cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A155877 Sums of three Fermat numbers.

Original entry on oeis.org

9, 11, 13, 15, 23, 25, 27, 37, 39, 51, 263, 265, 267, 277, 279, 291, 517, 519, 531, 771, 65543, 65545, 65547, 65557, 65559, 65571, 65797, 65799, 65811, 66051, 131077, 131079, 131091, 131331, 196611, 4294967303, 4294967305, 4294967307
Offset: 1

Views

Author

Jonathan Vos Post, Jan 29 2009

Keywords

Examples

			a(1) = 3 + 3 + 3 = 9.
a(2) = 3 + 3 + 5 = 11.
a(3) = 3 + 5 + 5 = 13.
a(4) = 5 + 5 + 5 = 15.
a(5) = 3 + 3 + 17 = 23.
a(6) = 3 + 5 + 17 = 25.
a(7) = 5 + 5 + 17 = 27.
a(8) = 3 + 17 + 17 = 37.
a(9) = 5 + 17 + 17 = 39.
a(10) = 17 + 17 + 17 = 51.
a(11) = 3 + 3 + 257 = 263.
		

Crossrefs

Formula

{(2^(2^a) + 1) + (2^(2^b) + 1) + (2^(2^c) + 1)} = {A000215(a) + A000215(b) + A000215(c)}.

Extensions

More terms from R. J. Mathar, Feb 06 2009

A228540 Rows of negated binary Walsh matrices interpreted as reverse binary numbers.

Original entry on oeis.org

1, 3, 1, 15, 5, 3, 9, 255, 85, 51, 153, 15, 165, 195, 105, 65535, 21845, 13107, 39321, 3855, 42405, 50115, 26985, 255, 43605, 52275, 26265, 61455, 23205, 15555, 38505, 4294967295, 1431655765, 858993459, 2576980377, 252645135, 2779096485, 3284386755
Offset: 0

Views

Author

Tilman Piesk, Aug 24 2013

Keywords

Comments

T(n,k) is row k of the negated binary Walsh matrix of size 2^n read as reverse binary number. The left digit is always 1, so all entries are odd.
Most of these numbers are divisible by Fermat numbers (A000215): All entries in all rows beginning with row n are divisible by F_(n-1), except the entries 2^(n-1)...2^n-1. (This is the same in A228539.)
Divisibility by Fermat numbers:
All entries in rows n >= 1 are divisible by F_0 = 3, except those with k = 1.
All entries in rows n >= 3 are divisible by F_2 = 17, except those with k = 4..7.

Examples

			Negated binary Walsh matrix of size 4 and row 2 of the triangle:
1 1 1 1        15
1 0 1 0         5
1 1 0 0         3
1 0 0 1         9
Triangle starts:
      k  =  0     1     2     3    4     5     6     7   8     9    10    11 ...
n
0           1
1           3     1
2          15     5     3     9
3         255    85    51   153   15   165   195   105
4       65535 21845 13107 39321 3855 42405 50115 26985 255 43605 52275 26265 ...
		

Crossrefs

A228539 (the same for the binary Walsh matrix, not negated)
A197818 (antidiagonals of the negated binary Walsh matrix converted to decimal).
A000215 (Fermat numbers), A023394 (Prime factors of Fermat numbers).

Formula

T(n,k) + A228539(n,k) = 2^2^n - 1
T(n,0) = A051179(n)
T(n,2^n-1) = A122569(n+1)
A211344(n,k) = T(n,2^(n-k))

A057755 Number of digits in n-th Fermat number (A000215).

Original entry on oeis.org

1, 1, 2, 3, 5, 10, 20, 39, 78, 155, 309, 617, 1234, 2467, 4933, 9865, 19729, 39457, 78914, 157827, 315653, 631306, 1262612, 2525223, 5050446, 10100891, 20201782, 40403563, 80807125, 161614249, 323228497, 646456994, 1292913987, 2585827973
Offset: 0

Views

Author

Robert G. Wilson v, Oct 30 2000

Keywords

Comments

Also number of digits of A001146(n) and A051179(n). - Michel Marcus, Dec 21 2018

Examples

			a(6) = 20 because 2^(2^6) + 1 = 18446744073709551617 which is a twenty-digit number.
		

References

  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1995, page 139.

Crossrefs

Programs

  • GAP
    List([0..18],n->Size(ListOfDigits(2^(2^n)+1))); # Muniru A Asiru, Dec 20 2018
  • Magma
    [Floor(2^n*Log(10,2)/Log(10,10))+1: n in [0..40]]; // Vincenzo Librandi, Nov 08 2018
    
  • Maple
    seq(length(2^(2^n)),n=0..20); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[ Floor[ 2^n * N[ Log[ 10, 2 ], 24 ] + 1 ], {n, 0, 43} ]
  • PARI
    for(n=0, 50, print(n, " ", floor(2^n*log(2)/log(10))+1); ) \\ Jinyuan Wang, Nov 07 2018
    

Formula

a(n) = floor(log_10(F_n)+1) (F_n is the n-th Fermat number). - Ivan Panchenko, Sep 06 2009

A227960 Big equivalence classes (A227723) related to subgroups of nimber addition (A190939).

Original entry on oeis.org

1, 3, 6, 15, 24, 60, 105, 255, 384, 960, 1632, 1680, 4080, 15555, 27030, 65535, 98304, 245760, 417792, 430080, 1044480, 1582080, 3947520, 3982080, 6908160, 6919680, 16776960, 106991625, 267448335, 1019462460, 1771476585, 4294967295
Offset: 0

Views

Author

Tilman Piesk, Aug 01 2013

Keywords

Comments

A subsequence of A227723, showing all the big equivalence classes that contain Boolean functions related to subgroups of nimber addition (A190939).
Forms a triangle with row lengths A034343 = 1, 1, 2, 4, 8, 16, 36, 80...:
1,
3,
6, 15,
24, 60, 105, 255,
384, 960, 1632, 1680, 4080, 15555, 27030, 65535...
The left column a( 1,2,4,8,16,32,68,148... ) = a( A076766 ) = 3 ,6, 24, 384, 98304... is probably A001146 * 3/2, which is also A006017( A000079 ).
The first A076766(n) entries correspond to the first A006116(n) entries of A190939. (The first 148 here, for n = 7, correspond to the first 29212 there.) The entries of A190939 can be generated from this sequence.
Among the first A076766(n) entries are A076831(n;0...n) with weight 2^0...2^n. (Among the first 148 are 1, 7, 23, 43, 43, 23, 7, 1 with weights 1, 2, 4, 8, 16, 32, 64, 128.)
a(n) appears to be divisible by 3 for n>0, and the odd part of a(n) is almost always squarefree. - Ralf Stephan, Aug 02 2013

Crossrefs

Subsequence of A227723 (all becs). All entries are also in A227963 (all sona-secs). Neither shares the property of divisibility by 3.
The prime factors contain many prime factors of Fermat numbers (A023394).

Formula

a( A076766 - 1 ) = A001146 - 1 = A051179.
a( A076766 ) = A001146 * 3/2 (probably).

A236693 Numbers k such that 2^sigma(k) == 1 (mod k).

Original entry on oeis.org

1, 3, 15, 35, 51, 65, 105, 119, 195, 255, 315, 323, 357, 377, 455, 459, 585, 595, 663, 969, 1045, 1071, 1105, 1131, 1189, 1365, 1455, 1469, 1485, 1547, 1615, 1785, 1799, 1885, 1887, 1911, 2261, 2295, 2385, 2639, 2795, 2907, 3135, 3145, 3185, 3213, 3315, 3339
Offset: 1

Views

Author

Joseph L. Pe, Jan 30 2014

Keywords

Comments

This sequence is infinite since A051179(n) is a term. - Jinyuan Wang, Mar 13 2020

Examples

			2^sigma(15) = 2^24 = 16777216 is congruent to 1 (mod 15), so 15 is a term of the sequence.
		

Crossrefs

Supersequence of A015715.

Programs

  • Mathematica
    l = {1};
    For[i = 1, i <= 10^4, i++,
        If[Mod[2^DivisorSigma[1, i], i] == 1, l = Append[l, i]]];
    l
  • PARI
    s=[1]; for(n=1, 10000, if(2^sigma(n)%n==1, s=concat(s, n))); s \\ Colin Barker, Jan 30 2014
    
  • PARI
    isok(n) = Mod(2, n)^sigma(n)==1; \\ Altug Alkan, Sep 19 2017

Extensions

a(1) = 1 added by Amiram Eldar, Sep 19 2017

A345135 Number of ordered rooted binary trees with n leaves and with minimal Sackin tree balance index.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 6, 4, 1, 8, 28, 56, 70, 56, 28, 8, 1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 32, 496, 4960, 35960, 201376, 906192, 3365856, 10518300, 28048800, 64512240, 129024480, 225792840, 347373600, 471435600
Offset: 0

Views

Author

Mareike Fischer, Jun 09 2021

Keywords

Comments

Ordered rooted binary trees are trees with two descendants per inner node where left and right are distinguished.
The Sackin tree balance index is also known as total external path length.
a(0) = 1 by convention.

Examples

			a(1) = a(2) = 1 because there are only the trees (o) and (o,o) which get counted. a(3) = 2 because the trees ((o,o),o) and (o,(o,o)) get counted. a(4) = 1 because only the tree ((o,o),(o,o)) is counted. Note that the other possible rooted binary ordered trees with four leaves, namely the different orderings of (((o,o),o),o), are not Sackin minimal. a(5) = 4 because the following trees get counted: (((o,o),o),(o,o)), ((o,(o,o)),(o,o)), ((o,o),((o,o),o)), ((o,o),(o,(o,o))).
		

Crossrefs

Programs

  • Maple
    a:= n-> (b-> binomial(b, n-b))(2^ilog2(n)):
    seq(a(n), n=0..46);  # Alois P. Heinz, Jun 09 2021
  • Mathematica
    a[0] := 1; a[n_] := Module[{k = 2^(BitLength[n] - 1)}, Binomial[k, n - k]];
    Table[a[n], {n, 0, 46}]

Formula

a(n) = binomial(2^(ceiling(log_2(n))-1),n-2^(ceiling(log_2(n))-1)).
a(n) = binomial(A053644(n),n-A053644(n)).
a(2^n) = 1.
a(2^n-1) = A011782(n).
a(2^n+1) = A000079(n).
From Alois P. Heinz, Jun 09 2021: (Start)
max({ a(k) | k = 2^n..2^(n+1) }) = A037293(n).
Sum_{i=2^n..2^(n+1)-1} a(i) = 2^(2^n) - 1 = A051179(n). (End)
Conjecture: Sum_{n>=0} a(n)*x^n = 1 + x + Sum_{n>=0} x^(2^n) * ((1 + x)^(2^n) - 1). - Paul D. Hanna, Jul 18 2024

A211344 Atomic Boolean functions interpreted as binary numbers.

Original entry on oeis.org

1, 3, 5, 15, 51, 85, 255, 3855, 13107, 21845, 65535, 16711935, 252645135, 858993459, 1431655765, 4294967295, 281470681808895, 71777214294589695, 1085102592571150095, 3689348814741910323, 6148914691236517205
Offset: 0

Views

Author

Tilman Piesk, Jul 24 2012

Keywords

Comments

Row n of the triangle shows the atoms among n-ary Boolean functions:
1 01
3 5 0011 0101
15 51 85 00001111 00110011 01010101
Often n-ary x_k = T(n,k), e.g. for 2-ary functions x_1=0011, x_2=0101 and for 3-ary functions x_1=00001111, x_2=00110011, x_3=01010101.
An easier generalized way is the enumeration from right to left, here shown with k starting from 0, so that n-ary x_k = T(n, n-k-1). As numbers in the diagonals on the right have the same bit pattern, this corresponds to the infinitary definition of x_k as a binary fraction 1/A000215(k) = 1/(2^2^k + 1):
2-ary x_0=0101=5, 3-ary x_0=01010101=85, infinitary x_0 = 1/3 = .010101...
2-ary x_1=0011=3, 3-ary x_1=00110011=51, infinitary x_1 = 1/5 = .001100110011...

Crossrefs

A001317, A089633, A051179 (left diagonal)

Programs

  • MATLAB
    Seq = sym(zeros(55,1)) ;
    Filledlines = 0 ;
    for m=1:10
        for n=1:m
            Sum = sym(0) ;
            for k=0:2^m-1
                if mod(  floor( k/2^(m-n) )  ,2) == 0
                   Sum = Sum + 2^sym(k) ;
                end
            end
            Seq( Filledlines + n ) = Sum ;
        end
        Filledlines = Filledlines + m ;
    end
    
  • Python
    from itertools import count, islice
    def A211344_gen(): # generator of terms
        return (sum((bool(~(m:=(1<A211344_list = list(islice(A211344_gen(),20)) # Chai Wah Wu, May 03 2023
    
  • Python
    def arity_and_atom_to_integer(arity, atom):
        result = 0
        max_place = (1 << arity) - (1 << atom) - 1
        for exponent in range(max_place + 1):
            if not bool(~max_place & max_place - exponent):
                place_value = 1 << exponent
                result += place_value
        return result
    def A211344(n, k):
        return arity_and_atom_to_integer(n, n-k-1) # Tilman Piesk, Jan 25 2025

Formula

A218384 Number of nonempty subsets S of the powerset of a set of size n that have the even intersection property.

Original entry on oeis.org

1, 7, 71, 3071, 1966207, 270499994623, 2342736474457787596799, 86772003564839307784895323681111305093119, 59169757600268575861444773339439520883460632949720404019392912099891777942585343
Offset: 1

Views

Author

Michel Marcus, Oct 27 2012

Keywords

Comments

If A is a set, an element S of P(P(A)) \ {{}} has the even intersection property (eip) if there exists a set B (necessarily nonempty) included in A with |B∩S| even for each s in S.
For instance for S={{},{1}} of A={1,2}, we can take B={2}, and then |{}∩{2}|=0 (even) and |{1}∩{2}|=0 (even), so S has eip.

Examples

			For |A|=2, A = {1,2} and P(A) = {{}, {1}, {2}, {1,2}}
S can be
  {{}, {1}, {2}, {1,2}}
  {{}, {1}, {2}}
  {{}, {1}, {1,2}}
  {{}, {2}, {1,2}}
  {{1}, {2}, {1,2}}
  {{}, {1}} has eip, with B={2}
  {{}, {2}} has eip, with B={1}
  {{}, {1,2}} has eip, with B={1,2}
  {{1}, {1,2}}
  {{2}, {1,2}}
  {{1}, {2}}
  {{}} has eip, with B={1,2}
  {{1}} has eip, with B={2}
  {{2}} has eip, with B={1}
  {{1,2}} has eip, with B={1,2}
So we have 7 S with eip.
		

Crossrefs

Programs

  • Maple
    A218384:=n->1+2*add((-1)^(n-i-1)*(2^(2^i-1)-1)* product((2^(n-j+1)-1)/(2^j-1), j=1..i)*2^binomial(n-i, 2), i=0..n-1): seq(A218384(n), n=1..10); # Wesley Ivan Hurt, Dec 11 2015
  • Mathematica
    Table[1 + 2 Sum[((-1)^(n - i - 1)) (2^(2^i - 1) - 1) Product[(2^(n - j + 1) - 1)/(2^j - 1), {j, 1, i}] 2^Binomial[n - i, 2], {i, 0, n - 1}], {n, 9}] (* Michael De Vlieger, Dec 11 2015 *)
  • PARI
    e(m) = {for (n=1, m, v = 1+2*sum(i=0, n-1, ((-1)^(n-i-1))*(2^(2^i-1)-1)* prod(j=1,i,(2^(n-j+1)-1)/(2^j-1))*2^binomial(n-i,2));print1(v, ", "););}

Formula

a(n) = 1 + 2*Sum_{i=0..n-1} (-1)^(n-i-1)*(2^(2^i-1)-1)*(Product_{j=1..i} (2^(n-j+1)-1)/(2^j-1)) * 2^binomial(n-i,2).
a(n) ~ 2^(n + 2^(n-1)). - Vaclav Kotesovec, Apr 03 2021
Apparently, a(n) = A051179(n) - A305737(n). - Tilman Piesk, Jan 26 2025

A250405 Numbers k such that all values of Euler phi (A000010) of all divisors of k are pairwise distinct and represent all proper divisors of k+1.

Original entry on oeis.org

1, 3, 15, 255, 65535, 4294967295
Offset: 1

Views

Author

Jaroslav Krizek, Nov 22 2014

Keywords

Comments

Numbers k such that {phi(d) : d|k} = {d : d|(k+1), d<(k+1)} as multisets.
Conjecture: last term is 4294967295.
First six terms coincide with A051179. - Omar E. Pol, Apr 12 2025

Examples

			15 is in the sequence because {phi(d) : d|15} = {1, 2, 4, 8} = {d : d|16, d<16}.
2 is not in the sequence because {phi(d) : d|2} = {1, 1}, but {d : d|2, d<2} = {1}.
		

Crossrefs

Subsequence of A250404 and A203966.
Sequence differs from A051179, A050474 and A116518.
Cf. A000010.

Programs

  • Magma
    [n: n in [1..100000] | ([EulerPhi(d): d in Divisors(n)]) eq ([d: d in Divisors(n+1) | d lt n+1 ])];

Extensions

Edited and a(6) added by Max Alekseyev, May 04 2024

A305737 Number of subsets S of vectors in GF(2)^n such that span(S) = GF(2)^n.

Original entry on oeis.org

1, 2, 8, 184, 62464, 4293001088, 18446743803209556992, 340282366920938461120638132973980614656, 115792089237316195423570985008687907766497981100801256254562260326801824546816
Offset: 0

Views

Author

Geoffrey Critzer, Jun 22 2018

Keywords

Comments

Asymptotic to A001146(n) = 2^(2^n).

References

  • R. P. Stanley, Enumerative Combinatorics Vol 1, Cambridge, 1997, page 127.

Crossrefs

Programs

  • Mathematica
    Table[Sum[QBinomial[n, k, q] (-1)^(n - k) q^Binomial[n - k, 2] (2^(q^k) - 1) /. q -> 2, {k, 0, n}], {n, 0, 8}]
  • PARI
    \\ here U(n,k) is A022166(n,k).
    U(n,k)={polcoeff(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)}
    a(n)={sum(k=0, n, U(n,k)*(-1)^(n-k)*2^binomial(n-k,2)*(2^(2^k)-1))} \\ Andrew Howroyd, Mar 01 2020

Formula

a(n) = Sum_{k=0..n} A022166(n,k)*(-1)^(n-k)*2^binomial(n-k,2)*(2^(2^k)-1).
Sum_{k=0..n} a(k)* A022166(n,k) = 2^(2^n) - 1. - Geoffrey Critzer, Apr 25 2024
a(n) = Sum_{k=0..n} A158474(n,k) * A051179(n-k). - Tilman Piesk, Mar 12 2025

Extensions

a(8) corrected by Andrew Howroyd, Mar 01 2020
Previous Showing 21-30 of 43 results. Next