A208529
Number of permutations of n > 1 having exactly 2 points on the boundary of their bounding square.
Original entry on oeis.org
2, 2, 4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600, 79833600, 958003200, 12454041600, 174356582400, 2615348736000, 41845579776000, 711374856192000, 12804747411456000, 243290200817664000, 4865804016353280000, 102181884343418880000
Offset: 2
a(2) = 2 because {(1,1),(2,2)} and {(1,2),(2,1)} each have two points on the bounding square.
-
[2*Factorial(n)/n: n in [1..40]]; // Vincenzo Librandi, Apr 15 2014
-
A208529:=n->2*(n-2)!; seq(A208529(n), n=2..25); # Wesley Ivan Hurt, Feb 27 2014
-
Table[2(n-2)!, {n, 2, 10}]
FoldList[Times, 2, Range@21] (* Arkadiusz Wesolowski, May 08 2012 *)
Table[2 n!/n, {n, 1, 40}] (* Vincenzo Librandi, Apr 15 2014 *)
-
vector(33,n,2*n!/n) /* Anders Hellström, Jul 07 2015 */
-
import math
def a(n):
return 2*math.factorial(n-2)
Original entry on oeis.org
1, 4, 22, 154, 1306, 12994, 148282, 1908274, 27333706, 431220034, 7428550042, 138737478994, 2792050329706, 60231133487074, 1386484468239802, 33921605427779314, 878976357571495306, 24046780495646314114, 692622345890928153562, 20950628198687114521234, 663992311200423614606506
Offset: 1
-
b:= proc(n, m) option remember;
`if`(n=0, (m+1)!, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0)/2:
seq(a(n), n=1..23); # Alois P. Heinz, Feb 14 2025
-
a[n_] := (-1)^n (PolyLog[-n - 1, 2] - PolyLog[-n, 2])/8;
Array[a, 21] (* Jean-François Alcover, Sep 10 2018, from A005649 *)
-
a(n)=if(n<0,0,n!*polcoeff(subst((1/(1-y)^2-1)/2,y,exp(x+x*O(x^n))-1),n))
A052578
a(0) = 0, a(n) = 4*n! for n > 0.
Original entry on oeis.org
0, 4, 8, 24, 96, 480, 2880, 20160, 161280, 1451520, 14515200, 159667200, 1916006400, 24908083200, 348713164800, 5230697472000, 83691159552000, 1422749712384000, 25609494822912000, 486580401635328000, 9731608032706560000, 204363768686837760000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
[0] cat [4*Factorial(n): n in [1..25]]; // Vincenzo Librandi, Feb 13 2018
-
spec := [S,{S=Prod(Union(Z,Z,Z,Z),Sequence(Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Join[{0},4Range[25]!] (* Harvey P. Dale, Mar 12 2011 *)
-
a(n)=if(n,4*n!,0) \\ Charles R Greathouse IV, Nov 20 2011
A080046
Multiplicative Pascal triangle, read by rows: T(n,1)=T(n,n)=n and T(n,k) = T(n-1,k-1) * T(n-1,k).
Original entry on oeis.org
1, 2, 2, 3, 4, 3, 4, 12, 12, 4, 5, 48, 144, 48, 5, 6, 240, 6912, 6912, 240, 6, 7, 1440, 1658880, 47775744, 1658880, 1440, 7, 8, 10080, 2388787200, 79254226206720, 79254226206720, 2388787200, 10080, 8, 9, 80640, 24078974976000
Offset: 1
A285201
Stage at which Ken Knowlton's elevator (version 1) reaches floor n for the first time.
Original entry on oeis.org
1, 2, 5, 14, 45, 174, 825, 4738, 32137, 251338, 2224157, 21952358, 238962581, 2843085270, 36696680241, 510647009850, 7619901954001, 121367981060434, 2055085325869813, 36861997532438654, 698193329457246653, 13924819967953406654, 291683979376372766697, 6402385486361598687666, 146948520147021794869977
Offset: 1
R. L. Graham, May 02 2017
-
a:= proc(n) option remember; `if`(n<3, n, ((n-1)^2*a(n-1)
-(n-2)*(2*n-3)*a(n-2)+(n-1)*(n-3)*a(n-3))/(n-2))
end:
seq(a(n), n=1..25); # Alois P. Heinz, Jul 11 2018
-
a[n_] := 2 - n + 2 Sum[k!/j!, {k, 0, n-2}, {j, 0, k}];
Array[a, 25] (* Jean-François Alcover, Nov 01 2020 *)
A110141
Triangle, read by rows, where row n lists the denominators of unit fraction coefficients of the products of {c_k}, in ascending order by indices of {c_k}, in the coefficient of x^n in exp(Sum_{k>=1} c_k/k*x^k).
Original entry on oeis.org
1, 1, 2, 2, 6, 2, 3, 24, 4, 3, 8, 4, 120, 12, 6, 8, 4, 6, 5, 720, 48, 18, 16, 8, 6, 5, 48, 8, 18, 6, 5040, 240, 72, 48, 24, 12, 10, 48, 8, 18, 6, 24, 10, 12, 7, 40320, 1440, 360, 192, 96, 36, 30, 96, 16, 36, 12, 24, 10, 12, 7, 384, 32, 36, 12, 15, 32, 8, 362880, 10080, 2160, 960
Offset: 0
Coefficients [x^n] exp(c1*x + (c2/2)*x^2 + (c3/3)*x^3 + ...) begin:
[x^0]: 1;
[x^1]: 1*c1;
[x^2]: (1/2)*c1^2 + (1/2)*c2;
[x^3]: (1/6)*c1^3 + (1/2)*c1*c2 + (1/3)*c3;
[x^4]: (1/24)*c1^4 + (1/4)*c1^2*c2 + (1/3)*c1*c3 + (1/8)*c2^2 + (1/4)*c4;
[x^5]: (1/120)*c1^5 + (1/12)*c1^3*c2 + (1/6)*c1^2*c3 + (1/8)*c1*c2^2 + (1/4)*c1*c4 + (1/6)*c2*c3 + (1/5)*c5;
[x^6]: (1/720)*c1^6 + (1/48)*c1^4*c2 + (1/18)*c1^3*c3 + (1/16)*c1^2*c2^2 + (1/8)*c1^2*c4 + (1/6)*c1*c2*c3 + (1/5)*c1*c5 + (1/48)*c2^3 + (1/8)*c2*c4 + (1/18)*c3^2 + (1/6)*c6;
forming this triangle of unit fraction coefficients:
1;
1;
2,2;
6,2,3;
24,4,3,8,4;
120,12,6,8,4,6,5;
720,48,18,16,8,6,5,48,8,18,6;
5040,240,72,48,24,12,10,48,8,18,6,24,10,12,7;
40320,1440,360,192,96,36,30,96,16,36,12,24,10,12,7,384,32,36,12,15,32,8;
362880,10080,2160,960,480,144,120,288,48,108,36,48,20,24,14,384,32,36,12,15,32,8,144,40,24,14,162,18,20,9; ...
- Macdonald, I. G. Symmetric functions and Hall polynomials. Oxford University Press, 1995. [From Vladimir Dotsenko, Apr 19 2009]
-
Table[n!/CoefficientRules[n! CycleIndex[SymmetricGroup[n], s]][[All, 2]], {n, 1, 8}] // Grid (* Geoffrey Critzer, Jan 18 2019 *)
A275845
Permutation of natural numbers: a(0) = 0, a(A153880(n)) = A255411(n), a(A273670(n)) = A256450(a(n)).
Original entry on oeis.org
0, 1, 4, 2, 6, 3, 12, 8, 16, 5, 15, 10, 18, 21, 22, 7, 20, 13, 24, 27, 28, 9, 26, 17, 48, 30, 52, 33, 34, 11, 60, 32, 64, 23, 56, 36, 66, 61, 70, 39, 40, 14, 73, 38, 78, 29, 67, 42, 72, 80, 76, 74, 85, 45, 84, 46, 88, 19, 89, 44, 90, 97, 94, 35, 81, 49, 87, 99, 93, 91, 105, 53, 96, 104, 100, 54, 109, 25, 108, 110, 112, 51, 111, 121, 114, 117, 118, 41
Offset: 0
A351893
Numbers that contain only even digits in their factorial-base representation.
Original entry on oeis.org
0, 4, 12, 16, 48, 52, 60, 64, 96, 100, 108, 112, 240, 244, 252, 256, 288, 292, 300, 304, 336, 340, 348, 352, 480, 484, 492, 496, 528, 532, 540, 544, 576, 580, 588, 592, 1440, 1444, 1452, 1456, 1488, 1492, 1500, 1504, 1536, 1540, 1548, 1552, 1680, 1684, 1692, 1696
Offset: 1
4 is a term since its factorial-base presentation, 20, has only even digits.
16 is a term since its factorial-base presentation, 220, has only even digits.
-
max = 7; fctBaseDigits[n_] := IntegerDigits[n, MixedRadix[Range[max, 2, -1]]]; Select[Range[0, max!, 2], AllTrue[fctBaseDigits[#], EvenQ] &]
A052648
Expansion of e.g.f. 5*x/(1-x).
Original entry on oeis.org
0, 5, 10, 30, 120, 600, 3600, 25200, 201600, 1814400, 18144000, 199584000, 2395008000, 31135104000, 435891456000, 6538371840000, 104613949440000, 1778437140480000, 32011868528640000, 608225502044160000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Prod(Sequence(Z),Union(Z,Z,Z,Z,Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[(5x)/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 01 2016 *)
A086915
Triangle read by rows: T(n,k) = 2^k * (n!/k!)*binomial(n-1,k-1).
Original entry on oeis.org
2, 4, 4, 12, 24, 8, 48, 144, 96, 16, 240, 960, 960, 320, 32, 1440, 7200, 9600, 4800, 960, 64, 10080, 60480, 100800, 67200, 20160, 2688, 128, 80640, 564480, 1128960, 940800, 376320, 75264, 7168, 256, 725760, 5806080, 13547520, 13547520, 6773760, 1806336
Offset: 1
Triangle begins:
2;
4, 4;
12, 24, 8;
48, 144, 96, 16;
...
-
[Factorial(n)*Binomial(n-1,k-1)*2^k/Factorial(k): k in [1..n], n in [1..10]]; // G. C. Greubel, May 23 2018
-
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ...) as column 0.
BellMatrix(n -> 2*(n+1)!, 9); # Peter Luschny, Jan 26 2016
-
Flatten[Table[n!/k! Binomial[n-1,k-1]2^k,{n,10},{k,n}]] (* Harvey P. Dale, May 25 2011 *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[2*(#+1)!&, rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
for(n=1,10, for(k=1, n, print1(n!/k!*binomial(n-1,k-1)*2^k, ", "))) \\ G. C. Greubel, May 23 2018
Comments