cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 134 results. Next

A000469 1 together with products of 2 or more distinct primes.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158
Offset: 1

Views

Author

Dan Bentley (dtb(AT)research.att.com)

Keywords

Comments

Nonprime squarefree numbers.
Except for 1, composite n such that the squarefree part of n is greater than phi(n). - Benoit Cloitre, Apr 06 2002

Crossrefs

Cf. A005117, A007913, A000010, A010051, A239508, A239509, A120944 (composite squarefree numbers, same sequence apart from the first term).

Programs

  • Haskell
    a000469 n = a000469_list !! (n-1)
    a000469_list = filter ((== 0) . a010051) a005117_list
    -- Reinhard Zumkeller, Mar 21 2014
    
  • Maple
    select(numtheory:-issqrfree and not isprime, [$1..1000]); # Robert Israel, Aug 06 2015
  • Mathematica
    lst={}; Do[If[SquareFreeQ[n], If[ !PrimeQ[n], AppendTo[lst,n]]], {n,200}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 20 2009 *)
    With[{upto=200},Complement[Select[Range[upto],SquareFreeQ],Prime[ Range[ PrimePi[ upto]]]]] (* Harvey P. Dale, Oct 01 2011 *)
    Select[Range[200], !PrimeQ[#] && PrimeOmega[#] == PrimeNu[#] &] (* Carlos Eduardo Olivieri, Aug 06 2015 *)
  • PARI
    for(n=0,64, if(isprime(n), n+1, if(issquarefree(n),print(n))))
    
  • PARI
    for(n=1,160,if(core(n)*(1-isprime(n))>eulerphi(n),print1(n,",")))
    
  • Python
    from math import isqrt
    from sympy import primepi, mobius
    def A000469(n):
        def f(x): return n+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 02 2024

Formula

n such that A007913(n)>A000010(n). - Benoit Cloitre, Apr 06 2002
N-floor(N/p1) - floor(N/(p2) - ... - floor(N/p(i) + floor(N/(c2) + floor(N/(c3)+ ... + floor(N/c(j)-1 where N is any number; p1,p2 are the primes with p(i) being the first prime > square root of N and c2, c3 are the numbers other than 1 in this sequence with c(j) <= N will yield the number of primes less than or equal to N other than p1, p2, ..., p(i). - Ben Paul Thurston, Aug 15 2007
A005171(a(n))*A008966(a(n)) = 1. - Reinhard Zumkeller, Nov 01 2009
Sum(n=1, Infinity, 1/a(n)^s) = Zeta(s)/Zeta(2s) - PrimeZeta(s). - Enrique Pérez Herrero, Mar 31 2012
n such that A001221(n) = A001222(n), n nonprime. - Carlos Eduardo Olivieri, Aug 06 2015
a(n) = kn + O(n/log n) where k = Pi^2/6. - Charles R Greathouse IV, Aug 02 2024

A130092 Numbers with at least two factors having in their canonical prime factorization equal exponents.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140, 141, 142
Offset: 1

Views

Author

Reinhard Zumkeller, May 06 2007

Keywords

Comments

Complement of A130091; A120944 and A085986 are subsequences;
a(n)>A130091(n) for n<=150, a(n) < A130091(n) for n>150.

Programs

  • Mathematica
    t[n_] := FactorInteger[n][[All, 2]];s = Select[Range[400], Union[t[#]] == Sort[t[#]] &] (* A130091 *)
    Complement[Range[Max[s]], s]  (* A130092 *)
    (* Clark Kimberling, Mar 12 2015 *)

A360519 Let C consist of 1 together with all numbers with at least two distinct prime factors; this is the lexicographically earliest infinite sequence {a(n)} of distinct elements of C such that, for n>2, a(n) has a common factor with a(n-1) but not with a(n-2).

Original entry on oeis.org

1, 6, 10, 35, 21, 12, 20, 55, 33, 18, 14, 77, 99, 15, 40, 22, 143, 39, 24, 28, 91, 65, 30, 34, 119, 63, 36, 26, 221, 51, 42, 38, 95, 45, 48, 44, 187, 85, 50, 46, 69, 57, 76, 52, 117, 75, 70, 58, 87, 93, 62, 56, 105, 111, 74, 68, 153, 123, 82, 80, 115, 161, 84, 60, 145, 203, 98, 54, 129, 215, 100, 66, 141
Offset: 1

Views

Author

Keywords

Comments

In other words, C contains all positive numbers except powers of primes p^k, k>=1.
This is a modified version of the Enots Wolley sequence A336957. The modification ensures that the sequence does not contain the prime 2.
Let Ker(k), the kernel of k, denote the set of primes dividing k. Thus Ker(36) = {2,3}, Ker(1) = {}.
Theorem: a(1)=1, a(2)=6; thereafter, a(n) is the smallest number m not yet in the sequence such that
(i) Ker(m) intersect Ker(a(n-1)) is nonempty,
(ii) Ker(m) intersect Ker(a(n-2)) is empty, and
(iii) The set Ker(m) \ Ker(a(n-1)) is nonempty.
Conjecture: The sequence is a permutation of C.

Crossrefs

For a number of sequences related to this, see A361102 (the sequence C) and the following entries.

Programs

  • Maple
    with(numtheory);
    N:= 10^4: # to get a(1) to a(n) where a(n+1) is the first term > N
    B:= Vector(N, datatype=integer[4]):
    A[1]:=1; A[2]:=6;
    for n from 3 do
      for k from 10 to N do
        if B[k] = 0 and igcd(k, A[n-1]) > 1 and igcd(k, A[n-2]) = 1 then
              if nops(factorset(k) minus factorset(A[n-1])) > 0 then
           A[n]:= k;
           B[k]:= 1;
           break;
              fi;
        fi
      od:
      if k > N then break; fi;
    od:
    s1:=[seq(A[i], i=1..n-1)];
  • Mathematica
    nn = 2^12; c[_] = False;
    f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
    MapIndexed[
     Set[{a[First[#2]], c[#1]}, {#1, True}] &, {1, 6}];
     u = 10; i = a[1]; j = a[2];
    Do[k = u;
      While[Nand[! PrimePowerQ[k], ! c[k],
        CoprimeQ[i, k], ! CoprimeQ[j, k], ! Divisible[j, f[k]]], k++];
      Set[{a[n], c[k], i, j}, {k, True, j, f[k]}];
      If[k == u, While[Or[c[u], PrimePowerQ[u]], u++]]
      , {n, 3, nn}];
    Array[a, nn] (* Michael De Vlieger, Mar 03 2023 *)

A010553 a(n) = tau(tau(n)).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 4, 2, 3, 3, 2, 2, 4, 2, 4, 3, 3, 2, 4, 2, 3, 3, 4, 2, 4, 2, 4, 3, 3, 3, 3, 2, 3, 3, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 3, 3, 2, 6, 2, 3, 4, 2, 3, 4, 2, 4, 3, 4, 2, 6, 2, 3, 4, 4, 3, 4, 2, 4, 2
Offset: 1

Views

Author

Keywords

Comments

Ramanujan (1915) posed the problem of finding the extreme large values of a(n). Buttkewitz et al. determined the maximal order of log a(n).
Every number eventually appears. Sequence A193987 gives the least term where each number appears. - T. D. Noe, Aug 10 2011

References

  • S. Ramanujan, Highly composite numbers. Proc. London Math. Soc., series 2, 14 (1915), 347-409. Republished in Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, pp. 78-128.

Crossrefs

Cf. A000005, A036450, A193987 (least number k such that tau(tau(k)) = n), A335831.

Programs

Formula

a(n) = A000005(A000005(n)). a(1) = 1, a(p) = 2 for p = primes (A000040), a(pq) = 3 for pq = product of two distinct primes (A006881), a(pq...z) = k + 1 for pq...z = product of k (k > 2) distinct primes p,q,...,z (A120944), a(p^k) = A000005(k+1) for p^k = prime powers (A000961(n) for n > 1), k = natural numbers (A000027). - Jaroslav Krizek, Jul 17 2009
a(A007947(n)) = 1 + A001221(n); (n>1). - Enrique Pérez Herrero, May 30 2010
Asymptotically, Max_{i<=n} log(tau(tau(i))) = sqrt(log(n))/log_2(n) * (c + O(log_3(n)/log_2(n)) where c = 8*Sum_{j>=1} log^2 (1 + 1/j)) ~ 2.7959802335... [Buttkewitz et al.].

A062069 a(n) = sigma(d(n)), where d(k) is the number of divisors function (A000005) and sigma(k) is the sum of divisors function (A000203).

Original entry on oeis.org

1, 3, 3, 4, 3, 7, 3, 7, 4, 7, 3, 12, 3, 7, 7, 6, 3, 12, 3, 12, 7, 7, 3, 15, 4, 7, 7, 12, 3, 15, 3, 12, 7, 7, 7, 13, 3, 7, 7, 15, 3, 15, 3, 12, 12, 7, 3, 18, 4, 12, 7, 12, 3, 15, 7, 15, 7, 7, 3, 28, 3, 7, 12, 8, 7, 15, 3, 12, 7, 15, 3, 28, 3, 7, 12, 12, 7, 15, 3, 18, 6, 7, 3, 28, 7, 7, 7, 15, 3
Offset: 1

Views

Author

Amarnath Murthy, Jun 13 2001

Keywords

Comments

a(1) = 1, a(p) = 3 for p = primes (A000040), a(pq) = 7 for pq = product of two distinct primes (A006881), a(pq...z) = 2^(k+1)-1 = A000225(k+1) for pq...z = product of k (k > 2) distinct primes p,q,...,z (A120944), a(p^k) = sigma(k+1) = A000203(k+1) for p^k = prime powers (A000961(n) for n > 1). Sequence {1,3,4,12} is finite sequence of numbers n such that sigma(tau(n)) = n. [Jaroslav Krizek, Jul 16 2009]
For semiprime n, a(n) is either 4 or 7. Also a(n) = d(n) + omega(n) + mu(n), the sum of three core sequences A000005, A001221 and A008683. When n is semiprime, a(n) is completely defined by the Mobius function as: a(n) = 4 + 3*mu(n). a(n) also has the fractal-like identities a(d(n)) = d(n) and a(n) = sigma(a(d(n))). - Wesley Ivan Hurt, Sep 02 2013
If n is a triprime (A014612), d(n) is 4, 6, or 8 and a(n) = sigma(d(n)) is 7, 12, or 15 respectively. Then a(n) = -d(n)^2/4 + 5*d(n) - 9. - Wesley Ivan Hurt, Sep 08 2013

Examples

			sigma(d(12)) = sigma(6) = 12.
		

Crossrefs

Programs

  • Maple
    A062069:= (n-> numtheory[sigma](numtheory[tau](n))):
    seq (A062069(n), n=1..40); # Jani Melik, Jan 25 2011
  • Mathematica
    Table[DivisorSigma[1, DivisorSigma[0, n]], {n, 1, 80}] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    v=[]; for(n=1,150,v=concat(v, sigma(numdiv(n)))); v
    
  • PARI
    { for (n=1, 1000, write("b062069.txt", n, " ", sigma(numdiv(n))) ) } \\ Harry J. Smith, Jul 31 2009

Formula

a(n) = A000203(A000005(n)). - Wesley Ivan Hurt, Sep 09 2013

Extensions

More terms from Jason Earls, Jun 19 2001

A182853 Squarefree composite integers and powers of squarefree composite integers.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

Numbers that require exactly three iterations to reach a fixed point under the x -> A181819(x) map. In each case, 2 is the fixed point that is reached. (1 is the other fixed point of the x -> A181819(x) map.) Cf. A182850.
Numbers such that A001221(n) > 1 and A071625(n) = 1.

Crossrefs

Numbers n such that A182850(n) = 3. See also A182854, A182855.
Subsequence of A072774 and A182851.
Cf. A120944.

Programs

  • PARI
    isoka(n) = (omega(n) > 1) && issquarefree(n); \\ A120944
    isok(n) = isoka(n) || (ispower(n,,&k) && isoka(k)); \\ Michel Marcus, Jun 24 2017
    
  • Python
    from math import isqrt
    from sympy import mobius, primepi, integer_nthroot
    def A182853(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-primepi(x))
        def f(x): return n-2+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(1,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024
  • Scheme
    (define A182853 (MATCHING-POS 1 1 (lambda (n) (= 3 (A182850 n))))) ;; After the alternative definition of the sequence given by the original author. Requires also MATCHING-POS macro from my IntSeq-library - Antti Karttunen, Feb 05 2016
    

A228299 Composite squarefree numbers n such that p+d(n) divides n+d(n), where p are the prime factors of n and d(n) the number of divisors of n.

Original entry on oeis.org

21098, 134930, 343027, 361730, 387127, 751394, 793595, 1344517, 1430449, 1579394, 1794854, 3542797, 5022254, 7930117, 9241627, 12122947, 21089129, 21928717, 49825117, 70233329, 78795074, 90079589, 95208734, 110995807, 124648303, 124964219, 144871634
Offset: 1

Views

Author

Paolo P. Lava, Aug 20 2013

Keywords

Comments

Subsequence of A120944.

Examples

			Prime factors of 21098 are 2, 7, 11 and 137 while d(21098) = 16. We have that 21098 + 16 = 21114 and 21114 / (2 + 16) =  1173, 21114 / (7 + 16) = 918, 21114 / (11 + 16) = 782 and 21114 / (137 + 16) = 138.
		

Crossrefs

Programs

  • Maple
    with (numtheory); P:=proc(q) local a,i,ok,n;
    for n from 1 to q do  if not isprime(n) then a:=ifactors(n)[2]; ok:=1;
    for i from 1 to nops(a) do if a[i][2]>1 then ok:=0; break;
    else if not type((n+tau(n))/(a[i][1]+tau(n)),integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^6);

Extensions

More terms from Michel Marcus, Sep 21 2013
Deleted first term from Paolo P. Lava, Sep 23 2013

A228302 Composite squarefree numbers n such that p+d(n) divides n-d(n) for all prime factors p of n, where d(n) is the number of divisors of n.

Original entry on oeis.org

4958, 51653, 55583, 1251574, 4909102, 5430797, 5785073, 6096931, 13892243, 14058781, 14809517, 16699426, 27391073, 32426566, 32673383, 38669686, 43459682, 44762461, 53638783, 69836866, 74975761, 75226313, 85607461, 96973703, 105139141, 122864065
Offset: 1

Views

Author

Paolo P. Lava, Aug 20 2013

Keywords

Comments

Subsequence of A120944.

Examples

			Prime factors of 51653 are 7, 47 and 157 while d(51653) = 8. We have that 51653 - 8 = 51645 and 51645 / (7 + 8) =  3443, 51645 / (47 + 8) = 939 and 51645 / (157 + 8) = 313.
		

Crossrefs

Programs

  • Maple
    with(numtheory);  P:=proc(q) local a,i,ok,p,n;
    for n from 1 to q do if not isprime(n) and issqrfree(n) then
    a:=ifactors(n)[2]; ok:=1; for i from 1 to nops(a) do
    if not type((n-tau(n))/(a[i][1]+tau(n)),integer) then ok:=0; break; fi; od;
    if ok=1 then print(n); fi; fi; od; end: P(10^9);

Extensions

More terms from Michel Marcus, Sep 21 2013
First term deleted by Paolo P. Lava, Sep 23 2013

A337030 a(n) is the number of squarefree composite numbers < prime(n).

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 4, 4, 6, 7, 8, 11, 13, 14, 15, 16, 19, 19, 22, 24, 24, 27, 28, 31, 35, 35, 36, 38, 38, 40, 46, 48, 50, 51, 56, 56, 58, 61, 63, 64, 67, 67, 73, 73, 75, 75, 82, 90, 91, 91, 93, 96, 96, 99, 102, 105, 108, 108, 110, 111, 112, 117, 124, 126, 126, 127
Offset: 1

Views

Author

Hugo Pfoertner, Aug 11 2020

Keywords

Examples

			a(1) = a(2) = a(3) = 0 because the only composite number < 5 is the square 4.
a(4) = 1: 6 is the first squarefree composite number < prime(4) = 7.
		

Crossrefs

Programs

  • PARI
    m=0;pp=0;forprime(p=2,320,forcomposite(c=pp,p,if(issquarefree(c),m++));print1(m,", ");pp=p)

Formula

a(1) = 0; a(n+1) = a(n) + A061398(n-1) for n>1.

A303554 Union of the prime powers (p^k, p prime, k >= 0) and numbers that are the product of 2 or more distinct primes.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 26 2018

Keywords

Examples

			42 is in the sequence because 42 = 2*3*7 (3 distinct prime factors).
81 is in the sequence because 81 = 3^4 (4 prime factors, 1 distinct).
		

Crossrefs

Complement of A126706.
Union of A005117 and A246547.
Union of A000469 and A246655.
Union of A000961 and A120944.
Cf. A025475.

Programs

  • Mathematica
    Select[Range[110], PrimePowerQ[#] || SquareFreeQ[#] &]
    Select[Range[110], PrimeNu[#] == 1 || PrimeNu[#] == PrimeOmega[#] &]
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, mobius
    def A303554(n):
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 19 2024
Previous Showing 11-20 of 134 results. Next