cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 59 results. Next

A321396 Square array read by ascending antidiagonals, A(n, k) for n >= 0 and k >= 0, related to a class of Motzkin trees.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 1, 3, 2, 5, 0, 1, 0, 1, 1, 3, 2, 7, 0, 0, 1, 0, 1, 1, 3, 3, 9, 5, 14, 0, 1, 0, 1, 1, 3, 3, 9, 7, 20, 0, 0, 1, 0, 1, 1, 3, 3, 10, 9, 27, 19, 42
Offset: 0

Views

Author

Peter Luschny, Nov 11 2018

Keywords

Comments

The recursively specified combinatorial structure related to the array is the set of Motzkin trees where all leaves are at the same unary height (see section 3.2 in O. Bodini et al.).

Examples

			Array begins:
    [0]  0, 1, 0, 1, 0, 2, 0,  5,  0, 14,  0,  42,   0, 132, ...  A126120
    [1]  0, 1, 0, 1, 1, 2, 2,  7,  5, 20, 19,  60,  62, 202, ...  A300126
    [2]  0, 1, 0, 1, 1, 3, 2,  9,  7, 27, 25,  85,  86, 287, ...  A321572
    [3]  0, 1, 0, 1, 1, 3, 3,  9,  9, 29, 32,  93, 111, 317, ...
    [4]  0, 1, 0, 1, 1, 3, 3, 10,  9, 31, 34, 100, 119, 344, ...
    [5]  0, 1, 0, 1, 1, 3, 3, 10, 10, 31, 36, 102, 126, 352, ...
    [6]  0, 1, 0, 1, 1, 3, 3, 10, 10, 32, 36, 104, 128, 359, ...
    [7]  0, 1, 0, 1, 1, 3, 3, 10, 10, 32, 37, 104, 130, 361, ...
    [8]  0, 1, 0, 1, 1, 3, 3, 10, 10, 32, 37, 105, 130, 363, ...
    [9]  0, 1, 0, 1, 1, 3, 3, 10, 10, 32, 37, 105, 131, 363, ...
Array read by ascending diagonals:
    [0]  0
    [1]  0, 1
    [2]  0, 1, 0
    [3]  0, 1, 0, 1
    [4]  0, 1, 0, 1, 0
    [5]  0, 1, 0, 1, 1, 2
    [6]  0, 1, 0, 1, 1, 2, 0
    [7]  0, 1, 0, 1, 1, 3, 2, 5
    [8]  0, 1, 0, 1, 1, 3, 2, 7, 0
    [9]  0, 1, 0, 1, 1, 3, 3, 9, 5, 14
		

Crossrefs

Cf. A321395 (antidiagonal sums), A321397 (limit).
Cf. A000108 (Catalan), A001006 (Motzkin), A126120 (binary Catalan trees, row 0), A300126 (row 1), A321572 (row 2).

Programs

  • Maple
    Arow := proc(n, len) local rowgf, ser;
    rowgf := proc(n) option remember; `if`(n = 0, (1-sqrt(1-4*z^2))/(2*z),
    expand((1 - sqrt(1 - 4*z^2*rowgf(n-1)))/(2*z))) end:
    ser := series(rowgf(n)/z^n, z, 2*(2+max(len, n)));
    seq(coeff(ser, z, k), k=0..len) end:
    seq(Arow(n, 13), n=0..9);
  • Mathematica
    nmax = 11; gf[-1] = 1; gf[n_] := gf[n] = (1-Sqrt[1 - 4z^2 gf[n-1]])/(2z);
    row[n_] := row[n] = gf[n]/z^n + O[z]^(nmax+1) // CoefficientList[#, z]&;
    A[n_, k_] := row[n][[k + 1]];
    Table[A[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 08 2018 *)

Formula

Define a sequence of generating functions recursively gf(-1) = 1 and for n >= 0
gf(n) = (1 - sqrt(1 - 4*z^2*gf(n-1)))/(2*z).
Row n of the array has the generating function gf(n)/z^n. For fixed k column k differs only for finitely many indices from the limit value A321397(k).

A121448 Triangle read by rows: T(n,k) is the number of binary trees with n edges and having k vertices of outdegree 1 (n>=0, k>=0). A binary tree is a rooted tree in which each vertex has at most two children and each child of a vertex is designated as its left or right child.

Original entry on oeis.org

1, 0, 2, 1, 0, 4, 0, 6, 0, 8, 2, 0, 24, 0, 16, 0, 20, 0, 80, 0, 32, 5, 0, 120, 0, 240, 0, 64, 0, 70, 0, 560, 0, 672, 0, 128, 14, 0, 560, 0, 2240, 0, 1792, 0, 256, 0, 252, 0, 3360, 0, 8064, 0, 4608, 0, 512, 42, 0, 2520, 0, 16800, 0, 26880, 0, 11520, 0, 1024, 0, 924, 0, 18480, 0
Offset: 0

Views

Author

Emeric Deutsch, Jul 31 2006

Keywords

Comments

T(2n,0) = binomial(2n,n)/(n+1) (the Catalan numbers; A000108); T(2n+1,0)=0. T(n,n)=2^n (A000079). Sum(k*T(n,k),k=0..n)=2*binomial(2n,n-1)=2*A001791(n). After deleting the zeros, reflection of A091894.
From Tom Copeland, Feb 07 2016: (Start)
A shifted o.g.f. is OG(x,t) = [1 - 2tx - sqrt[(1-2tx)^2-4x^2]] / (2x) = x + 2t x^2 + (1+4t^2) x^3 + ... with compositional inverse OGinv(x,t) = x / (1 + 2tx + x^2), the shifted o.g.f. for A053117 (mod signs).
For x > 0 and choosing the positive square root, OG(x^2,t) = H(x,t) = x^2 + 2t x^4 + (1+4t^2) x^6 + ... has the compositional inverse Hinv(x,t) = sqrt[x / (1 + 2tx + x^2)] , which satisfies Hinv(H(x, t), t) = x, and which is the generating function for the Legendre polynomials (mod signs, cf. A008316) times sqrt(x).
In general, GB(x,t,b) = [x / (1 - 2tx + x^2)]^b is a generator for the Gegenbauer polynomials times x^b for positive roots with compositional inverse about the origin GBinv(x,t,b) = OG(x^(1/b),-t) for x>0. Cf. A097610.
(End)
From Tom Copeland, Feb 09 2016: (Start)
z1 = OG(x,t) is the zero that vanishes for x=0 for the quadratic polynomial Q(z;z1(x,t),z2(x,t)) =(z-z1)(z-z2) = z^2 - (z1+z2) z + (z1*z2) = z^2 - e1 z + e2 = z^2 - [(1-2tx)/x] z + 1, where e1 and e2 are the elementary symmetric polynomials for two indeterminates.
The other zero is given by z2(x,t) = [1 - 2tx + sqrt[(1-2tx)^2-4x^2]] / (2x) = (1 - 2tx)/x - z1(x,t).
The two are zeros of the elliptic curve in Legendre normal form y^2 = z (z-z1)(z-z2). (Added Feb 13 2016. See Landweber et al., p 14. Cf. A097610.)
(End)

Examples

			T(2,2)=4 because, denoting by L (R) an edge going from a vertex to a left (right) child, we have the paths: LL, LR, RL and RR.
Triangle starts:
  1;
  0,2;
  1,0,4;
  0,6,0,8;
  2,0,24,0,16;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n-k mod 2 = 0 then 2^k*binomial(n+1,k)*binomial(n+1-k,(n-k)/2)/(n+1) else 0 fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    nn=10;Drop[CoefficientList[Series[(1-2x y - ((-4x^2+(1-2x y)^2))^(1/2))/(2 x),{x,0,nn}],{x,y}],1]//Grid  (* Geoffrey Critzer, Feb 20 2013 *)

Formula

T(n,k) = 2^k*binomial(n+1,k)binomial(n+1-k,(n-k)/2)/(n+1) if n-k is even; otherwise, T(n,k) = 0. G.f. G=G(t,z) satisfies G=1+2tzG+z^2*G^2.
T(n,k) = 2^k*A097610(n,k). - Philippe Deléham, Aug 17 2006
From Tom Copeland, Feb 09 2016: (Start)
The following is from the formalism in A097610 with h1 = 2t, h2 = 1, and MT(n,h1,h2) = MT(n,2t,1) and with OG(x,t) defined above.
E.g.f.: M(x,t) = e^(2tx) AC(x) = exp[x MT(.,2t,1)] = exp[x P(.,t)], where AC(x) = I_1(2x)/x = Sum_{n>=0} x^(2n)/(n!(n+1)!) = exp(c.x) is the e.g.f. of A126120.
P(n,t) = MT(n,2t,1) = (c. + 2t)^n = Sum_{k=0..n} binomial(n,k) c(n-k) (2t)^k with c(k) = A126120(k). P(n,t+s) = (c. + 2t + 2s)^n = (P(.,t) + 2s)^n.
P(n,t) = t^n FC(n,c./t) = t^n (2 + c./t)^n, where FC(n,t) = (2 + t)^n are the face polynomials (vectors) of the hypercubes of A038207, i.e., the row polynomials of this entry can be obtained as the umbral composition of the reverse face polynomials with the aerated Catalan numbers of A000108.
The lowering and raising operators for the row polynomials P(n,t) of this entry are L = (1/2) d/dt = (1/2) D and R = 2t + dlog{AC(L)}/dL = 2t + Sum_{n>=0} b(n) L^(2n+1)/(2n+1)! = 2t + L - L^3/3! + 5 L^5/5! - ... with b(n) = (-1)^n A180874(n+1).
Let CP(n,t) = P(n+1,t) with CP(0,t) = 0. Then the infinitesimal generator for CP(n,t) is g(x) d/dx with g(x) = 1 /[dOGinv(x,t)/dx] = x^2 / [(OGinv(x,t))^2 (1 - x^2)] = (1 + 2t x + x^2)^2 / (1 - x^2) so that [g(x)d/dx]^n/n! x evaluated at x = 0 gives the row polynomial CP(n,t), i.e., exp[x g(u)d/du] u |_(u=0) = OG(x,t) = 1 /[1 - x P(.,t)]. Cf. A145271.
g(x) = 1 + 4t x + (3+4t) x^2 + 8t x^3 + 4(1+t^2) x^4 + 8t x^5 + 4(1+t^2) x^6 + 8t x^7 + ... has the repeating coefficients of the vector V = (1, 4t, 3+4t, 8t, 4(1+t^2), 8t, 4(1+t^2), 8t, ...). Form the lower triangular matrix U with all ones on the diagonal and below. Multiply the n-th diagonal of U by V(n), giving the matrix VU with VU(n,k) = V(n-k). Then (1,0,0,0,..) [VU * DM]^n/n! (0,1,0,0,..)^T = CP(n,t) = P(n-1,t) for n>0 with DM being the matrix A218272 representing differentiation of a power series.
(End)

A138350 Moment sequence of tr(A^2) in USp(4).

Original entry on oeis.org

1, -1, 3, -6, 20, -50, 175, -490, 1764, -5292, 19404, -60984, 226512, -736164, 2760615, -9202050, 34763300, -118195220, 449141836, -1551580888, 5924217936, -20734762776, 79483257308, -281248448936, 1081724803600, -3863302870000, 14901311070000, -53644719852000
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 16 2008

Keywords

Comments

If A is a random matrix in the compact group USp(4) (4 X 4 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A^2))^n] is the n-th moment of the trace of A^2. See A138351 for central moments.

Examples

			a(5) = -50 because E[(tr(A^2))^5] = -50 for a random matrix A in USp(4).
a(5) = A126120(5)*A138364(6)-A138364(5)*A126120(6) = 0*0-10*5 = -50.
		

Crossrefs

A signed version of A005558, which is the main entry for this sequence.

Programs

  • Mathematica
    a[n_] := 1/2*Binomial[2*Floor[n/2]+1, Floor[n/2]+1]*CatalanNumber[1/2*(n+Mod[n, 2])]*(Mod[n, 2]+2); Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Mar 13 2014 *)

Formula

a(n)=(1/2)Integral_{x=0..Pi,y=0..Pi}(2cos(2x)+2cos(2y))^n(2cos(x)-2cos(y))^2(2/Pi*sin^2(x))(2/Pi*sin^2(y))dxdy. a(n)=A126120(n)A138364(n+1)-A138364(n)A126120(n+1)
Conjectured e.g.f. BesselI[1,2x](BesselI[0,2x]-BesselI[1,2x])/x. - Benjamin Phillabaum, Feb 25 2011

A166135 Number of possible paths to each node that lies along the edge of a cut 4-nomial tree, that is rooted one unit from the cut.

Original entry on oeis.org

1, 1, 3, 7, 22, 65, 213, 693, 2352, 8034, 28014, 98505, 350548, 1256827, 4542395, 16517631, 60417708, 222087320, 820099720, 3040555978, 11314532376, 42243332130, 158196980682, 594075563613, 2236627194858, 8440468925400, 31921622746680, 120970706601255
Offset: 1

Views

Author

Rick Jarosh (rick(AT)jarosh.net), Oct 08 2009

Keywords

Comments

This is the third member of an infinite series of infinite series, the first two being the Catalan and Motzkin integers. The Catalan numbers lie on the edge of cut 2-nomial trees, Motzkin integers on the edge of cut 3-nomial trees.
a(n) is the number of increasing unary-binary trees with associated permutation that avoids 213. For more information about increasing unary-binary trees with an associated permutation, see A245888. - Manda Riehl, Aug 07 2014
Number of positive walks with n steps {-2,-1,1,2} starting at the origin, ending at altitude 1, and staying strictly above the x-axis. - David Nguyen, Dec 16 2016

Crossrefs

A055113 is the third sequence from the top of the graph illustrated above.

Programs

  • Magma
    [(&+[Binomial(n,k)*Binomial(n,2*n-3*k-1): k in [0..n]])/n : n in [1..30]]; // G. C. Greubel, Dec 12 2019
    
  • Maple
    seq( add(binomial(n,k)*binomial(n,2*n-3*k-1), k=0..n)/n, n=1..30); # G. C. Greubel, Dec 12 2019
  • Mathematica
    Rest[CoefficientList[Series[(Sqrt[(2-2Sqrt[1-4x]-3x)/x]-1)/2, {x, 0, 30}],x]] (* Benedict W. J. Irwin, Sep 24 2016 *)
  • PARI
    vector(30, n, sum(k=0,n, binomial(n,k)*binomial(n,2*n-3*k-1))/n ) \\ G. C. Greubel, Dec 12 2019
    
  • Sage
    [sum(binomial(n,k)*binomial(n,2*n-3*k-1) for k in (0..n))/n for n in (1..30)] # G. C. Greubel, Dec 12 2019

Formula

a(n) = ((36*n+18)*A092765(n) + (11*n+9)*A092765(n+1))/(2*(5*n+3)*(2*n+3)) (based on guessed recurrence). - Mark van Hoeij, Jul 14 2010
A(x) satisfies A(x)+A(x)^2 = A000108(x)-1, a(n) = (1/n)*Sum_{k=1..n} (-1)^(k+1) * C(2*n,n-k)*C(2*k-2,k-1). - Vladimir Kruchinin, May 12 2012
G.f.: (sqrt((2 - 2*sqrt(1-4*x) - 3*x)/x) - 1)/2. - Benedict W. J. Irwin, Sep 24 2016
a(n) ~ 4^n/(sqrt(5*Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 25 2016
Conjecture: 2*n*(2*n+1)*a(n) + (17*n^2-53*n+24)*a(n-1) + 6*(-13*n^2+43*n-36)*a(n-2) - 108*(2*n-5)*(n-3)*a(n-3) = 0. - R. J. Mathar, Oct 08 2016
a(n) = (1/n)*Sum_{k=0..n} binomial(n,k)*binomial(n,2*n-3*k-1). - David Nguyen, Dec 31 2016
From Alexander Burstein, Dec 12 2019: (Start)
1 + x*A(x) = 1/C(-x*C(x)^2), where C(x) is the g.f. of A000108.
F(x) = x*(1+x*A(x)) = x/C(-x*C(x)^2) is a pseudo-involution, i.e., the series reversion of x*(1 + x*A(x)) is x*(1 - x*A(-x)).
The B-sequence of F(x) is A069271, i.e., F(x) = x + x*F(x)*A069271(x*F(x)). (End)

A222006 Number of forests of rooted plane binary trees (all nodes have outdegree of 0 or 2) with n total nodes.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 10, 12, 27, 35, 79, 104, 244, 331, 789, 1083, 2615, 3652, 8880, 12523, 30657, 43661, 107326, 153985, 379945, 548776, 1357922, 1972153, 4892140, 7139850, 17747863, 26011843, 64776658, 95296413, 237689691, 350844814, 876313458, 1297367201, 3244521203, 4816399289
Offset: 0

Views

Author

Geoffrey Critzer, Feb 23 2013

Keywords

Comments

Here, the binary trees are sized by total number of nodes.

Examples

			a(6) = 5: There is one forest with 6 trees, one forest with 4 trees and 3 forests with 2 trees, namely
1)...o..o..o..o..o..o...............
....................................
2)...o..o..o....o...................
.............../.\..................
..............o...o.................
....................................
3)...o........o.....................
..../.\....../.\....................
...o...o....o...o...................
....................................
4).....o....o.....5)......o.....o...
....../.\................/.\........
.....o...o..............o...o.......
..../.\..................../.\......
...o...o..................o...o.....
		

Crossrefs

Row sums of A342770.

Programs

  • Maple
    b:= proc(n) option remember; `if`(irem(n, 2)=0, 0,
          `if`(n<2, n, add(b(i)*b(n-1-i), i=1..n-2)))
        end:
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(g(n-i*j, i-2)*binomial(b(i)+j-1, j), j=0..n/i)))
        end:
    a:= n-> g(n, iquo(n-1, 2)*2+1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 26 2013
  • Mathematica
    nn=40;a=Drop[CoefficientList[Series[t=(1-(1-4x^2)^(1/2))/(2x),{x,0,nn}],x],1];CoefficientList[Series[Product[1/(1-x^i)^a[[i]],{i,1,nn-1}],{x,0,nn}],x]

Formula

O.g.f.: Product_{i>=1} 1/(1 - x^i)^A126120(i-1).
a(n) ~ c * 2^n / n^(3/2), where c = 1.165663931402962361339366557... if n is even, c = 1.490999501305559555120304528... if n is odd. - Vaclav Kotesovec, Aug 31 2014

A306437 Regular triangle read by rows where T(n,k) is the number of non-crossing set partitions of {1, ..., n} in which all blocks have size k.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 5, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 14, 0, 4, 0, 0, 0, 1, 1, 0, 12, 0, 0, 0, 0, 0, 1, 1, 42, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 132, 55, 22, 0, 6, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 429, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2019

Keywords

Examples

			Triangle begins:
  1
  1   1
  1   0   1
  1   2   0   1
  1   0   0   0   1
  1   5   3   0   0   1
  1   0   0   0   0   0   1
  1  14   0   4   0   0   0   1
  1   0  12   0   0   0   0   0   1
  1  42   0   0   5   0   0   0   0   1
  1   0   0   0   0   0   0   0   0   0   1
  1 132  55  22   0   6   0   0   0   0   0   1
Row 6 counts the following non-crossing set partitions (empty columns not shown):
  {{1}{2}{3}{4}{5}{6}}  {{12}{34}{56}}  {{123}{456}}  {{123456}}
                        {{12}{36}{45}}  {{126}{345}}
                        {{14}{23}{56}}  {{156}{234}}
                        {{16}{23}{45}}
                        {{16}{25}{34}}
		

Crossrefs

Row sums are A194560. Column k=2 is A126120. Trisection of column k=3 is A001764.

Programs

  • Maple
    T:= (n, k)-> `if`(irem(n, k)=0, binomial(n, n/k)/(n-n/k+1), 0):
    seq(seq(T(n,k), k=1..n), n=1..14);  # Alois P. Heinz, Feb 16 2019
  • Mathematica
    Table[Table[If[Divisible[n,d],d/n*Binomial[n,n/d-1],0],{d,n}],{n,15}]

Formula

If d|n, then T(n, d) = binomial(n, n/d)/(n - n/d + 1); otherwise T(n, k) = 0 [Theorem 1 of Kreweras].

A359364 Triangle read by rows. The Motzkin triangle, the coefficients of the Motzkin polynomials. M(n, k) = binomial(n, k) * CatalanNumber(k/2) if k is even, otherwise 0.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 0, 2, 1, 0, 10, 0, 10, 0, 1, 0, 15, 0, 30, 0, 5, 1, 0, 21, 0, 70, 0, 35, 0, 1, 0, 28, 0, 140, 0, 140, 0, 14, 1, 0, 36, 0, 252, 0, 420, 0, 126, 0, 1, 0, 45, 0, 420, 0, 1050, 0, 630, 0, 42, 1, 0, 55, 0, 660, 0, 2310, 0, 2310, 0, 462, 0
Offset: 0

Views

Author

Peter Luschny, Jan 09 2023

Keywords

Comments

The generalized Motzkin numbers M(n, k) are a refinement of the Motzkin numbers M(n) (A001006) in the sense that they are coefficients of polynomials M(n, x) = Sum_{n..k} M(n, k) * x^k that take the value M(n) at x = 1. The coefficients of x^n are the aerated Catalan numbers A126120.
Variants are the irregular triangle A055151 with zeros deleted, A097610 with reversed rows, A107131 and A080159.
In the literature the name 'Motzkin triangle' is also used for the triangle A026300, which is generated from the powers of the generating function of the Motzkin numbers.

Examples

			Triangle M(n, k) starts:
[0] 1;
[1] 1, 0;
[2] 1, 0,  1;
[3] 1, 0,  3, 0;
[4] 1, 0,  6, 0,   2;
[5] 1, 0, 10, 0,  10, 0;
[6] 1, 0, 15, 0,  30, 0,   5;
[7] 1, 0, 21, 0,  70, 0,  35, 0;
[8] 1, 0, 28, 0, 140, 0, 140, 0,  14;
[9] 1, 0, 36, 0, 252, 0, 420, 0, 126, 0;
		

Crossrefs

Cf. A001006 (Motzkin numbers), A026300 (Motzkin gf. triangle), A126120 (aerated Catalan), A000108 (Catalan).

Programs

  • Maple
    CatalanNumber := n -> binomial(2*n, n)/(n + 1):
    M := (n, k) -> ifelse(irem(k, 2) = 1, 0, CatalanNumber(k/2)*binomial(n, k)):
    for n from 0 to 9 do seq(M(n, k), k = 0..n) od;
    # Alternative, as coefficients of polynomials:
    p := n -> hypergeom([(1 - n)/2, -n/2], [2], (2*x)^2):
    seq(print(seq(coeff(simplify(p(n)), x, k), k = 0..n)), n = 0..9);
    # Using the exponential generating function:
    egf := exp(x)*BesselI(1, 2*x*t)/(x*t): ser:= series(egf, x, 11):
    seq(print(seq(coeff(simplify(n!*coeff(ser, x, n)), t, k), k = 0..n)), n = 0..9);
  • Python
    from functools import cache
    @cache
    def M(n: int, k: int) -> int:
        if k %  2: return 0
        if n <  3: return 1
        if n == k: return (2 * (n - 1) * M(n - 2, n - 2)) // (n // 2 + 1)
        return (M(n - 1, k) * n) // (n - k)
    for n in range(10): print([M(n, k) for k in range(n + 1)])

Formula

Let p(n, x) = hypergeom([(1 - n)/2, -n/2], [2], (2*x)^2).
p(n, 1) = A001006(n); p(n, sqrt(2)) = A025235(n); p(n, 2) = A091147(n).
p(2, n) = A002522(n); p(3, n) = A056107(n).
p(n, n) = A359649(n); 2^n*p(n, 1/2) = A000108(n+1).
M(n, k) = [x^k] p(n, x).
M(n, k) = [t^k] (n! * [x^n] exp(x) * BesselI(1, 2*t*x) / (t*x)).
M(n, k) = [t^k][x^n] ((1 - x - sqrt((x-1)^2 - (2*t*x)^2)) / (2*(t*x)^2)).
M(n, n) = A126120(n).
M(n, n-1) = A138364(n), the number of Motzkin n-paths with exactly one flat step.
M(2*n, 2*n) = A000108(n), the number of peakless Motzkin paths having a total of n up and level steps.
M(4*n, 2*n) = A359647(n), the central terms without zeros.
M(2*n+2, 2*n) = A002457(n) = (-4)^n * binomial(-3/2, n).
Sum_{k=0..n} M(n - k, k) = A023426(n).
Sum_{k=0..n} k * M(n, k) = 2*A014531(n-1) = 2*GegenbauerC(n - 2, -n, -1/2).
Sum_{k=0..n} i^k*M(n, k) = A343773(n), (i the imaginary unit), is the excess of the number of even Motzkin n-paths (A107587) over the odd ones (A343386).
Sum_{k=0..n} Sum_{j=0..k} M(n, j) = A189912(n).
Sum_{k=0..n} Sum_{j=0..k} M(n, n-j) = modified A025179(n).
For a recursion see the Python program.

A171368 Another version of A126216.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0, 9, 0, 1, 0, 0, 0, 21, 0, 14, 0, 1, 0, 0, 14, 0, 56, 0, 20, 0, 1, 0, 0, 0, 84, 0, 120, 0, 27, 0, 1, 0, 0, 42, 0, 300, 0, 225, 0, 35, 0, 1, 0, 0, 0, 330, 0, 825, 0, 385, 0, 44, 0, 1, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 06 2009

Keywords

Comments

Expansion of the first column of the triangle T_(0,x), T_(x,y) defined in A039599; T_(0,0)= A053121, T_(0,1)= A089942, T_(0,2)= A126093, T_(0,3)= A126970.
T(n,k) is the number of Riordan paths of length n with k horizontal steps. A Riordan path is a Motzkin path with no horizontal steps on the x-axis. - Emanuele Munarini, Oct 14 2023

Examples

			Triangle begins:
  1 ;
  0,0 ;
  1,0,0 ;
  0,1,0,0 ;
  2,0,1,0,0 ;
  0,5,0,1,0,0 ;
  5,0,9,0,1,0,0 ;
  ...
		

Crossrefs

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A099323(n+1), A126120(n), A005043(n), A000957(n+1), A117641(n) for x = -1, 0, 1, 2, 3 respectively.

A202856 Moments of the quadratic coefficient of the characteristic polynomial of a random matrix in SU(2) X SU(2) (inside USp(4)).

Original entry on oeis.org

1, 2, 5, 14, 44, 152, 569, 2270, 9524, 41576, 187348, 866296, 4092400, 19684576, 96156649, 476038222, 2384463044, 12067926920, 61641751124, 317469893176, 1647261806128, 8605033903456, 45228349510660, 239061269168056, 1270130468349904, 6780349241182112, 36355025167014224, 195725149445320160, 1057729059593103808
Offset: 0

Views

Author

N. J. A. Sloane, Dec 25 2011

Keywords

Crossrefs

Programs

  • Maple
    b:=n->coeff((x^2+1)^n, x, n); # A126869
    c:=n->b(n)/((n/2)+1); # A126120
    ch:=n->add(binomial(n, k)*2^(n-k)*c(k)^2, k=0..n); # A202856
    [seq(ch(n), n=0..30)];
  • Mathematica
    b[n_] := Coefficient[(x^2+1)^n, x, n]; (* A126869 *)
    c[n_] := b[n]/(n/2+1); (* A126120 *)
    ch[n_] := Sum[Binomial[n, k] 2^(n-k) c[k]^2, {k, 0, n}]; (* A202856 *)
    Table[ch[n], {n, 0, 30}] (* Jean-François Alcover, Aug 10 2018, translated from Maple *)

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*2^(n-k)*c(k)^2, where c() = A126120().
Conjecture: (n+2)^2*a(n) +2*(-3*n^2-5*n-1)*a(n-1) -4*(n-1)*(n-5)*a(n-2) +24*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Dec 04 2013 [ Maple's sumrecursion command applied to the above formula for a(n) produces this recurrence. - Peter Bala, Jul 06 2015 ]
a(n) ~ 2^(n-1) * 3^(n+3) / (Pi * n^3). - Vaclav Kotesovec, Jul 20 2019

A138351 Central moment sequence of tr(A^2) in USp(4).

Original entry on oeis.org

1, 0, 2, 1, 11, 16, 95, 232, 1085, 3460, 14820, 54275, 227095, 895688, 3756688, 15462293, 65586405, 277342336, 1192038266, 5136760581, 22357937431, 97730561480, 430177280197, 1901975209706, 8454151507801, 37734802709796
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 16 2008, Mar 31 2008

Keywords

Comments

If A is a random matrix in the compact group USp(4) (4 X 4 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A^2)+1)^n] is the n-th central moment of the trace of A^2, since E[tr(A^2)] = -1 (see A138350).

Examples

			a(4) = 11 because E[(tr(A^2)+1)^4] = 11 for a random matrix A in USp(4).
a(4) = 1*A138350(0)+4*A138350(1)+6*A138350(2)+4*A138350(3)+1*A138350(4) = 1*1 + 4*(-1) + 6*3 + 4*(-6) + 1*20 = 11.
		

Crossrefs

Cf. A138350.

Programs

  • Mathematica
    a126120[n_] := If[EvenQ[n], CatalanNumber[n/2], 0];
    a138364[n_] := If[EvenQ[n], 0, Binomial[n, Floor[n/2]], 0];
    a138350[n_] := a126120[n] a138364[n+1] - a138364[n] a126120[n+1];
    a[n_] := Sum[Binomial[n, i] a138350[i], {i, 0, n}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 13 2018 *)

Formula

a(n) = (1/2)Integral_{x=0..Pi,y=0..Pi}(2cos(2x)+2cos(2y)+1)^n(2cos(x)-2cos(y))^2(2/Pi*sin^2(x))(2/Pi*sin^2(y))dxdy.
a(n) = Sum_{i=0..n} binomial(n,i)*A138350(i).
Previous Showing 41-50 of 59 results. Next