A336625
Indices of triangular numbers that are eight times other triangular numbers.
Original entry on oeis.org
0, 15, 32, 527, 1104, 17919, 37520, 608735, 1274592, 20679087, 43298624, 702480239, 1470878640, 23863649055, 49966575152, 810661587647, 1697392676544, 27538630330959, 57661384427360, 935502769664975, 1958789677853712, 31779555538278207, 66541187662598864, 1079569385531794079, 2260441590850507680
Offset: 1
a(3) = 34*a(1) - a(-1) + 16 = 0 - (-16) + 16 = 32,
a(4) = 34*a(2) - a(0) + 16 = 34*15 - (-1) + 16 = 527, etc.
- Vladimir Pletser, Table of n, a(n) for n = 1..1000
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289,
A077290,
A077398,
A077401,
A077399,
A077400,
A000217.
-
f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(2) = 15, a(1) = 0, a(0) = -1, a(-1) = -16}, a(n), remember); map(f, [$ (0 .. 1000)]); #
-
LinearRecurrence[{1, 34, -34, -1, 1}, {0, 15, 32, 527, 1104, 17919}, 29] (* Amiram Eldar, Aug 18 2020 *)
FullSimplify[Table[((Sqrt[2] + 1)^(2*n + 1) * (3 - Sqrt[2]*(-1)^n) - (Sqrt[2] - 1)^(2*n + 1) * (3 + Sqrt[2]*(-1)^n) - 2)/4, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
-
concat(0, Vec(x*(15 + 17*x - 15*x^2 - x^3) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 14 2020
A200994
Triangular numbers, T(m), that are three-halves of another triangular number; T(m) such that 2*T(m) = 3*T(k) for some k.
Original entry on oeis.org
0, 15, 1485, 145530, 14260470, 1397380545, 136929032955, 13417647849060, 1314792560174940, 128836253249295075, 12624638025870742425, 1237085690282083462590, 121221773009618308591410, 11878496669252312158495605, 1163971451813716973223977895
Offset: 0
2*0 = 3*0.
2*15 = 3*10.
2*1485 = 3*990.
2*145530 = 3*97020.
- Colin Barker, Table of n, a(n) for n = 0..500
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(15*x/((1-x)*(1-98*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
LinearRecurrence[{99, -99, 1}, {0, 15, 1485}, 20] (* T. D. Noe, Feb 15 2012 *)
-
concat(0, Vec(15*x/((1-x)*(1-98*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
A309507
Number of ways the n-th triangular number T(n) = A000217(n) can be written as the difference of two positive triangular numbers.
Original entry on oeis.org
0, 1, 1, 1, 3, 3, 1, 2, 5, 3, 3, 3, 3, 7, 3, 1, 5, 5, 3, 7, 7, 3, 3, 5, 5, 7, 7, 3, 7, 7, 1, 3, 7, 7, 11, 5, 3, 7, 7, 3, 7, 7, 3, 11, 11, 3, 3, 5, 8, 11, 7, 3, 7, 15, 7, 7, 7, 3, 7, 7, 3, 11, 5, 3, 15, 7, 3, 7, 15, 7, 5, 5, 3, 11, 11, 7, 15, 7, 3, 9, 9, 3, 7
Offset: 1
a(5) = 3: T(5) = T(6)-T(3) = T(8)-T(6) = T(15)-T(14).
a(7) = 1: T(7) = T(28)-T(27).
a(8) = 2: T(8) = T(13)-T(10) = T(36)-T(35).
a(9) = 5: T(9) = T(10)-T(4) = T(11)-T(6) = T(16)-T(13) = T(23)-T(21) = T(45)-T(44).
a(49) = 8: T(49) = T(52)-T(17) = T(61)-T(36) = T(94)-T(80) = T(127)-T(117) = T(178)-T(171) = T(247)-T(242) = T(613)-T(611) = T(1225)-T(1224).
The triples with n <= 16 are:
2, 2, 3
3, 5, 6
4, 9, 10
5, 3, 6
5, 6, 8
5, 14, 15
6, 5, 8
6, 9, 11
6, 20, 21
7, 27, 28
8, 10, 13
8, 35, 36
9, 4, 10
9, 6, 11
9, 13, 16
9, 21, 23
9, 44, 45
10, 8, 13
10, 26, 28
10, 54, 55
11, 14, 18
11, 20, 23
11, 65, 66
12, 17, 21
12, 24, 27
12, 77, 78
13, 9, 16
13, 44, 46
13, 90, 91
14, 5, 15
14, 11, 18
14, 14, 20
14, 18, 23
14, 33, 36
14, 51, 53
14, 104, 105
15, 21, 26
15, 38, 41
15, 119, 120
16, 135, 136. - _N. J. A. Sloane_, Mar 31 2020
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.
- M. A. Nyblom, On the representation of the integers as a difference of nonconsecutive triangular numbers, Fibonacci Quarterly 39:3 (2001), pp. 256-263.
See also
A053141. The monotonic triples [n,k,m] with n <= k <= m are counted in
A333529.
-
with(numtheory): seq(tau(n*(n+1))-tau(n*(n+1)/2)-1, n=1..80); # Ridouane Oudra, Dec 08 2023
-
TriTriples[TNn_] := Sort[Select[{TNn, (TNn + TNn^2 - # - #^2)/(2 #),
(TNn + TNn^2 - # + #^2)/(2 #)} & /@
Complement[Divisors[TNn (TNn + 1)], {TNn}],
And[And @@ (IntegerQ /@ #), And @@ (# > 0 & /@ #)] &]]
Length[TriTriples[#]] & /@ Range[100]
(* Bradley Klee, Mar 01 2020 *)
A336623
First member of the Diophantine pair (m, k) that satisfies 8*(m^2 + m) = k^2 + k; a(n) = m.
Original entry on oeis.org
0, 5, 11, 186, 390, 6335, 13265, 215220, 450636, 7311161, 15308375, 248364270, 520034130, 8437074035, 17665852061, 286612152936, 600118935960, 9736376125805, 20386377970595, 330750176124450, 692536732064286, 11235769612105511, 23525862512215145, 381685416635462940
Offset: 0
a(2) = 34 a(0) - a(-2)+16=0 -5 +16 = 11 ; a(3) = 34 a(1) - a(-1)+16 = 34*5 -0 +16 = 186, etc.
- Vladimir Pletser, Table of n, a(n) for n = 0..1000
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289 ,
A077290,
A077398,
A077401,
A077399,
A077400,
A000217.
-
f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(1) = 5, a(0) = 0, a(-1) = 0, a(-2) = 5}, a(n), remember); map(f, [$ (0 .. 50)]); #
-
LinearRecurrence[{1, 34, -34, -1, 1}, {0, 5, 11, 186, 390}, 24] (* Amiram Eldar, Aug 08 2020 *)
FullSimplify[Table[((3*Sqrt[2] - 2*(-1)^n)*(1 + Sqrt[2])^(2*n + 1) + (3*Sqrt[2] + 2*(-1)^n)*(Sqrt[2] - 1)^(2*n + 1) - 8)/16, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
-
concat(0, Vec(x*(5 + 6*x + 5*x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 08 2020
A336626
Triangular numbers that are eight times another triangular number.
Original entry on oeis.org
0, 120, 528, 139128, 609960, 160554240, 703893960, 185279454480, 812293020528, 213812329916328, 937385441796000, 246739243443988680, 1081741987539564120, 284736873122033021040, 1248329316235215199128, 328586104843582662292128, 1440570949193450800230240, 379188080252621270252095320
Offset: 1
a(2) = 120 is a term because it is triangular and 120/8 = 15 is also triangular.
a(3) = 1154*a(1) - a(-1) + 648 = 0 - 120 + 648 = 528;
a(4) = 1154*a(2) - a(0) + 648 = 1154*120 - 0 + 648 = 139128, etc.
.
From _Peter Luschny_, Oct 19 2020: (Start)
Related sequences in context, as computed by the Julia function:
n [A336623, A336624, A336625, A336626 ]
[0] [0, 0, 0, 0 ]
[1] [5, 15, 15, 120 ]
[2] [11, 66, 32, 528 ]
[3] [186, 17391, 527, 139128 ]
[4] [390, 76245, 1104, 609960 ]
[5] [6335, 20069280, 17919, 160554240 ]
[6] [13265, 87986745, 37520, 703893960 ]
[7] [215220, 23159931810, 608735, 185279454480 ]
[8] [450636, 101536627566, 1274592, 812293020528 ]
[9] [7311161, 26726541239541, 20679087, 213812329916328] (End)
- Vladimir Pletser, Table of n, a(n) for n = 1..653
- Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
- Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021.
- Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
- Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
- V. Pletser, Recurrent relations for triangular multiples of other triangular numbers, Indian J. Pure Appl. Math. 53 (2022) 782-791
- Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1).
Cf.
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077260,
A077261,
A077262,
A077288,
A077289,
A077290,
A077291,
A077398,
A077399,
A077400,
A077401.
-
function omnibus()
println("[A336623, A336624, A336625, A336626]")
println([0, 0, 0, 0])
t, h = 1, 1
for n in 1:999999999
d, r = divrem(t, 8)
if r == 0
d2 = 2*d
s = isqrt(d2)
d2 == s * (s + 1) && println([s, d, n, t])
end
t, h = t + h + 1, h + 1
end
end
omnibus() # Peter Luschny, Oct 19 2020
-
f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 648, a(2) = 120, a(1) = 0, a(0) = 0, a(-1) = 120}, a(n), remember); map(f, [$ (1 .. 1000)])[]; #
-
LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 120, 528, 139128, 609960}, 18]
Original entry on oeis.org
0, 12, 420, 14280, 485112, 16479540, 559819260, 19017375312, 646030941360, 21946034630940, 745519146510612, 25325704946729880, 860328449042305320, 29225841562491651012, 992818284675673829100, 33726595837410418538400, 1145711440187278556476512
Offset: 0
a(1) = 12 = 2(2*3) = 3*4, a(2) = 420 = 2(14*15) = 20*21.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..255
- Nikola Adžaga, Andrej Dujella, Dijana Kreso, Petra Tadić, On Diophantine m-tuples and D(n)-sets, 2018.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
-
m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(12*x/((1-x)*(x^2-34*x+1)))); // G. C. Greubel, Jul 15 2018
-
2*Table[ Floor[(Sqrt[2] + 1)^(4n + 2)/32], {n, 0, 20} ] (* Ray Chandler, Nov 10 2004, copied incorrect program from A029549, revised Jul 09 2015 *)
RecurrenceTable[{a[n+3] == 35 a[n+2] - 35 a[n+1] + a[n], a[1] == 0, a[2] == 12, a[3] == 420}, a, {n, 1, 10}] (* Ron Knott, Nov 25 2013 *)
LinearRecurrence[{35, -35, 1}, {0, 12, 420}, 25] (* T. D. Noe, Nov 25 2013 *)
Table[(LucasL[4*n+2, 2] - 6)/16, {n,0,30}] (* G. C. Greubel, Jul 15 2018 *)
-
concat(0, Vec(12*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
-
{a=1+sqrt(2); b=1-sqrt(2); Q(n) = a^n + b^n};
for(n=0, 30, print1(round((Q(4*n+2) - 6)/16), ", ")) \\ G. C. Greubel, Jul 15 2018
Corrected by Bill Lam (bill_lam(AT)myrealbox.com), Feb 27 2006
A201008
Triangular numbers, T(m), that are five-sixths of another triangular number: T(m) such that 6*T(m)=5*T(k) for some k.
Original entry on oeis.org
0, 55, 26565, 12804330, 6171660550, 2974727580825, 1433812522297155, 691094661019647940, 333106192798948009980, 160556493834431921162475, 77387896922003387052303025, 37300805759911798127288895630
Offset: 0
6*0 = 5*0;
6*55 = 5*66;
6*26565 = 5*31878;
6*12804330 = 5*15365196.
-
I:=[0, 55, 26565]; [n le 3 select I[n] else 483*Self(n-1)-483*Self(n-2)+Self(n-3): n in [1..15]]; // Vincenzo Librandi, Dec 22 2011
-
LinearRecurrence[{483,-483,1},{0,55,26565},30] (* Vincenzo Librandi, Dec 22 2011 *)
-
makelist(expand(((11-2*sqrt(30))^(2*n+1)+(11+2*sqrt(30))^(2*n+1)-22)/192), n, 0, 11); /* Bruno Berselli, Dec 21 2011 */
-
concat(0,Vec(55/(1-x)/(1-482*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Dec 23 2011
A341895
Indices of triangular numbers that are ten times other triangular numbers.
Original entry on oeis.org
0, 4, 20, 39, 175, 779, 1500, 6664, 29600, 56979, 253075, 1124039, 2163720, 9610204, 42683900, 82164399, 364934695, 1620864179, 3120083460, 13857908224, 61550154920, 118481007099, 526235577835, 2337285022799, 4499158186320, 19983094049524, 88755280711460, 170849530073079, 758831338304095, 3370363382012699
Offset: 1
a(2) = 4 is a term because its triangular number, T(a(2)) = 4*5 / 2 = 10 is ten times a triangular number.
a(4) = 38*a(1) - a(-2) + 18 = 38*0 - (-21) + 18 = 39, etc.
Cf.
A336623,
A336624,
A336626,
A336625,
A053141,
A001652,
A075528,
A029549,
A061278,
A001571,
A076139,
A076140,
A077259,
A077262,
A077260,
A077261,
A077288,
A077291,
A077289,
A077290,
A077398,
A077401,
A077399,
A077400,
A000217.
-
f := gfun:-rectoproc({a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20, a(n) = 38*a(n-3)-a(n-6)+18}, a(n), remember); map(f, [`$`(0 .. 1000)]) ; #
-
Rest@ CoefficientList[Series[x^2*(4 + 16*x + 19*x^2 - 16*x^3 - 4*x^4 - x^5)/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7), {x, 0, 30}], x] (* Michael De Vlieger, May 19 2022 *)
A221073
Simple continued fraction expansion of an infinite product.
Original entry on oeis.org
2, 4, 1, 8, 1, 32, 1, 56, 1, 196, 1, 336, 1, 1152, 1, 1968, 1, 6724, 1, 11480, 1, 39200, 1, 66920, 1, 228484, 1, 390048, 1, 1331712, 1, 2273376, 1, 7761796, 1, 13250216, 1, 45239072, 1, 77227928, 1, 263672644, 1, 450117360, 1, 1536796800, 1, 2623476240, 1
Offset: 0
Product {n >= 0} {1 - sqrt(2)*(sqrt(2) - 1)^(4*n+3)}/{1 - sqrt(2)*(sqrt(2) - 1)^(4*n+1)} = 2.20409 39255 78752 05766 ...
= 2 + 1/(4 + 1/(1 + 1/(8 + 1/(1 + 1/(32 + 1/(1 + 1/(56 + ...))))))).
We have (sqrt(2) - 1)^3 = 5*sqrt(2) - 7 so product {n >= 0} {1 - sqrt(2)*(5*sqrt(2) - 7)^(4*n+3)}/{1 - sqrt(2)*(5*sqrt(2) - 7)^(4*n+1)} = 1.11117 34981 94843 98511 ... = 1 + 1/(8 + 1/(1 + 1/(196 + 1/(1 + 1/(1968 + 1/(1 + 1/(39200 + ...))))))).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- P. Bala, Some simple continued fraction expansions for an infinite product, Part 1
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,6,0,-6,0,-1,0,1).
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^10-2*x^8-6*x^6+12*x^4-4*x^3+x^2-4*x-2)/((x-1)*(x+1)*(x^4-2*x^2-1)*(x^4+2*x^2-1)))); // G. C. Greubel, Jul 15 2018
-
NProduct[( Sqrt[2]*(Sqrt[2] - 1)^(4*n + 3) - 1)/( Sqrt[2]*(Sqrt[2] - 1)^(4*n + 1) - 1), {n, 0, Infinity}, WorkingPrecision -> 200] // ContinuedFraction[#, 37] & (* Jean-François Alcover, Mar 06 2013 *)
Join[{2},LinearRecurrence[{0,1,0,6,0,-6,0,-1,0,1},{4,1,8,1,32,1,56,1,196,1},60]] (* Harvey P. Dale, Feb 16 2014 *)
-
x='x+O('x^30); Vec((x^10-2*x^8-6*x^6+12*x^4-4*x^3+x^2-4*x-2)/((x-1)*(x+1)*(x^4-2*x^2-1)*(x^4+2*x^2-1))) \\ G. C. Greubel, Jul 15 2018
A222390
Nonnegative integers m such that 10*m*(m+1)+1 is a square.
Original entry on oeis.org
0, 3, 15, 132, 588, 5031, 22347, 191064, 848616, 7255419, 32225079, 275514876, 1223704404, 10462309887, 46468542291, 397292260848, 1764580902672, 15086643602355, 67007605759263, 572895164628660, 2544524437949340, 21754929612286743, 96624921036315675
Offset: 1
Cf. nonnegative integers m such that k*m*(m+1)+1 is a square:
A001652 (k=2),
A001921 (k=3),
A001477 (k=4),
A053606 (k=5),
A105038 (k=6),
A105040 (k=7),
A053141 (k=8), this sequence (k=10),
A105838 (k=11),
A061278 (k=12),
A104240 (k=13);
A105063 (k=17),
A222393 (k=18),
A101180 (k=19),
A077259 (k=20) [incomplete list].
-
m:=22; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(3*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2))));
-
I:=[0,3,15,132,588]; [n le 5 select I[n] else Self(n-1) +38*Self(n-2)-38*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
-
LinearRecurrence[{1, 38, -38, -1, 1}, {0, 3, 15, 132, 588}, 23]
CoefficientList[Series[3 x (1 + 4 x + x^2)/((1 - x) (1 - 6 x - x^2) (1 + 6 x - x^2)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
makelist(expand(-1/2+((5+(-1)^n*sqrt(10))*(3-sqrt(10))^(2*floor(n/2))+(5-(-1)^n*sqrt(10))*(3+sqrt(10))^(2*floor(n/2)))/20), n, 1, 23);
-
x='x+O('x^30); concat([0], Vec(3*x*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2)))) \\ G. C. Greubel, Jul 15 2018
Comments