cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 84 results. Next

A053754 If k is in the sequence then 2*k and 2*k+1 are not (and 0 is in the sequence); when written in binary k has an even number of bits (0 has 0 digits).

Original entry on oeis.org

0, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148
Offset: 1

Views

Author

Henry Bottomley, Apr 06 2000

Keywords

Comments

Runs of successive terms with same number of bits have length twice powers of 4 (A081294). [Clarified by Michel Marcus, Oct 21 2020]
The sequence A081294 counts compositions of even numbers - Gus Wiseman, Aug 12 2021
A031443 is a subsequence; A179888 is the intersection of this sequence and A032925. - Reinhard Zumkeller, Jul 31 2010
The lower and upper asymptotic densities of this sequence are 1/3 and 2/3, respectively. - Amiram Eldar, Feb 01 2021
From Gus Wiseman, Aug 10 2021: (Start)
Also numbers k such that the k-th composition in standard order (row k of A066099) has even sum. The terms and corresponding compositions begin:
0: () 2: (2) 8: (4)
3: (1,1) 9: (3,1)
10: (2,2)
11: (2,1,1)
12: (1,3)
13: (1,2,1)
14: (1,1,2)
15: (1,1,1,1)
The following pertain to compositions in standard order: A000120, A029837, A070939, A066099, A124767.
(End)

Crossrefs

Positions of even terms in A029837 with offset 0.
The complement (the odd version) is A053738, counted by A000302.
The version for Heinz numbers of partitions is A300061, counted by A058696.

Programs

  • Haskell
    a053754 n = a053754_list !! (n-1)
    a053754_list = 0 : filter (even . a070939) [1..]
    -- Reinhard Zumkeller, Apr 18 2015
    
  • Mathematica
    Select[Range[0, 150], EvenQ @ IntegerLength[#, 2] &] (* Amiram Eldar, Feb 01 2021 *)
  • PARI
    lista(nn) = {my(va = vector(nn)); for (n=2, nn, my(k=va[n-1]+1); while (#select(x->(x==k\2), va), k++); va[n] = k;); va;} \\ Michel Marcus, Oct 20 2020
    
  • PARI
    a(n) = n-1 + (1<Kevin Ryde, Apr 30 2021

Extensions

Offset corrected by Reinhard Zumkeller, Jul 30 2010

A344611 Number of integer partitions of 2n with reverse-alternating sum >= 0.

Original entry on oeis.org

1, 2, 4, 8, 15, 27, 48, 81, 135, 220, 352, 553, 859, 1313, 1986, 2969, 4394, 6439, 9357, 13479, 19273, 27353, 38558, 53998, 75168, 104022, 143172, 196021, 267051, 362086, 488733, 656802, 879026, 1171747, 1555997, 2058663, 2714133, 3566122, 4670256, 6096924, 7935184
Offset: 0

Views

Author

Gus Wiseman, May 30 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
Also the number of reversed integer partitions of 2n with alternating sum >= 0.
The reverse-alternating sum of a partition is equal to (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. So a(n) is the number of partitions of 2n whose conjugate parts are all even or whose length is odd. By conjugation, this is also the number of partitions of 2n whose parts are all even or whose greatest part is odd.

Examples

			The a(0) = 1 through a(4) = 15 partitions:
  ()  (2)   (4)     (6)       (8)
      (11)  (22)    (33)      (44)
            (211)   (222)     (332)
            (1111)  (321)     (422)
                    (411)     (431)
                    (2211)    (521)
                    (21111)   (611)
                    (111111)  (2222)
                              (3311)
                              (22211)
                              (32111)
                              (41111)
                              (221111)
                              (2111111)
                              (11111111)
		

Crossrefs

The non-reversed version is A058696 (partitions of 2n).
The ordered version appears to be A114121.
Odd bisection of A344607.
Row sums of A344610.
The strict case is A344650.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A000070 counts partitions with alternating sum 1.
A000097 counts partitions with alternating sum 2.
A103919 counts partitions by sum and alternating sum.
A120452 counts partitions of 2n with reverse-alternating sum 2.
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344612 counts partitions by sum and rev-alt sum (strict: A344739).
A344618 gives reverse-alternating sums of standard compositions.
A344741 counts partitions of 2n with reverse-alternating sum -2.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]>=0&]],{n,0,30,2}]

Formula

Conjecture: a(n) <= A160786(n). The difference is 0, 0, 0, 0, 1, 2, 4, 9, 16, 28, 48, 79, ...

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A087897 Number of partitions of n into odd parts greater than 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, 13, 15, 18, 20, 23, 27, 30, 34, 40, 44, 50, 58, 64, 73, 83, 92, 104, 118, 131, 147, 166, 184, 206, 232, 256, 286, 320, 354, 394, 439, 485, 538, 598, 660, 730, 809, 891, 984, 1088, 1196, 1318, 1454, 1596, 1756
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2003

Keywords

Comments

Also number of partitions of n into distinct parts which are not powers of 2.
Also number of partitions of n into distinct parts such that the two largest parts differ by 1.
Also number of partitions of n such that the largest part occurs an odd number of times that is at least 3 and every other part occurs an even number of times. Example: a(10) = 2 because we have [2,2,2,1,1,1,1] and [2,2,2,2,2]. - Emeric Deutsch, Mar 30 2006
Also difference between number of partitions of 1+n into distinct parts and number of partitions of n into distinct parts. - Philippe LALLOUET, May 08 2007
In the Berndt reference replace {a -> -x, q -> x} in equation (3.1) to get f(x). G.f. is 1 - x * (1 - f(x)).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of symmetric unimodal compositions of n+3 where the maximal part appears three times. - Joerg Arndt, Jun 11 2013
Let c(n) = number of palindromic partitions of n whose greatest part has multiplicity 3; then c(n) = a(n-3) for n>=3. - Clark Kimberling, Mar 05 2014
From Gus Wiseman, Aug 22 2021: (Start)
Also the number of integer partitions of n - 1 whose parts cover an interval of positive integers starting with 2. These partitions are ranked by A339886. For example, the a(6) = 1 through a(16) = 5 partitions are:
32 222 322 332 432 3322 3332 4332 4432 5432 43332
2222 3222 22222 4322 33222 33322 33332 44322
32222 222222 43222 43322 333222
322222 332222 432222
2222222 3222222
(End)

Examples

			1 + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + 3*x^13 + ...
q + q^73 + q^121 + q^145 + q^169 + q^193 + 2*q^217 + 2*q^241 + 2*q^265 + ...
a(10)=2 because we have [7,3] and [5,5].
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(22)=13 symmetric unimodal compositions of 22+3=25 where the maximal part appears three times:
01:  [ 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 2 3 3 3 2 1 1 1 1 1 1 ]
03:  [ 1 1 1 1 1 5 5 5 1 1 1 1 1 ]
04:  [ 1 1 1 1 2 2 3 3 3 2 2 1 1 1 1 ]
05:  [ 1 1 1 2 5 5 5 2 1 1 1 ]
06:  [ 1 1 2 2 2 3 3 3 2 2 2 1 1 ]
07:  [ 1 1 3 5 5 5 3 1 1 ]
08:  [ 1 1 7 7 7 1 1 ]
09:  [ 1 2 2 5 5 5 2 2 1 ]
10:  [ 1 4 5 5 5 4 1 ]
11:  [ 2 2 2 2 3 3 3 2 2 2 2 ]
12:  [ 2 3 5 5 5 3 2 ]
13:  [ 2 7 7 7 2 ]
(End)
From _Gus Wiseman_, Feb 16 2021: (Start)
The a(7) = 1 through a(19) = 8 partitions are the following (A..J = 10..19). The Heinz numbers of these partitions are given by A341449.
  7  53  9    55  B    75    D    77    F      97    H      99      J
         333  73  533  93    553  95    555    B5    755    B7      775
                       3333  733  B3    753    D3    773    D5      955
                                  5333  933    5533  953    F3      973
                                        33333  7333  B33    5553    B53
                                                     53333  7533    D33
                                                            9333    55333
                                                            333333  73333
(End)
		

References

  • J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. I

Crossrefs

The ordered version is A000931.
Partitions with no ones are counted by A002865, ranked by A005408.
The even version is A035363, ranked by A066207.
The version for factorizations is A340101.
Partitions whose only even part is the smallest are counted by A341447.
The Heinz numbers of these partitions are given by A341449.
A000009 counts partitions into odd parts, ranked by A066208.
A025147 counts strict partitions with no 1's.
A025148 counts strict partitions with no 1's or 2's.
A026804 counts partitions whose smallest part is odd, ranked by A340932.
A027187 counts partitions with even length/maximum, ranks A028260/A244990.
A027193 counts partitions with odd length/maximum, ranks A026424/A244991.
A058695 counts partitions of odd numbers, ranked by A300063.
A058696 counts partitions of even numbers, ranked by A300061.
A340385 counts partitions with odd length and maximum, ranked by A340386.

Programs

  • Haskell
    a087897 = p [3,5..] where
       p [] _ = 0
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 12 2011
    
  • Maple
    To get 128 terms: t4 := mul((1+x^(2^n)),n=0..7); t5 := mul((1+x^k),k=1..128): t6 := series(t5/t4,x,100); t7 := seriestolist(t6);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<3, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..80);  # Alois P. Heinz, Jun 11 2013
  • Mathematica
    max = 65; f[x_] := Product[ 1/(1 - x^(2k+1)), {k, 1, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 16 2011, after Emeric Deutsch *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<3, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]] ]; a[n_] := b[n, n-1+Mod[n, 2]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 01 2015, after Alois P. Heinz *)
    Flatten[{1, Table[PartitionsQ[n+1] - PartitionsQ[n], {n, 0, 80}]}] (* Vaclav Kotesovec, Dec 01 2015 *)
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&OddQ[Times@@#]&]],{n,0,30}] (* Gus Wiseman, Feb 16 2021 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - x) * eta(x^2 + A) / eta(x + A), n))} /* Michael Somos, Nov 13 2011 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A087897_T(n,k):
        if n==0: return 1
        if k<3 or n<0: return 0
        return A087897_T(n,k-2)+A087897_T(n-k,k)
    def A087897(n): return A087897_T(n,n-(n&1^1)) # Chai Wah Wu, Sep 23 2023, after Alois P. Heinz

Formula

Expansion of q^(-1/24) * (1 - q) * eta(q^2) / eta(q) in powers of q.
Expansion of (1 - x) / chi(-x) in powers of x where chi() is a Ramanujan theta function.
G.f.: 1 + x^3 + x^5*(1 + x) + x^7*(1 + x)*(1 + x^2) + x^9*(1 + x)*(1 + x^2)*(1 + x^3) + ... [Glaisher 1876]. - Michael Somos, Jun 20 2012
G.f.: Product_{k >= 1} 1/(1-x^(2*k+1)).
G.f.: Product_{k >= 1, k not a power of 2} (1+x^k).
G.f.: Sum_{k >= 1} x^(3*k)/Product_{j = 1..k} (1 - x^(2*j)). - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(n/3)) * Pi / (8 * 3^(3/4) * n^(5/4)) * (1 - (15*sqrt(3)/(8*Pi) + 11*Pi/(48*sqrt(3)))/sqrt(n) + (169*Pi^2/13824 + 385/384 + 315/(128*Pi^2))/n). - Vaclav Kotesovec, Aug 30 2015, extended Nov 04 2016
G.f.: 1/(1 - x^3) * Sum_{n >= 0} x^(5*n)/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 - x^3)*(1 - x^5)) * Sum_{n >= 0} x^(7*n)/Product_{k = 1..n} (1 - x^(2*k)) = ..., extending Deutsch's result dated Mar 30 2006. - Peter Bala, Jan 15 2021
G.f.: Sum_{n >= 0} x^(n*(2*n+1))/Product_{k = 2..2*n+1} (1 - x^k). (Set z = x^3 and q = x^2 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021
a(2*n+1) = Sum{j>=1} A008284(n+1-j,2*j - 1) and a(2*n) = Sum{j>=1} A008284(n-j, 2*j). - Gregory L. Simay, Sep 22 2023

A120452 Number of partitions of n-1 boys and one girl with no couple.

Original entry on oeis.org

1, 1, 3, 5, 9, 14, 23, 34, 52, 75, 109, 153, 216, 296, 407, 549, 739, 981, 1300, 1702, 2224, 2879, 3716, 4761, 6083, 7721, 9774, 12306, 15450, 19307, 24064, 29867, 36978, 45614, 56130, 68846, 84250, 102793, 125148, 151955, 184123, 222553, 268482
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jul 20 2006

Keywords

Comments

From Gus Wiseman, Jun 08 2021: (Start)
Also the number of:
- integer partitions of 2n with reverse-alternating sum 2;
- reversed integer partitions of 2n with alternating sum 2;
- integer partitions of 2n with exactly two odd parts, one of which is the greatest;
- odd-length integer partitions of 2n whose conjugate partition has exactly two odd parts.
Note that integer partitions of 2n with alternating or reverse-alternating sum 0 are counted by A000041, ranked by A000290.
(End)

Examples

			n=5:
If partitions have no pair "o*", then a(5)=9 ("o" means a boy, "*" means a girl): {o, o, o, o, *}, {o, o, *, oo}, {*, oo, oo}, {o, *, ooo}, {o, o, oo*}, {oo, oo*}, {*, oooo}, {o, ooo*}, {oooo*}.
From _Gus Wiseman_, Jun 08 2021: (Start)
The a(1) = 1 through a(6) = 14 partitions of 2n with reverse-alternating sum 2:
  (2)  (211)  (222)    (332)      (442)        (552)
              (321)    (431)      (541)        (651)
              (21111)  (22211)    (22222)      (33222)
                       (32111)    (32221)      (33321)
                       (2111111)  (33211)      (43221)
                                  (43111)      (44211)
                                  (2221111)    (54111)
                                  (3211111)    (2222211)
                                  (211111111)  (3222111)
                                               (3321111)
                                               (4311111)
                                               (222111111)
                                               (321111111)
                                               (21111111111)
For example, the partition (43221) has reverse-alternating sum 1 - 2 + 2 - 3 + 4 = 2, so is counted under a(6).
The a(1) = 1 through a(6) = 14 partitions of 2n with exactly two odd parts, one of which is the greatest:
  (11)  (31)  (33)   (53)    (55)     (75)
              (51)   (71)    (73)     (93)
              (321)  (332)   (91)     (111)
                     (521)   (532)    (543)
                     (3221)  (541)    (552)
                             (721)    (732)
                             (3322)   (741)
                             (5221)   (921)
                             (32221)  (5322)
                                      (5421)
                                      (7221)
                                      (33222)
                                      (52221)
                                      (322221)
(End)
		

Crossrefs

A diagonal of A103919.
A diagonal of A344612.
A000097 counts partitions of 2n with alternating sum 2.
A001700/A088218 appear to count compositions with reverse-alternating sum 2.
A058696 counts partitions of 2n, ranked by A300061.
A344610 counts partitions of 2n by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A344741 counts partitions of 2n with reverse-alternating sum -2.

Programs

  • Mathematica
    a[n_] := Total[PartitionsP[Range[0, n-3]]] + PartitionsP[n-1];
    Array[a, 50] (* Jean-François Alcover, Jun 05 2021 *)

Formula

a(n) = A000070(n-2) + A002865(n-1). - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 15 2006
a(n) = A000070(n-1) - A000041(n-2) = A000070(n-3) + A000041(n-1). - Max Alekseyev, Aug 23 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 - 37*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Oct 25 2016

Extensions

More terms from Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 15 2006
More terms from Max Alekseyev, Aug 23 2006

A114121 Expansion of (sqrt(1 - 4*x) + (1 - 2*x))/(2*(1 - 4*x)).

Original entry on oeis.org

1, 2, 7, 26, 99, 382, 1486, 5812, 22819, 89846, 354522, 1401292, 5546382, 21977516, 87167164, 345994216, 1374282019, 5461770406, 21717436834, 86392108636, 343801171354, 1368640564996, 5450095992964, 21708901408216, 86492546019214
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Second binomial transform of A032443 with interpolated zeros.
a(n) is the total number of lattice points, taken over all Dyck n-paths (A000108), that (i) lie on or above ground level and (ii) lie on or directly below a peak. For example with n = 2, UUDD has 1 peak contributing 3 lattice points--(2, 0), (2, 1) and (2, 2) when the path starts at the origin--and UDUD has 2 peaks, each contributing 2 lattice points and so a(2) = 3 + 4 = 7. - David Callan, Jul 14 2006
Hankel transform is binomial(n + 2, 2). - Paul Barry, Dec 04 2007
Image of (-1)^n under the Riordan array ((1/2)(1/(1 - 4x) + 1/sqrt(1 - 4x)), c(x) - 1), c(x) the g.f. of A000108. - Paul Barry, Jun 15 2008
From Gus Wiseman, Jun 21 2021: (Start)
Also the even bisection of A116406 = number compositions of n with alternating sum >= 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The a(3) = 26 compositions are:
(6) (33) (114) (1122) (11112) (111111)
(42) (123) (1131) (11121)
(51) (132) (1221) (11211)
(213) (2112) (12111)
(222) (2121) (21111)
(231) (2211)
(312) (3111)
(321)
(411)
(End)

Examples

			G.f. = 1 + 2*x + 7*x^2 + 26*x^3 + 99*x^4 + 382*x^5 + 1486*x^6 + 5812*x^7 + ...
		

Crossrefs

The case of alternating sum = 0 is A001700.
The case of alternating sum < 0 is A008549.
This is the even bisection of A116406.
The restriction to reversed partitions is A344611.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives the alternating sum of standard compositions.
A316524 is the alternating sum of the prime indices of n.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    seq(sum(binomial(2*n,2*k+irem(n,2)),k=0..floor((1/2)*n)),n=0..20)
    seq(binomial(2*n-1,n)+4^(n-1)-(1/4)*0^n,n=0..20)
  • Mathematica
    a[ n_] := SeriesCoefficient[((1 + 1/Sqrt[1 - 4 x])/2)^2, {x, 0, n}] (* Michael Somos, Dec 31 2013 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]>=0&]],{n,0,15,2}] (* Gus Wiseman, Jun 21 2021 *)

Formula

a(n) = Sum_{k=0..n} C(n, k)*2^(n-k-2)*(2^k + C(k, k/2))*(1 + (-1)^k).
a(n) = (A000984(n) + A081294(n))/2.
From Paul Barry, Jun 15 2008: (Start)
G.f.: (1 - 4*x + (1 - 2*x)*sqrt(1 - 4*x))/(2*(1 - 4*x)^(3/2)).
a(n) = Sum_{k=0..n} ( Sum_{j=0..n} C(2*n, n-k-j)*(-1)^j ). (End)
a(n) = Sum_{k=0..n} C(2*n, n-k)*(1 + (-1)^k)/2. - Paul Barry, Aug 06 2009
From Paul Barry, Sep 07 2009: (Start)
a(n) = C(2*n-1, n-1) + (4^n + 3*0^n)/4.
Integral representation a(n) = (1/(2*pi))*(Integral_{x=0..4} x^n/sqrt(x(4 - x))) + (4^n + 0^n)/4. (End)
a(n) = Sum_{k=0..floor(n/2)} C(2*n, 2*k + (n mod 2)). - Mircea Merca, Jun 21 2011
Conjecture: n*a(n) + 2*(3 - 4*n)*a(n-1) + 8*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 07 2012
Conjecture verified using the differential equation (16*x^2-8*x+1)*g'(x) + (8*x-2)*g(x)-2*x=0 satisfied by the G.f. - Robert Israel, Jul 27 2020
a(n) = Sum_{i=0..n} (sum_{j=0..n} binomial(n, i+j)*binomial(n, j-i)). - Yalcin Aktar, Jan 07 2013.
G.f.: (1 + (1 - 4*x)^(-1/2))^2 / 4. Convolution square of A088218. - Michael Somos, Dec 31 2013
0 = (1 + 2*n)*b(n) - (5 + 4*n)*b(n+1) + (4 + 2*n)*b(n+2) if n > 0 where b(n) = a(n) / 4^n. - Michael Somos, Dec 31 2013
0 = b(n+3) * (2*b(n+2) - 7*b(n+1) + 5*b(n)) + b(n+2) * (-b(n+2) + 7*b(n+1) - 7*b(n)) + b(n+1) * (-b(n+1) + 2*b(n)) if n > 0 where b(n) = a(n) / 4^n. - Michael Somos, Dec 31 2013
For n > 0, a(n) = 2^(2n-1) - A008549(n). - Gus Wiseman, Jun 27 2021
a(n) = [x^n] 1/((1-2*x) * (1-x)^(n-1)). - Seiichi Manyama, Apr 10 2024

A340387 Numbers whose sum of prime indices is twice their number, counted with multiplicity in both cases.

Original entry on oeis.org

1, 3, 9, 10, 27, 28, 30, 81, 84, 88, 90, 100, 208, 243, 252, 264, 270, 280, 300, 544, 624, 729, 756, 784, 792, 810, 840, 880, 900, 1000, 1216, 1632, 1872, 2080, 2187, 2268, 2352, 2376, 2430, 2464, 2520, 2640, 2700, 2800, 2944, 3000, 3648, 4896, 5440, 5616
Offset: 1

Views

Author

Gus Wiseman, Jan 09 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions whose sum is twice their length, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). Like partitions in general (A000041), these are also counted by A000041.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      3: {2}
      9: {2,2}
     10: {1,3}
     27: {2,2,2}
     28: {1,1,4}
     30: {1,2,3}
     81: {2,2,2,2}
     84: {1,1,2,4}
     88: {1,1,1,5}
     90: {1,2,2,3}
    100: {1,1,3,3}
    208: {1,1,1,1,6}
    243: {2,2,2,2,2}
    252: {1,1,2,2,4}
		

Crossrefs

Partitions of 2n into n parts are counted by A000041.
The number of prime indices alone is A001222.
The sum of prime indices alone is A056239.
Allowing sum to be any multiple of length gives A067538, ranked by A316413.
A000569 counts graphical partitions, ranked by A320922.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A301987 lists numbers whose sum of prime indices equals their product, with nonprime case A301988.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Total[primeMS[#]]==2*PrimeOmega[#]&]

Formula

All terms satisfy A056239(a(n)) = 2*A001222(a(n)).

A096441 Number of palindromic and unimodal compositions of n. Equivalently, the number of orbits under conjugation of even nilpotent n X n matrices.

Original entry on oeis.org

1, 2, 2, 4, 3, 7, 5, 11, 8, 17, 12, 26, 18, 37, 27, 54, 38, 76, 54, 106, 76, 145, 104, 199, 142, 266, 192, 357, 256, 472, 340, 621, 448, 809, 585, 1053, 760, 1354, 982, 1740, 1260, 2218, 1610, 2818, 2048, 3559, 2590, 4485, 3264, 5616, 4097, 7018, 5120, 8728, 6378
Offset: 1

Views

Author

Nolan R. Wallach (nwallach(AT)ucsd.edu), Aug 10 2004

Keywords

Comments

Number of partitions of n such that all differences between successive parts are even, see example. [Joerg Arndt, Dec 27 2012]
Number of partitions of n where either all parts are odd or all parts are even. - Omar E. Pol, Aug 16 2013
From Gus Wiseman, Jan 13 2022: (Start)
Also the number of integer partitions of n with all even multiplicities (or run-lengths) except possibly the first. These are the conjugates of the partitions described by Joerg Arndt above. For example, the a(1) = 1 through a(8) = 11 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (322) (44)
(211) (11111) (222) (511) (422)
(1111) (411) (31111) (611)
(2211) (1111111) (2222)
(21111) (3311)
(111111) (22211)
(41111)
(221111)
(2111111)
(11111111)
(End)

Examples

			From _Joerg Arndt_, Dec 27 2012: (Start)
There are a(10)=17 partitions of 10 where all differences between successive parts are even:
[ 1]  [ 1 1 1 1 1 1 1 1 1 1 ]
[ 2]  [ 2 2 2 2 2 ]
[ 3]  [ 3 1 1 1 1 1 1 1 ]
[ 4]  [ 3 3 1 1 1 1 ]
[ 5]  [ 3 3 3 1 ]
[ 6]  [ 4 2 2 2 ]
[ 7]  [ 4 4 2 ]
[ 8]  [ 5 1 1 1 1 1 ]
[ 9]  [ 5 3 1 1 ]
[10]  [ 5 5 ]
[11]  [ 6 2 2 ]
[12]  [ 6 4 ]
[13]  [ 7 1 1 1 ]
[14]  [ 7 3 ]
[15]  [ 8 2 ]
[16]  [ 9 1 ]
[17]  [ 10 ]
(End)
		

References

  • A. G. Elashvili and V. G. Kac, Classification of good gradings of simple Lie algebras. Lie groups and invariant theory, 85-104, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005.

Crossrefs

Bisections are A078408 and A096967.
The complement in partitions is counted by A006477
A version for compositions is A016116.
A pointed version is A035363, ranked by A066207.
A000041 counts integer partitions.
A025065 counts palindromic partitions.
A027187 counts partitions with even length/maximum.
A035377 counts partitions using multiples of 3.
A058696 counts partitions of even numbers, ranked by A300061.
A340785 counts factorizations into even factors.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i>n, 0,
          `if`(irem(n, i)=0, 1, 0) +add(`if`(irem(j, 2)=0,
           b(n-i*j, i+1), 0), j=0..n/i))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    (* The following Mathematica program first generates all of the palindromic, unimodal compositions of n and then counts them. *)
    Pal[n_] := Block[{i, j, k, m, Q, L}, If[n == 1, Return[{{1}}]]; If[n == 2, Return[{{1, 1}, {2}}]]; L = {{n}}; If[Mod[n, 2] == 0, L = Append[L, {n/2, n/2}]]; For[i = 1, i < n, i++, Q = Pal[n - 2i]; m = Length[Q]; For[j = 1, j <= m, j++, If[i <= Q[[j, 1]], L = Append[L, Append[Prepend[Q[[j]], i], i]]]]]; L] NoPal[n_] := Length[Pal[n]]
    a[n_] := PartitionsQ[n] + If[EvenQ[n], PartitionsP[n/2], 0]; Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Mar 17 2014, after Vladeta Jovovic *)
    Table[Length[Select[IntegerPartitions[n],And@@EvenQ/@Rest[Length/@Split[#]]&]],{n,1,30}] (* Gus Wiseman, Jan 13 2022 *)
  • PARI
    my(x='x+O('x^66)); Vec(eta(x^2)/eta(x)+1/eta(x^2)-2) \\ Joerg Arndt, Jan 17 2016

Formula

G.f.: sum(j>=1, q^j * (1-q^j)/prod(i=1..j, 1-q^(2*i) ) ).
G.f.: F + G - 2, where F = Product_{j>=1} 1/(1-q^(2*j)), G = Product_{j>=0} 1/(1-q^(2*j+1)).
a(2*n) = A000041(n) + A000009(2*n); a(2*n-1) = A000009(2*n-1). - Vladeta Jovovic, Aug 11 2004
a(n) = A000009(n) + A035363(n) = A000041(n) - A006477(n). - Omar E. Pol, Aug 16 2013

A035294 Number of ways to partition 2n into distinct positive integers.

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 15, 22, 32, 46, 64, 89, 122, 165, 222, 296, 390, 512, 668, 864, 1113, 1426, 1816, 2304, 2910, 3658, 4582, 5718, 7108, 8808, 10880, 13394, 16444, 20132, 24576, 29927, 36352, 44046, 53250, 64234, 77312, 92864, 111322, 133184, 159046
Offset: 0

Views

Author

Keywords

Comments

Also, number of partitions of 2n into odd numbers. - Vladeta Jovovic, Aug 17 2004
This sequence was originally defined as the expansion of sum ( q^n / product( 1-q^k, k=1..2*n), n=0..inf ). The present definition is due to Reinhard Zumkeller. Michael Somos points out that the equivalence of the two definitions follows from Andrews, page 19.
Also, number of partitions of 2n with max descent 1 and last part 1. - Wouter Meeussen, Mar 31 2013

Examples

			a(4)=6 [8=7+1=6+2=5+3=5+2+1=4+3+1=2*4].
G.f. = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + 10*x^5 + 15*x^6 + 22*x^7 + 46*x^9 + ...
G.f. = q + q^49 + 2*q^97 + 4*q^145 + 6*q^193 + 10*q^241 + 15*q^289 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1998, p. 19.

Crossrefs

Programs

  • Haskell
    import Data.MemoCombinators (memo2, integral)
    a035294 n = a035294_list !! n
    a035294_list = f 1 where
       f x = (p' 1 (x - 1)) : f (x + 2)
       p' = memo2 integral integral p
       p _ 0 = 1
       p k m = if m < k then 0 else p' k (m - k) + p' (k + 2) m
    -- Reinhard Zumkeller, Nov 27 2015
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(2*n, 2*n-1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 11 2015
  • Mathematica
    Table[Count[IntegerPartitions[2 n], q_ /; Union[q] == Sort[q]], {n, 16}];
    Table[Count[IntegerPartitions[2 n], q_ /; Count[q, _?EvenQ] == 0], {n, 16}];
    Table[Count[IntegerPartitions[2 n], q_ /; Last[q] == 1 && Max[q - PadRight[Rest[q], Length[q]]] <= 1 ], {n, 16}];
    (* Wouter Meeussen, Mar 31 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] /QPochhammer[ x], {x, 0, 2 n}]; (* Michael Somos, May 06 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8] QPochhammer[ x^8] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, May 06 2015 *)
    nmax=60; CoefficientList[Series[Product[(1+x^(8*k+1)) * (1+x^(8*k+2))^2 * (1+x^(8*k+3))^2 * (1+x^(8*k+4))^3 * (1+x^(8*k+5))^2 * (1+x^(8*k+6))^2 * (1+x^(8*k+7)) * (1+x^(8*k+8))^3, {k,0,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 06 2015 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2n, 2n-1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A), n))};/* Michael Somos, Nov 01 2005 */
    

Formula

a(n) = A000009(2*n). - Michael Somos, Mar 03 2003
Expansion of Sum_{n >= 0} q^n / Product_{k = 1..2*n} (1 - q^k).
a(n) = T(2*n, 0), T as defined in A026835.
G.f.: Product_{i >= 0} ((1 + x^(8*i + 1)) * (1 + x^(8*i + 2))^2 * (1 + x^(8*i + 3))^2 * (1 + x^(8*i + 4))^3 * (1 + x^(8*i + 5))^2 * (1 + x^(8*i + 6))^2 * (1 + x^(8*i + 7)) * (1 + x^(8*i + 8))^3). - Vladeta Jovovic, Oct 10 2004
G.f.: (Sum_{k>=0} x^A074378(k)) / (Product_{k>0} (1 - x^k)) = f( x^3, x^5) / f(-x, -x^2) where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 01 2005
Euler transform of period 16 sequence [1, 1, 2, 1, 2, 0, 1, 0, 1, 0, 2, 1, 2, 1, 1, 0, ...]. - Michael Somos, Dec 17 2002
a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(11/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 06 2015
a(n) = A000041(n) + A282893(n). - Michael Somos, Feb 24 2017
Convolution with A000041 is A058696. - Michael Somos, Feb 24 2017
Convolution with A097451 is A262987. - Michael Somos, Feb 24 2017
G.f.: 1/(1 - x)*Sum_{n>=0} x^floor((3*n+1)/2)/Product_{k = 1..n} (1 - x^k). - Peter Bala, Feb 04 2021
G.f.: Product_{n >= 1} (1 - q^(8*n))*(1 + q^(8*n-3))*(1 + q^(8*n-5))/(1 - q^n). - Peter Bala, Dec 30 2024

A340601 Number of integer partitions of n of even rank.

Original entry on oeis.org

1, 1, 0, 3, 1, 5, 3, 11, 8, 18, 16, 34, 33, 57, 59, 98, 105, 159, 179, 262, 297, 414, 478, 653, 761, 1008, 1184, 1544, 1818, 2327, 2750, 3480, 4113, 5137, 6078, 7527, 8899, 10917, 12897, 15715, 18538, 22431, 26430, 31805, 37403, 44766, 52556, 62620, 73379
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. For this sequence, the rank of an empty partition is 0.

Examples

			The a(1) = 1 through a(9) = 18 partitions (empty column indicated by dot):
  (1)  .  (3)    (22)  (5)      (42)    (7)        (44)      (9)
          (21)         (41)     (321)   (43)       (62)      (63)
          (111)        (311)    (2211)  (61)       (332)     (81)
                       (2111)           (322)      (521)     (333)
                       (11111)          (331)      (2222)    (522)
                                        (511)      (4211)    (531)
                                        (2221)     (32111)   (711)
                                        (4111)     (221111)  (4221)
                                        (31111)              (4311)
                                        (211111)             (6111)
                                        (1111111)            (32211)
                                                             (33111)
                                                             (51111)
                                                             (222111)
                                                             (411111)
                                                             (3111111)
                                                             (21111111)
                                                             (111111111)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The positive case is A101708 (A340605).
The Heinz numbers of these partitions are A340602.
The odd version is A340692 (A340603).
- Rank -
A047993 counts partitions of rank 0 (A106529).
A072233 counts partitions by sum and length.
A101198 counts partitions of rank 1 (A325233).
A101707 counts partitions of odd positive rank (A340604).
A101708 counts partitions of even positive rank (A340605).
A257541 gives the rank of the partition with Heinz number n.
A340653 counts factorizations of rank 0.
- Even -
A024430 counts set partitions of even length.
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A052841 counts ordered set partitions of even length.
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts even-length partitions of even numbers (A340784).
A339846 counts factorizations of even length.

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(n=0, 1-max(0, r),
          `if`(i<1, 0, b(n, i-1, r) +b(n-i, min(n-i, i), 1-
          `if`(r<0, irem(i, 2), r))))
        end:
    a:= n-> b(n$2, -1):
    seq(a(n), n=0..55);  # Alois P. Heinz, Jan 22 2021
  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],EvenQ[Max[#]-Length[#]]&]]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, r_] := b[n, i, r] = If[n == 0, 1 - Max[0, r], If[i < 1, 0, b[n, i - 1, r] + b[n - i, Min[n - i, i], 1 - If[r < 0, Mod[i, 2], r]]]];
    a[n_] := b[n, n, -1];
    a /@ Range[0, 55] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
  • PARI
    p_q(k) = {prod(j=1, k, 1-q^j); }
    GB_q(N, M)= {if(N>=0 && M>=0,  p_q(N+M)/(p_q(M)*p_q(N)), 0 ); }
    A_q(N) = {my(q='q+O('q^N), g=1+sum(i=1,N, sum(j=1,N/i, q^(i*j) * ( ((1/2)*(1+(-1)^(i+j))) + sum(k=1,N-(i*j), ((q^k)*GB_q(k,i-2)) * ((1/2)*(1+(-1)^(i+j+k)))))))); Vec(g)}
    A_q(50) \\ John Tyler Rascoe, Apr 15 2024

Formula

G.f.: 1 + Sum_{i, j>0} q^(i*j) * ( (1+(-1)^(i+j))/2 + Sum_{k>0} q^k * q_binomial(k,i-2) * (1+(-1)^(i+j+k))/2 ). - John Tyler Rascoe, Apr 15 2024
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Apr 17 2024

A004251 Number of graphical partitions (degree-vectors for simple graphs with n vertices, or possible ordered row-sum vectors for a symmetric 0-1 matrix with diagonal values 0).

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 102, 342, 1213, 4361, 16016, 59348, 222117, 836315, 3166852, 12042620, 45967479, 176005709, 675759564, 2600672458, 10029832754, 38753710486, 149990133774, 581393603996, 2256710139346, 8770547818956, 34125389919850, 132919443189544, 518232001761434, 2022337118015338, 7898574056034636, 30873421455729728
Offset: 0

Views

Author

Keywords

Comments

In other words, a(n) is the number of graphic sequences of length n, where a graphic sequence is a sequence of numbers which can be the degree sequence of some graph.
In the article by A. Iványi, G. Gombos, L. Lucz, and T. Matuszka, "Parallel enumeration of degree sequences of simple graphs II", in Table 4 on page 260 the values a(30) = 7898574056034638 and a(31) = 30873429530206738 are incorrect due to the incorrect Gz(30) = 5876236938019300 and Gz(31) = 22974847474172100. - Wang Kai, Jun 05 2016

Examples

			For n = 3, there are 4 different graphic sequences possible: 0 0 0; 1 1 0; 2 1 1; 2 2 2. - Daan van Berkel (daan.v.berkel.1980(AT)gmail.com), Jun 25 2010
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(4) = 11 sorted degree sequences:
  ()  (0)  (0,0)  (0,0,0)  (0,0,0,0)
           (1,1)  (0,1,1)  (0,0,1,1)
                  (1,1,2)  (0,1,1,2)
                  (2,2,2)  (0,2,2,2)
                           (1,1,1,1)
                           (1,1,1,3)
                           (1,1,2,2)
                           (1,2,2,3)
                           (2,2,2,2)
                           (2,2,3,3)
                           (3,3,3,3)
For example, the graph {{2,3},{2,4}} has degrees (0,2,1,1), so (0,1,1,2) is counted under a(4).
(End)
		

References

  • R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).

Crossrefs

Counting the positive partitions by sum gives A000569, ranked by A320922.
The version with half-loops is A029889, with covering case A339843.
The covering case (no zeros) is A095268.
Covering simple graphs are ranked by A309356 and A320458.
Non-graphical partitions are counted by A339617 and ranked by A339618.
The version with loops is A339844, with covering case A339845.
A006125 counts simple graphs, with covering case A006129.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320921 counts connected graphical partitions.
A322353 counts factorizations into distinct semiprimes.
A339659 counts graphical partitions of 2n into k parts.
A339661 counts factorizations into distinct squarefree semiprimes.

Programs

  • Mathematica
    Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{2}]]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)

Formula

G.f. = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 31*x^5 + 102*x^6 + 342*x^7 + 1213*x^8 + ...
a(n) ~ c * 4^n / n^(3/4) for some constant c > 0. Computational estimates suggest c ≈ 0.099094. - Tom Johnston, Jan 18 2023

Extensions

More terms from Torsten Sillke, torsten.sillke(AT)lhsystems.com, using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(19) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 19 2007
a(20)-a(23) from Nathann Cohen, Jul 09 2011
a(24)-a(29) from Antal Iványi, Nov 15 2011
a(30) and a(31) corrected by Wang Kai, Jun 05 2016
Previous Showing 11-20 of 84 results. Next