cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A124574 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (3,4,4,...) and super- and subdiagonals (1,1,1,...).

Original entry on oeis.org

1, 3, 1, 10, 7, 1, 37, 39, 11, 1, 150, 204, 84, 15, 1, 654, 1050, 555, 145, 19, 1, 3012, 5409, 3415, 1154, 222, 23, 1, 14445, 28063, 20223, 8253, 2065, 315, 27, 1, 71398, 146920, 117208, 55300, 16828, 3352, 424, 31, 1, 361114, 776286, 671052, 355236, 125964, 30660, 5079, 549, 35, 1
Offset: 1

Views

Author

Keywords

Comments

Column 1 yields A064613. Row sums yield A081671.
Triangle T(n,k), 0 <= k <= n, defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k+1). - Philippe Deléham, Feb 27 2007
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
6^n = ((n+1)-th row terms) dot (first n+1 odd integers). Example: 6^4 = 1296 = (150, 204, 84, 15, 1) dot (1, 3, 5, 7, 9) = (150 + 612 + 420 + 105 + 9)= 1296. - Gary W. Adamson, Jun 15 2011
From Peter Bala, Sep 06 2022: (Start)
The following assume the row and column indexing start at 0.
Riordan array (f(x), x*g(x)), where f(x) = (1 - sqrt((1 - 6*x)/(1 - 2*x)))/(2*x) is the o.g.f. of A064613 and g(x) = (1 - 4*x - sqrt(1 - 8*x + 12*x^2))/(2*x^2) is the o.g.f. of A005572.
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x)*(1 + 4*x + x^2)^n expanded about the point x = 0.
T(n,k) = a(n,k) - a(n,k+1), where a(n,k) = Sum_{j = 0..n} binomial(n,j)* binomial(j,n-k-j)*4^(2*j+k-n). (End)

Examples

			Row 4 is (37,39,11,1) because M[4]= [3,1,0,0;1,4,1,0;0,1,4,1;0,0,1,4] and M[4]^3=[37,39,11,1; 39, 87, 51, 12; 11, 51, 88, 50; 1, 12, 50, 76].
Triangle starts:
    1;
    3,    1
   10,    7,   1;
   37,   39,  11,   1
  150,  204,  84,  15,  1;
  654, 1050, 555, 145, 19, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  3, 1
  1, 4, 1
  0, 1, 4, 1
  0, 0, 1, 4, 1
  0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 0, 0, 0, 1, 4, 1 (End)
		

Crossrefs

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=1 and j=1 then 3 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 3,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
    T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,2)+GegenbauerC(n-k-1,-n+1,2 )): seq(print(seq(T(n,k),k=1..n)), n=1..10); # Peter Luschny, May 13 2016
  • Mathematica
    M[n_] := SparseArray[{{1, 1} -> 3, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 3, 4], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k=0..n} (-1)^(n-k)*T(n,k) = (-2)^n. - Philippe Deléham, Feb 27 2007
Sum_{k=0..n} T(n,k)*(2*k+1) = 6^n. - Philippe Deléham, Mar 27 2007
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,2) + GegenbauerC(n-k-1,-n+1,2)). - Peter Luschny, May 13 2016

Extensions

Edited by N. J. A. Sloane, Dec 04 2006

A126331 Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 5*T(n-1,k) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 4, 1, 17, 9, 1, 77, 63, 14, 1, 371, 406, 134, 19, 1, 1890, 2535, 1095, 230, 24, 1, 10095, 15660, 8240, 2269, 351, 29, 1, 56040, 96635, 59129, 19936, 4053, 497, 34, 1, 320795, 598344, 412216, 162862, 40698, 6572, 668, 39, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 10 2007

Keywords

Comments

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
7^n = (n-th row terms) dot (first n+1 odd integers). Example: 7^3 = 343 = (77, 63, 14, 1) dot (1, 3, 5, 7) = (77 + 189 + 70 + 7) = 243. - Gary W. Adamson, Jun 15 2011

Examples

			Triangle begins:
      1;
      4,     1;
     17,     9,    1;
     77,    63,   14,    1;
    371,   406,  134,   19,   1;
   1890,  2535, 1095,  230,  24,  1;
  10095, 15660, 8240, 2269, 351, 29, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  4, 1
  1, 5, 1
  0, 1, 5, 1
  0, 0, 1, 5, 1
  0, 0, 0, 1, 5, 1,
  0, 0, 0, 0, 1, 5, 1
  0, 0, 0, 0, 0, 1, 5, 1
  0, 0, 0, 0, 0, 0, 1, 5, 1
  0, 0, 0, 0, 0, 0, 0, 1, 5, 1 (End)
		

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
    T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 4, 5], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A098409(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A104455(m+n).
Sum_{k=0..n} T(n,k)*(2*k+1) = 7^n. - Philippe Deléham, Mar 26 2007

A126953 Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 3, 1, 10, 3, 1, 33, 11, 3, 1, 110, 36, 12, 3, 1, 366, 122, 39, 13, 3, 1, 1220, 405, 135, 42, 14, 3, 1, 4065, 1355, 447, 149, 45, 15, 3, 1, 13550, 4512, 1504, 492, 164, 48, 16, 3, 1, 45162, 15054, 5004, 1668, 540, 180, 51, 17, 3, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 19 2007

Keywords

Comments

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Riordan array (2/(1-6x+sqrt(1-4*x^2)),x*c(x^2)) where c(x)= g.f. of the Catalan numbers A000108. - Philippe Deléham, Jun 01 2013

Examples

			Triangle begins:
     1;
     3,    1;
    10,    3,   1;
    33,   11,   3,   1;
   110,   36,  12,   3,  1;
   366,  122,  39,  13,  3,  1;
  1220,  405, 135,  42, 14,  3, 1;
  4065, 1355, 447, 149, 45, 15, 3, 1;
		

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 3, 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A127359(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A126931(m+n).
Sum_{k=0..n} T(n,k)*(-2*k+1) = 2^n. - Philippe Deléham, Mar 25 2007

A014301 Number of internal nodes of even outdegree in all ordered rooted trees with n edges.

Original entry on oeis.org

0, 1, 3, 11, 40, 148, 553, 2083, 7896, 30086, 115126, 442118, 1703052, 6577474, 25461493, 98759971, 383751472, 1493506534, 5820778858, 22714926826, 88745372992, 347087585824, 1358789148058, 5324148664846, 20878676356240, 81937643449468, 321786401450268
Offset: 1

Views

Author

Keywords

Comments

Number of protected vertices in all ordered rooted trees with n edges. A protected vertex in an ordered tree is a vertex at least 2 edges away from its leaf descendants. - Emeric Deutsch, Aug 20 2008
1,3,11,... gives the diagonal sums of A111418. Hankel transform of a(n) is A128834. Hankel transform of a(n+1) is A187340. - Paul Barry, Mar 08 2011
a(n) = A035317(2*n-1,n-1) for n > 0. - Reinhard Zumkeller, Jul 19 2012
Apparently the number of peaks in all Dyck paths of semilength n+1 that are the same height as the preceding peak. - David Scambler, Apr 22 2013
Define an infinite triangle by T(n,0)=A001045(n) (the first column) and T(r,c) = Sum_{k=c-1..r} T(k,c-1) (the sum of all the terms in the preceding column down to row r). Then T(n,n)=a(n+1). The triangle is 0; 1,1; 1,2,3; 3,5,8,11; 5,10,18,29,40; 11,21,39,68,108,148;... Example: T(5,2)=39=the sum of the terms in column 1 from T(1,1) to T(5,1), namely, 1+2+5+10+21. - J. M. Bergot, May 17 2013
Also for n>=1 the number of unimodal functions f:[n]->[n] with f(1)<>1 and f(i)<>f(i+1). a(4) = 11: [2,3,2,1], [2,3,4,1], [2,3,4,2], [2,3,4,3], [2,4,2,1], [2,4,3,1], [2,4,3,2], [3,4,2,1], [3,4,3,1], [3,4,3,2], [4,3,2,1]. - Alois P. Heinz, May 23 2013

Crossrefs

Programs

  • Magma
    [(1/2)*(&+[(-1)^(n-k)*Binomial(n+k-1,k): k in [0..n]]): n in [1..30]]; // G. C. Greubel, Jan 15 2018
    
  • Mathematica
    Rest[CoefficientList[Series[(1-2*x-Sqrt[1-4*x])/(3*Sqrt[1-4*x]-1+4*x), {x, 0, 50}], x]] (* G. C. Greubel, Jan 15 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x-sqrt(1-4*x))/(3*sqrt(1-4*x)-1+4*x)) \\ G. C. Greubel, Jan 15 2018
    
  • Python
    from itertools import count, islice
    def A014301_gen(): # generator of terms
        yield from (0,1)
        a, b, c = 0, 3, 1
        for n in count(1):
            yield ((b:=b*((n<<1)+3<<1)//(n+2))-(a:=(c:=c*((n<<2)+2)//(n+2))-a>>1))//3
    A014301_list = list(islice(A014301_gen(),20)) # Chai Wah Wu, Apr 27 2023

Formula

a(n) = binomial(2*n-1, n)/3 - A000957(n)/3;
a(n) = (1/2)*Sum_{k=0..n} (-1)^(n-k)*binomial(n+k-1, k). - Vladeta Jovovic, Aug 28 2002
From Emeric Deutsch, Jan 26 2004: (Start)
G.f.: (1-2*z-sqrt(1-4*z))/(3*sqrt(1-4*z)-1+4*z).
a(n) = [A026641(n) - A026641(n-1)]/3 for n>1. (End)
a(n) = (1/2)*Sum_{j=0..floor(n/2)} binomial(2n-2j-2, n-2).
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n+k,k-1). - Paul Barry, Jul 18 2006
D-finite with recurrence: 2*n*a(n) +(-9*n+8)*a(n-1) +(3*n-16)*a(n-2) +2*(2*n-5)*a(n-3)=0. - R. J. Mathar, Dec 03 2012

A052203 a(n) = (4n+1)*binomial(4n,n)/(3n+1).

Original entry on oeis.org

1, 5, 36, 286, 2380, 20349, 177100, 1560780, 13884156, 124403620, 1121099408, 10150595910, 92263734836, 841392966470, 7694644696200, 70539987842520, 648045936942300, 5964720367660956, 54991682779774384, 507749884105448600, 4694436188839116720
Offset: 0

Views

Author

Barry E. Williams, Jan 28 2000

Keywords

Comments

Central terms of the triangles in A122366 and A111418. - Reinhard Zumkeller, Aug 30 2006 and Mar 14 2014
a(n) is the number of paths from (0,0) to (4n,n), taking north and east steps while avoiding exactly 2 consecutive north steps. - Shanzhen Gao, Apr 15 2010

Crossrefs

Programs

  • Haskell
    a052203 n = a122366 (2 * n) n  -- Reinhard Zumkeller, Mar 14 2014
    
  • Magma
    [Binomial(4*n+1, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
    
  • Mathematica
    Table[Binomial[4 n + 1, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
  • PARI
    vector(30, n, n--; (4*n+1)*binomial(4*n,n)/(3*n+1)) \\ Altug Alkan, Nov 05 2015

Formula

a(n) = C(4n+1, n); a(n) is asymptotic to c/sqrt(n)*(256/27)^n with c=0.614... - Benoit Cloitre, Jan 27 2003 [c = 2^(5/2)/(3^(3/2)*sqrt(Pi)) = 0.61421182128... - Vaclav Kotesovec, Feb 14 2019]
G.f.: g^2/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
G.f.: hypergeom([1/2, 3/4, 5/4], [2/3, 4/3], (256/27)*x). - Robert Israel, Aug 07 2014
D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) - 8*(4*n+1)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Nov 26 2012
From Peter Bala, Nov 04 2015: (Start)
The o.g.f. equals f(x)*g(x), where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293.
More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A262977 (k = -1), A005810 (k = 0), A257633 (k = 2), A224274 (k = 3) and A004331 (k = 4). (End)
a(n) = [x^n] 1/(1 - x)^(3*n+2). - Ilya Gutkovskiy, Oct 03 2017
a(n) = Sum_{k = 0..n} binomial(2*n+k+1, k)*binomial(2*n-k-1, n-k). - Peter Bala, Sep 17 2024

Extensions

More terms from James Sellers, Jan 31 2000

A056572 Fifth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 32, 243, 3125, 32768, 371293, 4084101, 45435424, 503284375, 5584059449, 61917364224, 686719856393, 7615646045657, 84459630100000, 936668172433707, 10387823949447757, 115202670521319424, 1277617458486664901
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Fifth row of array A103323.

Programs

Formula

a(n) = F(n)^5, F(n)=A000045(n).
G.f.: x*p(5, x)/q(5, x) with p(5, x) := sum(A056588(4, m)*x^m, m=0..4)= 1-7*x-16*x^2+7*x^3+x^4 and q(5, x) := sum(A055870(6, m)*x^m, m=0..6)= 1-8*x-40*x^2+60*x^3+40*x^4-8*x^5-x^6 = (1-x-x^2)*(1+4*x-x^2)*(1-11*x-x^2) (factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum(A055870(6, m)*a(n-m), m=0..6) = 0, n >= 6; inputs: a(n), n=0..5. a(n) = +8*a(n-1) +40*a(n-2) -60*a(n-3) -40*a(n-4) +8*a(n-5) +a(n-6).
a(n) = (10*F(n) + 5*(-1)^(n+1)*F(3*n) + F(5*n))/25, n >= 0. See the general comment on A111418 regarding the Ozeki reference; here the row 10, 5, 1 of that triangle applies. - Wolfdieter Lang, Aug 25 2012
a(n) = (F(n)^2*(F(3*n)-(-1)^n*3*F(n)))/5. - Gary Detlefs, Jan 07 2013
a(n) = F(n-2)*F(n-1)*F(n)*F(n+1)*F(n+2) + F(n). - Tony Foster III, Apr 11 2018

A122366 Triangle read by rows: T(n,k) = binomial(2*n+1,k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 5, 10, 1, 7, 21, 35, 1, 9, 36, 84, 126, 1, 11, 55, 165, 330, 462, 1, 13, 78, 286, 715, 1287, 1716, 1, 15, 105, 455, 1365, 3003, 5005, 6435, 1, 17, 136, 680, 2380, 6188, 12376, 19448, 24310, 1, 19, 171, 969, 3876, 11628, 27132, 50388, 75582, 92378, 1, 21
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 30 2006

Keywords

Comments

Sum of n-th row = A000302(n) = 4^n.
Central terms give A052203.
Reversal of A111418. - Philippe Deléham, Mar 22 2007
Coefficient triangle for the expansion of one half of odd powers of 2*x in terms of Chebyshev's T-polynomials: ((2*x)^(2*n+1))/2 = Sum_{k=0..n} a(n,k)*T(2*(n-k)+1,x) with Chebyshev's T-polynomials. See A053120. - Wolfdieter Lang, Mar 07 2007
The signed triangle T(n,k)*(-1)^(n-k) appears in the formula ((2*sin(phi))^(2*n+1))/2 = Sum_{k=0..n} ((-1)^(n-k))*a(n,k)*sin((2*(n-k)+1)*phi). - Wolfdieter Lang, Mar 07 2007
The signed triangle T(n,k)*(-1)^(n-k) appears therefore in the formula (4-x^2)^n = Sum_{k=0..n} ((-1)^(n-k))*a(n,k)*S(2*(n-k),x) with Chebyshev's S-polynomials. See A049310 for S(n,x). - Wolfdieter Lang, Mar 07 2007
From Wolfdieter Lang, Sep 18 2012: (Start)
The triangle T(n,k) appears also in the formula F(2*l+1)^(2*n+1) = (1/5^n)*Sum_{k=0..n} T(n,k)*F((2*(n-k)+1)*(2*l+1)), l >= 0, n >= 0, with F=A000045 (Fibonacci).
The signed triangle Ts(n,k):=T(n,k)*(-1)^k appears also in the formula
F(2*l)^(2*n+1) = (1/5^n)*Sum_{k=0..n} Ts(n,k)*F((2(n-k)+1)*2*l), l >= 0, n >= 0, with F=A000045 (Fibonacci).
This is Lemma 2 of the K. Ozeki reference, p. 108, written for odd and even indices separately.
(End)

Examples

			.......... / 1 \ .......... =A062344(0,0)=A034868(0,0),
......... / 1 . \ ......... =T(0,0)=A034868(1,0),
........ / 1 2 . \ ........ =A062344(1,0..1)=A034868(2,0..1),
....... / 1 3 ... \ ....... =T(1,0..1)=A034868(3,0..1),
...... / 1 4 6 ... \ ...... =A062344(2,0..2)=A034868(4,0..2),
..... / 1 5 10 .... \ ..... =T(2,0..2)=A034868(5,0..2),
.... / 1 6 15 20 ... \ .... =A062344(3,0..3)=A034868(6,0..3),
... / 1 7 21 35 ..... \ ... =T(3,0..3)=A034868(7,0..3),
.. / 1 8 28 56 70 .... \ .. =A062344(4,0..4)=A034868(8,0..4),
. / 1 9 36 84 126 ..... \ . =T(4,0..4)=A034868(9,0..4).
Row n=2:[1,5,10] appears in the expansion ((2*x)^5)/2 = T(5,x)+5*T(3,x)+10*T(1,x).
Row n=2:[1,5,10] appears in the expansion ((2*cos(phi))^5)/2 = cos(5*phi)+5*cos(3*phi)+10*cos(1*phi).
The signed row n=2:[1,-5,10] appears in the expansion ((2*sin(phi))^5)/2 = sin(5*phi)-5*sin(3*phi)+10*sin(phi).
The signed row n=2:[1,-5,10] appears therefore in the expansion (4-x^2)^2 = S(4,x)-5*S(2,x)+10*S(0,x).
Triangle T(n,k) starts:
  n\k 0  1   2   3    4     5     6     7     8     9  ...
  0   1
  1   1  3
  2   1  5  10
  3   1  7  21  35
  4   1  9  36  84  126
  5   1 11  55 165  330   462
  6   1 13  78 286  715  1287  1716
  7   1 15 105 455 1365  3003  5005  6435
  8   1 17 136 680 2380  6188 12376 19448 24310
  9   1 19 171 969 3876 11628 27132 50388 75582 92378
  ...  - _Wolfdieter Lang_, Sep 18 2012
Row n=2, with F(n)=A000045(n) (Fibonacci number), l >= 0, see a comment above:
F(2*l)^5   = (1*F(10*l) - 5*F(6*l) + 10*F(2*l))/25,
F(2*l+1)^5 = (1*F(10*l+5) + 5*F(6*l+3) + 10*F(2*l+1))/25.
- _Wolfdieter Lang_, Sep 19 2012
		

References

  • T. J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed., Wiley, New York, 1990, pp. 54-55, Ex. 1.5.31.

Crossrefs

Cf. A062344.
Odd numbered rows of A008314. Even numbered rows of A008314 are A127673.

Programs

  • Haskell
    a122366 n k = a122366_tabl !! n !! k
    a122366_row n = a122366_tabl !! n
    a122366_tabl = f 1 a007318_tabl where
       f x (_:bs:pss) = (take x bs) : f (x + 1) pss
    -- Reinhard Zumkeller, Mar 14 2014
  • Mathematica
    T[_, 0] = 1;
    T[n_, k_] := T[n, k] = T[n-1, k-1] 2n(2n+1)/(k(2n-k+1));
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)

Formula

T(n,0)=1; T(n,k) = T(n-1,k-1)*2*n*(2*n+1)/(k*(2*n-k+1)) for k > 0.
T(n,0)=1; for n > 0: T(n,1)=n+2; for n > 1: T(n,n) = T(n-1,n-2) + 3*T(n-1,n-1), T(n,k) = T(n-1,k-2) + 2*T(n-1,k-1) + T(n-1,k), 1 < k < n.
T(n,n) = A001700(n).
T(n,k) = A034868(2*n+1,k) = A007318(2*n+1,k), 0 <= k <= n;
G.f.: (2*y)/((y-1)*sqrt(1-4*x*y)-4*x*y^2+(1-4*x)*y+1). - Vladimir Kruchinin, Oct 30 2020

Extensions

Chebyshev and trigonometric comments from Wolfdieter Lang, Mar 07 2007.
Typo in comments fixed, thanks to Philippe Deléham, who indicated this.

A244420 Numerators of coefficient triangle for expansion of x^n in terms of polynomials Todd(k, x) = T(2*k+1, sqrt(x))/sqrt(x) (A084930), with the Chebyshev polynomials of the first kind (type T).

Original entry on oeis.org

1, 3, 1, 5, 5, 1, 35, 21, 7, 1, 63, 21, 9, 9, 1, 231, 165, 165, 55, 11, 1, 429, 1287, 715, 143, 39, 13, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 12155, 2431, 1547, 1547, 595, 85, 17, 17, 1, 46189, 37791, 12597, 6783, 2907, 969, 969, 171, 19, 1, 88179, 146965, 101745, 14535, 6783, 20349, 5985, 665, 105, 21, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2014

Keywords

Comments

This expansion is due to the Riordan property of the triangle A084930. The inverse of the lower triangular matrix built by A084930 is therefore also a (rational) Riordan triangle, namely ((2 - c(z/4))/(1-z), -1 + c(z/4)) in the standard notation, where c is the o.g.f. of A000108 (Catalan).
For the denominators of this triangle see A244421.
The expansion is x^n = sum(R(n,m)*Todd(m, x), m=0..n), n >= 0, with the rational triangle with entries R(n,m) = a(n, m)/b(n, m) with b(n, m) = A244421(n, m).
If one uses instead the expansion of (4*x)^n one finds the integer triangle A111418: (4*x)^n = sum(A111418(n,k) * Todd(k, x), k=0..n).
The row sums of the rational triangle R(n,m) are identically 1. The alternating row sums have o.g.f. 1/sqrt(1-x) which generates A001790(n)/A046161(n) (see a Michael Somos comment on A046161), namely 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, ...
From Wolfdieter Lang, Jun 13 2016: (Start)
R(n,m) = a(n, m)/ A244421(n, m) is also the rational triangle for the expansion cos^{2*n+1}(x) = Sum_{m=0..n} R(n, m)*cos((2*m+1)*x), n >= 0, m = 0..n. Compare with the odd numbered rows of A273496. In terms of Chebyshev T-polynomials (A053120) this is the identity x^(2*n+1) = Sum_{m=0..n} R(n, m)*T(2*m+1, x).
S(n,m) = (-1)^m*a(n, m)/ A244421(n, m) is the rational triangle for the expansion sin^{2*n+1}(x) = Sum_{m=0..n} S(n, m)*sin((2*m+1)*x), n >= 0, m = 0..n. In terms of Chebyshev S-polynomials (A049310) this is equivalent to the identity (4 - x^2)*n = Sum_{m=0..n} (-1)^m * binomial(n, n-m)*S(2*m,x), n >= 0.
(End)

Examples

			The numerator triangle a(n,m) begins:
  n\m      0      1      2     3    4     5    6   7   8   9
  0:       1
  1:       3      1
  2:       5      5      1
  3:      35     21      7     1
  4:      63     21      9     9    1
  5:     231    165    165    55   11     1
  6:     429   1287    715   143   39    13    1
  7:    6435   5005   3003  1365  455   105   15   1
  8:   12155   2431   1547  1547  595    85   17  17   1
  9:   46189  37791  12597  6783 2907   969  969 171  19   1
  ...
The rational triangle R(n,m) begins:
  n\m       0        1         2       3        4        5
  0:        1
  1:      3/4      1/4
  2:      5/8     5/16      1/16
  3:    35/64    21/64      7/64    1/64
  4:   63/128    21/64      9/64   9/256    1/256
  5:  231/512  165/512  165/1024 55/1024  11/1024   1/1024
  ...
The next rows are:
  n=6: 429/1024, 1287/4096, 715/4096, 143/2048, 39/2048, 13/4096, 1/4096,
  n=7: 6435/16384, 5005/16384, 3003/16384, 1365/16384, 455/16384, 105/16384, 15/16384, 1/16384,
  n=8: 12155/32768, 2431/8192, 1547/8192, 1547/16384, 595/16384, 85/8192, 17/8192, 17/65536, 1/65536,
  n=9: 46189/131072, 37791/131072, 12597/65536, 6783/65536, 2907/65536, 969/65536, 969/262144, 171/262144, 19/262144, 1/262144,
  ...
Expansions:
x^2 = 5/8 * Todd(0,x) + 5/16 * Todd(1,x) + 1/16 * Todd(2,x) = 5/8 + (5/16)*(-3 + 4*x) +(1/16)*(5 -20*x + 16*x^2).
x^3 = (35*Todd(0, x) + 21*Todd(1, x) + 7*Todd(2, x) + 1*Todd(3, x))/64 = (35 + 21*(-3+4*x) + 7*( 5-20*x+16*x^2) + (-7+56*x-112*x^2+64*x^3))/64.
For the Todd polynomials see the coefficient table A084930.
		

Crossrefs

Formula

a(n, m) = numerator(R(n, m)) with the rationals Riordan matrix elements R(n, m)= [x^m]R(n, x), with the row polynomials R(n, x) generated by ((2 - c(z/4))/(1-z))/(1 - x*(-1 + c(z/4))) = 2*((1+x)*(z-1) + (1-x)*sqrt(1-z))/((1-z)*((1+x)^2*z - 4*x)), where c(x) is the o.g.f. of the Catalan numbers A000108.
The rationals R(n, m) = binomial(2*n+1, m)/2^(2*n). - Wolfdieter Lang, Jun 12 2016

A215042 a(n) = F(8*n)/L(2*n) with n >= 0, F = A000045 (Fibonacci numbers) and L = A000032 (Lucas numbers).

Original entry on oeis.org

0, 7, 141, 2576, 46347, 831985, 14930208, 267913919, 4807525989, 86267568688, 1548008749155, 27777890017577, 498454011832896, 8944394323670071, 160500643816049277, 2880067194369984080, 51680708854856144763, 927372692193073296289
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2012

Keywords

Comments

This provides the second example for the Riordan transition matrix R mentioned in a comment to A078812 (here the column called there n=1 is relevant).

Crossrefs

Cf. A001906 (for F(4*n)/L(2*n) = F(2*n)), 24*A215043 (for F(12*n)/L(2*n)).

Programs

  • Magma
    [Fibonacci(8*n)/Lucas(2*n): n in [0..17]]; // Bruno Berselli, Aug 31 2012
  • Mathematica
    Table[Fibonacci[8 n]/LucasL[2 n], {n, 0, 17}] (* Bruno Berselli, Aug 31 2012 *)
    LinearRecurrence[{21,-56,21,-1},{0,7,141,2576},20] (* Harvey P. Dale, Jul 18 2021 *)

Formula

a(n) = 2*F(2*n) + 1*5*F(2*n)^3, n >= 0 (for the coefficients 2, 1, see the second row of the Riordan matrix R = A078812 (with offset [0,0])).
a(n) = F(6*n) - F(2*n), n >= 0, (from the preceding line and a 5*F(2*n)^3 formula given in a comment on the signed triangle A111418, with l->2*n, n->1; see also 5*A215039).
O.g.f.: x*(7-6*x+7*x^2)/((1-3*x+x^2)*(1-18*x+x^2)). The partial fraction decomposition and recurrences lead to the preceding formula.

A126325 Triangle read by rows: T(n,k) = binomial(2*n+1, n-k) (1 <= k <= n).

Original entry on oeis.org

1, 5, 1, 21, 7, 1, 84, 36, 9, 1, 330, 165, 55, 11, 1, 1287, 715, 286, 78, 13, 1, 5005, 3003, 1365, 455, 105, 15, 1, 19448, 12376, 6188, 2380, 680, 136, 17, 1, 75582, 50388, 27132, 11628, 3876, 969, 171, 19, 1, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210, 21, 1
Offset: 1

Views

Author

Emeric Deutsch, Mar 11 2007

Keywords

Comments

T(n,k) is the total area between the lines y=k-1 and y=k in all Dyck paths of semilength n (1 <= k <= n).
With row and column indices starting at 0, this triangle is the Riordan array ( c(x)^4/(2 - c(x)), x*c^2(x) ), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Mar 12 2022
Equals A111418 when k starts at 0. - Georg Fischer, Jul 26 2023

Examples

			Triangle begins:
     1;
     5,    1;
    21,    7,    1;
    84,   36,    9,    1;
   330,  165,   55,   11,    1;
  1287,  715,  286,   78,   13,    1;
  5005, 3003, 1365,  455,  105,   15,    1;
  ..
		

Crossrefs

Programs

  • GAP
    T:=Flat(List([1..10],n->List([1..n],k->Binomial(2*n+1,n-k)))); # Muniru A Asiru, Oct 24 2018
  • Magma
    [[Binomial(2*n+1, n-k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Oct 23 2018
    
  • Maple
    T:=(n,k)->binomial(2*n+1,n-k): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    t[n_, k_] := Binomial[2n + 1, n - k]; Table[ t[n, k], {n, 10}, {k, n}] // Flatten
  • PARI
    for(n=1,15, for(k=1,n, print1(binomial(2*n+1, n-k), ", "))) \\ G. C. Greubel, Oct 23 2018
    

Formula

T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for n >= 2, k >= 2.
T(n,1) = A002054(n); T(n,2) = A003516(n); T(n,3) = A030053(n);
T(n,4) = A030054(n); T(n,5) = A030055(n).
Row sums yield A008549.
Previous Showing 21-30 of 31 results. Next