A132356
a(2*k) = k*(10*k+2), a(2*k+1) = 10*k^2 + 18*k + 8, with k >= 0.
Original entry on oeis.org
0, 8, 12, 36, 44, 84, 96, 152, 168, 240, 260, 348, 372, 476, 504, 624, 656, 792, 828, 980, 1020, 1188, 1232, 1416, 1464, 1664, 1716, 1932, 1988, 2220, 2280, 2528, 2592, 2856, 2924, 3204, 3276, 3572, 3648, 3960, 4040, 4368, 4452, 4796, 4884, 5244, 5336, 5712
Offset: 0
Cf. numbers m such that k*m+1 is a square:
A005563 (k=1),
A046092 (k=2),
A001082 (k=3),
A002378 (k=4),
A036666 (k=5),
A062717 (k=6),
A132354 (k=7),
A000217 (k=8),
A132355 (k=9),
A219257 (k=11),
A152749 (k=12),
A219389 (k=13),
A219390 (k=14),
A204221 (k=15),
A074378 (k=16),
A219394 (k=17),
A219395 (k=18),
A219396 (k=19),
A219190 (k=20),
A219391 (k=21),
A219392 (k=22),
A219393 (k=23),
A001318 (k=24),
A219259 (k=25),
A217441 (k=26),
A219258 (k=27),
A219191 (k=28).
Cf.
A220082 (numbers k such that 10*k-1 is a square).
-
CoefficientList[Series[4*x*(2*x^2 + x + 2)/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 12 2017 *)
LinearRecurrence[{1,2,-2,-1,1},{0,8,12,36,44},50] (* Harvey P. Dale, Dec 15 2023 *)
-
my(x='x+O('x^50)); concat([0], Vec(4*x*(2*x^2+x+2)/((1-x)^3*(1+x)^2))) \\ G. C. Greubel, Jun 12 2017
-
a(n) = n^2 + n + 6*((n+1)\2)^2 \\ Charles R Greathouse IV, Sep 11 2022
A090238
Triangle T(n, k) read by rows. T(n, k) is the number of lists of k unlabeled permutations whose total length is n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 24, 16, 6, 1, 0, 120, 72, 30, 8, 1, 0, 720, 372, 152, 48, 10, 1, 0, 5040, 2208, 828, 272, 70, 12, 1, 0, 40320, 14976, 4968, 1576, 440, 96, 14, 1, 0, 362880, 115200, 33192, 9696, 2720, 664, 126, 16, 1, 0, 3628800, 996480, 247968, 64704, 17312, 4380, 952, 160, 18, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 6, 4, 1;
0, 24, 16, 6, 1;
0, 120, 72, 30, 8, 1;
0, 720, 372, 152, 48, 10, 1;
0, 5040, 2208, 828, 272, 70, 12, 1;
0, 40320, 14976, 4968, 1576, 440, 96, 14, 1;
0, 366880, 115200, 33192, 9696, 2720, 664, 126, 16, 1;
0, 3628800, 996480, 247968, 64704, 17312, 4380, 952, 160, 18, 1;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
-
T := proc(n,k) option remember; if n=0 and k=0 then return 1 fi;
if n>0 and k=0 or k>0 and n=0 then return 0 fi;
T(n-1,k-1)+(n+k-1)*T(n-1,k)/k end:
for n from 0 to 10 do seq(T(n,k),k=0..n) od; # Peter Luschny, Mar 03 2016
# Uses function PMatrix from A357368.
PMatrix(10, factorial); # Peter Luschny, Oct 09 2022
-
T[n_, k_] := T[n, k] = T[n-1, k-1] + ((n+k-1)/k)*T[n-1, k]; T[0, 0] = 1; T[, 0] = T[0, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018 *)
A067727
a(n) = 7*n^2 + 14*n.
Original entry on oeis.org
21, 56, 105, 168, 245, 336, 441, 560, 693, 840, 1001, 1176, 1365, 1568, 1785, 2016, 2261, 2520, 2793, 3080, 3381, 3696, 4025, 4368, 4725, 5096, 5481, 5880, 6293, 6720, 7161, 7616, 8085, 8568, 9065, 9576, 10101, 10640, 11193, 11760, 12341, 12936
Offset: 1
-
List([1..45], n-> 7*n*(n+2)); # G. C. Greubel, Sep 01 2019
-
[7*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 08 2012
-
seq(7*n*(n+2), n=1..45); # G. C. Greubel, Sep 01 2019
-
Select[ Range[15000], IntegerQ[ Sqrt[ 7(7 + # )]] & ]
CoefficientList[Series[7*(3-x)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 08 2012 *)
7*(Range[2,45]^2 -1) (* G. C. Greubel, Sep 01 2019 *)
LinearRecurrence[{3,-3,1},{21,56,105},50] (* Harvey P. Dale, Dec 07 2022 *)
-
a(n)= 7*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
-
[7*n*(n+2) for n in (1..45)] # G. C. Greubel, Sep 01 2019
A100345
Triangle read by rows: T(n,k) = n*(n+k), 0 <= k <= n.
Original entry on oeis.org
0, 1, 2, 4, 6, 8, 9, 12, 15, 18, 16, 20, 24, 28, 32, 25, 30, 35, 40, 45, 50, 36, 42, 48, 54, 60, 66, 72, 49, 56, 63, 70, 77, 84, 91, 98, 64, 72, 80, 88, 96, 104, 112, 120, 128, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190
Offset: 0
Triangle begins:
0
1 2
4 6 8
9 12 15 18
16 20 24 28 32
25 30 35 40 45 50
36 42 48 54 60 66 72
49 56 63 70 77 84 91 98
64 72 80 88 96 104 112 120 128
Cf.
A000290,
A000384,
A001105,
A002378,
A005563,
A014107,
A028347,
A028552,
A028557,
A028560,
A028563,
A028566,
A028569,
A046092,
A054000,
A071355,
A071562,
A085789,
A098603,
A175040.
-
Table[n(n+k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Aug 16 2018 *)
-
row(n) = vector(n+1, k, n*(n+k-1)); \\ Amiram Eldar, May 09 2025
A285165
Triangle read by rows: T(n,k) is the number of c-nets with n-k inner vertices and k outer vertices, 3 <= n, 2 <= k <= n-1.
Original entry on oeis.org
1, 1, 1, 7, 6, 1, 73, 56, 16, 1, 879, 640, 208, 30, 1, 11713, 8256, 2848, 560, 48, 1, 167423, 115456, 41216, 9440, 1240, 70, 1, 2519937, 1710592, 624384, 156592, 25864, 2408, 96, 1, 39458047, 26468352, 9812992, 2613664, 496944, 61712, 4256, 126, 1, 637446145, 423641088, 158883840, 44169600, 9234368, 1377600, 132480, 7008, 160, 1, 10561615871, 6966960128, 2636197888, 756712960, 169378560, 28663040, 3430528, 261648, 10920, 198, 1
Offset: 3
Triangle starts:
n\k [2] [3] [4] [5] [6] [7] [8] [9] [10]
[3] 1;
[4] 1, 1;
[5] 7, 6, 1;
[6] 73, 56, 16, 1;
[7] 879, 640, 208, 30, 1;
[8] 11713, 8256, 2848, 560, 48, 1
[9] 167423, 115456, 41216, 9440, 1240, 70, 1;
[10] 2519937, 1710592, 624384, 156592, 25864, 2408, 96, 1;
[11] 39458047, 26468352, 9812992, 2613664, 496944, 61712, 4256, 126, 1;
[12] ...
-
x='x; y='y;
system("wget http://oeis.org/A106651/a106651.txt");
Fy = read("a106651.txt");
A106651_ser(N) = {
my(y0 = 1 + O(x^N), y1=0, n=1);
while(n++,
y1 = y0 - subst(Fy, y, y0)/subst(deriv(Fy, y), y, y0);
if (y1 == y0, break()); y0 = y1);
y0;
};
z='z; t='t; u='u; c0='c0;
r1 = 2*t*u + 2*t^2*u + 2*t*u^2 + 2*t^2*u^2;
r2 = 4*t^2 + 4*t^3 + 4*t^2*u + 4*t^3*u;
r3 = -4*t^2 - 4*t^3 - 2*t*u - 6*t^2*u - 4*t^3*u - 2*t*u^2 - 2*t^2*u^2;
r4 = 2*t + 2*t^2 + 4*t^3 - u + t*u + 4*t^3*u + u^2 + t*u^2 - 2*t^2*u^2;
r5 = -2*t - 2*t^2 - 4*t^3 - 4*t*u - 2*t^2*u - 4*t^3*u + 2*t^2*u^2;
r6 = u + 2*t*u + 2*t^2*u - t*u^2;
Fz = r1*z^2 + (r3*c0 + r4)*z + r2*c0^2 + r5*c0 + r6;
seq(N) = {
N += 10; my(z0 = 1 + O(t^N) + O(u^N), z1=0, n=1,
Fz = subst(Fz, 'c0, subst(A106651_ser(N), 'x, 't)));
while(n++,
z1 = z0 - subst(Fz, z, z0)/subst(deriv(Fz, z) , z, z0);
if (z1 == z0, break()); z0 = z1);
vector(N-10, n, vector(n, k, polcoeff(polcoeff(z0, n-k), k-1)));
};
concat(seq(11))
A067724
a(n) = 5*n^2 + 10*n.
Original entry on oeis.org
15, 40, 75, 120, 175, 240, 315, 400, 495, 600, 715, 840, 975, 1120, 1275, 1440, 1615, 1800, 1995, 2200, 2415, 2640, 2875, 3120, 3375, 3640, 3915, 4200, 4495, 4800, 5115, 5440, 5775, 6120, 6475, 6840, 7215, 7600, 7995, 8400, 8815, 9240, 9675
Offset: 1
-
[5*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 08 2012
-
Select[Range[10000], IntegerQ[ Sqrt[5 (5 + # )]] &]
CoefficientList[Series[5 (3 - x)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 08 2012 *)
Table[5n^2+10n,{n,60}] (* or *) LinearRecurrence[{3,-3,1},{15,40,75},60] (* Harvey P. Dale, May 22 2018 *)
-
a(n)=5*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
A067726
a(n) = 6*n^2 + 12*n.
Original entry on oeis.org
18, 48, 90, 144, 210, 288, 378, 480, 594, 720, 858, 1008, 1170, 1344, 1530, 1728, 1938, 2160, 2394, 2640, 2898, 3168, 3450, 3744, 4050, 4368, 4698, 5040, 5394, 5760, 6138, 6528, 6930, 7344, 7770, 8208, 8658, 9120, 9594, 10080, 10578, 11088, 11610
Offset: 1
-
List([1..45], n-> 6*n*(n+2)); # G. C. Greubel, Sep 01 2019
-
[6*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 08 2012
-
seq(6*n*(n+2), n=1..45); # G. C. Greubel, Sep 01 2019
-
Select[ Range[15000], IntegerQ[ Sqrt[ 6(6 + # )]] & ]
CoefficientList[Series[6*(3-x)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 08 2012 *)
6*(Range[2, 45]^2 -1) (* G. C. Greubel, Sep 01 2019 *)
LinearRecurrence[{3,-3,1},{18,48,90},60] (* Harvey P. Dale, May 10 2022 *)
-
a(n)=6*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
-
[6*n*(n+2) for n in (1..45)] # G. C. Greubel, Sep 01 2019
A067721
Least number k such that k (k + n) is a perfect square, or 0 if impossible.
Original entry on oeis.org
1, 0, 0, 1, 0, 4, 2, 9, 1, 3, 8, 25, 4, 36, 18, 1, 2, 64, 6, 81, 16, 4, 50, 121, 1, 20, 72, 9, 36, 196, 2, 225, 4, 11, 128, 1, 12, 324, 162, 13, 5, 400, 8, 441, 100, 3, 242, 529, 1, 63, 40, 17, 144, 676, 18, 9, 7, 19, 392, 841, 4, 900, 450, 1, 8, 16, 22, 1089, 256, 23, 2, 1225
Offset: 0
a(7) = 9 because 9 (7+9) = 144 = 12^2.
-
Do[k = 1; While[ !IntegerQ[ Sqrt[ k (k + n)]], k++ ]; Print[k], {n, 5, 75} ]
-
from itertools import takewhile
from collections import deque
from sympy import divisors
def A067721(n): return ((a:=next(iter(deque((d for d in takewhile(lambda d:d>2) if n else 1 # Chai Wah Wu, Aug 21 2024
A268581
a(n) = 2*n^2 + 8*n + 5.
Original entry on oeis.org
5, 15, 29, 47, 69, 95, 125, 159, 197, 239, 285, 335, 389, 447, 509, 575, 645, 719, 797, 879, 965, 1055, 1149, 1247, 1349, 1455, 1565, 1679, 1797, 1919, 2045, 2175, 2309, 2447, 2589, 2735, 2885, 3039, 3197, 3359, 3525, 3695, 3869, 4047, 4229, 4415, 4605
Offset: 0
Cf. numbers n such that 2*n + k is a perfect square:
A093328 (k=-6),
A097080 (k=-5), no sequence (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5), this sequence (k=6),
A059993 (k=7),
A147973 (k=8),
A139570 (k=9), no sequence (k=10),
A222182 (k=11),
A152811 (k=12),
A181570 (k=13).
-
[2*n^2+8*n+5: n in [0..60]];
-
[n: n in [0..6000] | IsSquare(2*n+6)];
-
Table[2 n^2 + 8 n + 5, {n, 0, 50}] (* Vincenzo Librandi, Apr 13 2016 *)
LinearRecurrence[{3,-3,1},{5,15,29},50] (* Harvey P. Dale, Jan 18 2017 *)
-
lista(nn) = for(n=0, nn, print1(2*n^2+8*n+5, ", ")); \\ Altug Alkan, Apr 10 2016
-
[2*n^2 + 8*n + 5 for n in [0..46]] # Stefano Spezia, Aug 04 2021
Changed offset from 1 to 0, adapted formulas and programs by
Bruno Berselli, Apr 13 2016
A271625
a(n) = = 2*(n+1)^2 - 5.
Original entry on oeis.org
3, 13, 27, 45, 67, 93, 123, 157, 195, 237, 283, 333, 387, 445, 507, 573, 643, 717, 795, 877, 963, 1053, 1147, 1245, 1347, 1453, 1563, 1677, 1795, 1917, 2043, 2173, 2307, 2445, 2587, 2733, 2883, 3037, 3195, 3357, 3523, 3693, 3867, 4045, 4227, 4413, 4603, 4797, 4995, 5197, 5403, 5613, 5827
Offset: 1
Numbers h such that 2*h + k is a perfect square:
A294774 (k=-9),
A255843 (k=-8),
A271649 (k=-7),
A093328 (k=-6),
A097080 (k=-5),
A271624 (k=-4),
A051890 (k=-3),
A058331 (k=-2),
A001844 (k=-1),
A001105 (k=0),
A046092 (k=1),
A056222 (k=2),
A142463 (k=3),
A054000 (k=4),
A090288 (k=5),
A268581 (k=6),
A059993 (k=7), (-1)*
A147973 (k=8),
A139570 (k=9), this sequence (k=10),
A222182 (k=11),
A152811 (k=12),
A181510 (k=13),
A161532 (k=14), no sequence (k=15).
-
[ 2*n^2 + 4*n - 3: n in [1..60]];
-
[ n: n in [1..6000] | IsSquare(2*n+10)];
-
Table[2 n^2 + 4 n - 3, {n, 53}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3,-3,1},{3,13,27},60] (* Harvey P. Dale, Jun 08 2023 *)
2*Range[2,60]^2 -5 (* G. C. Greubel, Jan 21 2025 *)
-
x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
-
def A271625(n): return 2*pow(n+1,2) - 5
print([A271625(n) for n in range(1,61)]) # G. C. Greubel, Jan 21 2025
Comments