 + 17 = 39.
a(10) = 17 + 17 + 17 = 51.
a(11) = 3 + 3 + 257 = 263.
A228540
Rows of negated binary Walsh matrices interpreted as reverse binary numbers.
Original entry on oeis.org
1, 3, 1, 15, 5, 3, 9, 255, 85, 51, 153, 15, 165, 195, 105, 65535, 21845, 13107, 39321, 3855, 42405, 50115, 26985, 255, 43605, 52275, 26265, 61455, 23205, 15555, 38505, 4294967295, 1431655765, 858993459, 2576980377, 252645135, 2779096485, 3284386755
Offset: 0
Negated binary Walsh matrix of size 4 and row 2 of the triangle:
1 1 1 1 15
1 0 1 0 5
1 1 0 0 3
1 0 0 1 9
Triangle starts:
k = 0 1 2 3 4 5 6 7 8 9 10 11 ...
n
0 1
1 3 1
2 15 5 3 9
3 255 85 51 153 15 165 195 105
4 65535 21845 13107 39321 3855 42405 50115 26985 255 43605 52275 26265 ...
A228539 (the same for the binary Walsh matrix, not negated)
A197818 (antidiagonals of the negated binary Walsh matrix converted to decimal).
A057755
Number of digits in n-th Fermat number (A000215).
Original entry on oeis.org
1, 1, 2, 3, 5, 10, 20, 39, 78, 155, 309, 617, 1234, 2467, 4933, 9865, 19729, 39457, 78914, 157827, 315653, 631306, 1262612, 2525223, 5050446, 10100891, 20201782, 40403563, 80807125, 161614249, 323228497, 646456994, 1292913987, 2585827973
Offset: 0
a(6) = 20 because 2^(2^6) + 1 = 18446744073709551617 which is a twenty-digit number.
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1995, page 139.
-
List([0..18],n->Size(ListOfDigits(2^(2^n)+1))); # Muniru A Asiru, Dec 20 2018
-
[Floor(2^n*Log(10,2)/Log(10,10))+1: n in [0..40]]; // Vincenzo Librandi, Nov 08 2018
-
seq(length(2^(2^n)),n=0..20); # Zerinvary Lajos, Apr 20 2008
-
Table[ Floor[ 2^n * N[ Log[ 10, 2 ], 24 ] + 1 ], {n, 0, 43} ]
-
for(n=0, 50, print(n, " ", floor(2^n*log(2)/log(10))+1); ) \\ Jinyuan Wang, Nov 07 2018
A227960
Big equivalence classes (A227723) related to subgroups of nimber addition (A190939).
Original entry on oeis.org
1, 3, 6, 15, 24, 60, 105, 255, 384, 960, 1632, 1680, 4080, 15555, 27030, 65535, 98304, 245760, 417792, 430080, 1044480, 1582080, 3947520, 3982080, 6908160, 6919680, 16776960, 106991625, 267448335, 1019462460, 1771476585, 4294967295
Offset: 0
Subsequence of
A227723 (all becs). All entries are also in
A227963 (all sona-secs). Neither shares the property of divisibility by 3.
The prime factors contain many prime factors of Fermat numbers (
A023394).
A236693
Numbers k such that 2^sigma(k) == 1 (mod k).
Original entry on oeis.org
1, 3, 15, 35, 51, 65, 105, 119, 195, 255, 315, 323, 357, 377, 455, 459, 585, 595, 663, 969, 1045, 1071, 1105, 1131, 1189, 1365, 1455, 1469, 1485, 1547, 1615, 1785, 1799, 1885, 1887, 1911, 2261, 2295, 2385, 2639, 2795, 2907, 3135, 3145, 3185, 3213, 3315, 3339
Offset: 1
2^sigma(15) = 2^24 = 16777216 is congruent to 1 (mod 15), so 15 is a term of the sequence.
-
l = {1};
For[i = 1, i <= 10^4, i++,
If[Mod[2^DivisorSigma[1, i], i] == 1, l = Append[l, i]]];
l
-
s=[1]; for(n=1, 10000, if(2^sigma(n)%n==1, s=concat(s, n))); s \\ Colin Barker, Jan 30 2014
-
isok(n) = Mod(2, n)^sigma(n)==1; \\ Altug Alkan, Sep 19 2017
A345135
Number of ordered rooted binary trees with n leaves and with minimal Sackin tree balance index.
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 6, 4, 1, 8, 28, 56, 70, 56, 28, 8, 1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 32, 496, 4960, 35960, 201376, 906192, 3365856, 10518300, 28048800, 64512240, 129024480, 225792840, 347373600, 471435600
Offset: 0
a(1) = a(2) = 1 because there are only the trees (o) and (o,o) which get counted. a(3) = 2 because the trees ((o,o),o) and (o,(o,o)) get counted. a(4) = 1 because only the tree ((o,o),(o,o)) is counted. Note that the other possible rooted binary ordered trees with four leaves, namely the different orderings of (((o,o),o),o), are not Sackin minimal. a(5) = 4 because the following trees get counted: (((o,o),o),(o,o)), ((o,(o,o)),(o,o)), ((o,o),((o,o),o)), ((o,o),(o,(o,o))).
-
a:= n-> (b-> binomial(b, n-b))(2^ilog2(n)):
seq(a(n), n=0..46); # Alois P. Heinz, Jun 09 2021
-
a[0] := 1; a[n_] := Module[{k = 2^(BitLength[n] - 1)}, Binomial[k, n - k]];
Table[a[n], {n, 0, 46}]
A211344
Atomic Boolean functions interpreted as binary numbers.
Original entry on oeis.org
1, 3, 5, 15, 51, 85, 255, 3855, 13107, 21845, 65535, 16711935, 252645135, 858993459, 1431655765, 4294967295, 281470681808895, 71777214294589695, 1085102592571150095, 3689348814741910323, 6148914691236517205
Offset: 0
-
Seq = sym(zeros(55,1)) ;
Filledlines = 0 ;
for m=1:10
for n=1:m
Sum = sym(0) ;
for k=0:2^m-1
if mod( floor( k/2^(m-n) ) ,2) == 0
Sum = Sum + 2^sym(k) ;
end
end
Seq( Filledlines + n ) = Sum ;
end
Filledlines = Filledlines + m ;
end
-
from itertools import count, islice
def A211344_gen(): # generator of terms
return (sum((bool(~(m:=(1<A211344_list = list(islice(A211344_gen(),20)) # Chai Wah Wu, May 03 2023
-
def arity_and_atom_to_integer(arity, atom):
result = 0
max_place = (1 << arity) - (1 << atom) - 1
for exponent in range(max_place + 1):
if not bool(~max_place & max_place - exponent):
place_value = 1 << exponent
result += place_value
return result
def A211344(n, k):
return arity_and_atom_to_integer(n, n-k-1) # Tilman Piesk, Jan 25 2025
A218384
Number of nonempty subsets S of the powerset of a set of size n that have the even intersection property.
Original entry on oeis.org
1, 7, 71, 3071, 1966207, 270499994623, 2342736474457787596799, 86772003564839307784895323681111305093119, 59169757600268575861444773339439520883460632949720404019392912099891777942585343
Offset: 1
For |A|=2, A = {1,2} and P(A) = {{}, {1}, {2}, {1,2}}
S can be
{{}, {1}, {2}, {1,2}}
{{}, {1}, {2}}
{{}, {1}, {1,2}}
{{}, {2}, {1,2}}
{{1}, {2}, {1,2}}
{{}, {1}} has eip, with B={2}
{{}, {2}} has eip, with B={1}
{{}, {1,2}} has eip, with B={1,2}
{{1}, {1,2}}
{{2}, {1,2}}
{{1}, {2}}
{{}} has eip, with B={1,2}
{{1}} has eip, with B={2}
{{2}} has eip, with B={1}
{{1,2}} has eip, with B={1,2}
So we have 7 S with eip.
-
A218384:=n->1+2*add((-1)^(n-i-1)*(2^(2^i-1)-1)* product((2^(n-j+1)-1)/(2^j-1), j=1..i)*2^binomial(n-i, 2), i=0..n-1): seq(A218384(n), n=1..10); # Wesley Ivan Hurt, Dec 11 2015
-
Table[1 + 2 Sum[((-1)^(n - i - 1)) (2^(2^i - 1) - 1) Product[(2^(n - j + 1) - 1)/(2^j - 1), {j, 1, i}] 2^Binomial[n - i, 2], {i, 0, n - 1}], {n, 9}] (* Michael De Vlieger, Dec 11 2015 *)
-
e(m) = {for (n=1, m, v = 1+2*sum(i=0, n-1, ((-1)^(n-i-1))*(2^(2^i-1)-1)* prod(j=1,i,(2^(n-j+1)-1)/(2^j-1))*2^binomial(n-i,2));print1(v, ", "););}
A250405
Numbers k such that all values of Euler phi (A000010) of all divisors of k are pairwise distinct and represent all proper divisors of k+1.
Original entry on oeis.org
1, 3, 15, 255, 65535, 4294967295
Offset: 1
15 is in the sequence because {phi(d) : d|15} = {1, 2, 4, 8} = {d : d|16, d<16}.
2 is not in the sequence because {phi(d) : d|2} = {1, 1}, but {d : d|2, d<2} = {1}.
A305737
Number of subsets S of vectors in GF(2)^n such that span(S) = GF(2)^n.
Original entry on oeis.org
1, 2, 8, 184, 62464, 4293001088, 18446743803209556992, 340282366920938461120638132973980614656, 115792089237316195423570985008687907766497981100801256254562260326801824546816
Offset: 0
- R. P. Stanley, Enumerative Combinatorics Vol 1, Cambridge, 1997, page 127.
-
Table[Sum[QBinomial[n, k, q] (-1)^(n - k) q^Binomial[n - k, 2] (2^(q^k) - 1) /. q -> 2, {k, 0, n}], {n, 0, 8}]
-
\\ here U(n,k) is A022166(n,k).
U(n,k)={polcoeff(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)}
a(n)={sum(k=0, n, U(n,k)*(-1)^(n-k)*2^binomial(n-k,2)*(2^(2^k)-1))} \\ Andrew Howroyd, Mar 01 2020
Comments