A319226
Irregular triangle where T(n,k) is the number of acyclic spanning subgraphs of a cycle graph, where the sizes of the connected components are given by the integer partition with Heinz number A215366(n,k).
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 2, 4, 4, 1, 5, 5, 5, 5, 5, 5, 1, 6, 6, 6, 3, 2, 6, 12, 9, 6, 6, 1, 7, 7, 7, 7, 14, 7, 7, 7, 7, 7, 21, 14, 7, 7, 1, 8, 8, 8, 4, 8, 8, 8, 16, 16, 8, 2, 24, 8, 24, 12, 16, 8, 32, 20, 8, 8, 1, 9, 9, 9, 9, 9, 9, 18, 9, 9, 9, 18, 18, 3, 27, 27
Offset: 1
Triangle begins:
1
2 1
3 3 1
4 2 4 4 1
5 5 5 5 5 5 1
6 6 6 3 2 6 12 9 6 6 1
The fourth row corresponds to the symmetric function identities:
p(4) = -4 e(4) + 2 e(22) + 4 e(31) - 4 e(211) + e(1111)
p(4) = 4 h(4) - 2 h(22) - 4 h(31) + 4 h(211) - h(1111).
Cf.
A005651,
A008480,
A048994,
A056239,
A124794,
A124795,
A135278,
A215366,
A318762,
A319191,
A319193,
A319225.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Partition[Range[n],2,1,1],{n-PrimeOmega[m]}],Sort[Length/@csm[Union[#,List/@Range[n]]]]==primeMS[m]&]],{n,6},{m,Sort[Times@@Prime/@#&/@IntegerPartitions[n]]}]
A015540
a(n) = 5*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 5, 31, 185, 1111, 6665, 39991, 239945, 1439671, 8638025, 51828151, 310968905, 1865813431, 11194880585, 67169283511, 403015701065, 2418094206391, 14508565238345, 87051391430071, 522308348580425, 3133850091482551, 18803100548895305, 112818603293371831
Offset: 0
G.f. = x + 5*x^2 + 31*x^3 + 185*x^4 + 1111*x^5 + 6665*x^6 + 39991*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.
- Index entries for linear recurrences with constant coefficients, signature (5,6).
-
[Floor(6^n/7-(-1)^n/7): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
-
seq(round(6^n/7),n=0..25); # Mircea Merca, Dec 28 2010
-
k=0; lst={k}; Do[k = 6^n-k; AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
CoefficientList[Series[x / ((1 - 6 x) (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
LinearRecurrence[{5,6},{0,1},30] (* Harvey P. Dale, May 12 2015 *)
-
my(x='x+O('x^30)); concat([0], Vec(x/((1-6*x)*(1+x)))) \\ G. C. Greubel, Jan 24 2018
-
a(n) = round(6^n/7); \\ Altug Alkan, Sep 05 2018
-
[lucas_number1(n,5,-6) for n in range(21)] # Zerinvary Lajos, Apr 24 2009
A110813
A triangle of pyramidal numbers.
Original entry on oeis.org
1, 3, 1, 5, 4, 1, 7, 9, 5, 1, 9, 16, 14, 6, 1, 11, 25, 30, 20, 7, 1, 13, 36, 55, 50, 27, 8, 1, 15, 49, 91, 105, 77, 35, 9, 1, 17, 64, 140, 196, 182, 112, 44, 10, 1, 19, 81, 204, 336, 378, 294, 156, 54, 11, 1, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1, 23, 121, 385, 825
Offset: 0
The number triangle T(n, k) begins
n\k 0 1 2 3 4 5 6 7 8 9 10 11
0: 1
1: 3 1
2: 5 4 1
3: 7 9 5 1
4: 9 16 14 6 1
5: 11 25 30 20 7 1
6: 13 36 55 50 27 8 1
7: 15 49 91 105 77 35 9 1
8: 17 64 140 196 182 112 44 10 1
9: 19 81 204 336 378 294 156 54 11 1
10: 21 100 285 540 714 672 450 210 65 12 1
11: 23 121 385 825 1254 1386 1122 660 275 77 13 1
... reformatted by _Wolfdieter Lang_, Mar 23 2015
As a number square S(n, k) = T(n+k, k), rows begin
1, 1, 1, 1, 1, 1, ...
3, 4, 5, 6, 7, 8, ...
5, 9, 14, 20, 27, 35, ...
7, 16, 30, 50, 77, 112, ...
9, 25, 55, 105, 182, 294, ...
Cf.
A000290,
A000330,
A002415,
A005408,
A005585,
A029655,
A040977,
A050486,
A053347,
A054333,
A054334,
A057788.
-
Table[2*Binomial[n + 1, k + 1] - Binomial[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 19 2017 *)
-
for(n=0,10, for(k=0,n, print1(2*binomial(n+1, k+1) - binomial(n,k), ", "))) \\ G. C. Greubel, Oct 19 2017
A055137
Regard triangle of rencontres numbers (see A008290) as infinite matrix, compute inverse, read by rows.
Original entry on oeis.org
1, 0, 1, -1, 0, 1, -2, -3, 0, 1, -3, -8, -6, 0, 1, -4, -15, -20, -10, 0, 1, -5, -24, -45, -40, -15, 0, 1, -6, -35, -84, -105, -70, -21, 0, 1, -7, -48, -140, -224, -210, -112, -28, 0, 1, -8, -63, -216, -420, -504, -378, -168, -36, 0, 1, -9, -80, -315, -720
Offset: 0
1; 0,1; -1,0,1; -2,-3,0,1; -3,-8,-6,0,1; ...
(Bagula's matrix has a different sign convention from the list.)
From _Roger L. Bagula_, Feb 20 2009: (Start)
{ 1},
{ 0, 1},
{-1, 0, 1},
{ 2, -3, 0, 1},
{-3, 8, -6, 0, 1},
{ 4, -15, 20, -10, 0, 1},
{-5, 24, -45, 40, -15, 0, 1},
{ 6, -35, 84, -105, 70, -21, 0, 1},
{-7, 48, -140, 224, -210, 112, -28, 0, 1},
{ 8, -63, 216, -420, 504, -378, 168, -36, 0, 1},
{-9, 80, -315, 720, -1050, 1008, -630, 240, -45, 0, 1}
(End)
R(3,x) = (-1)^3*Sum_{permutations p in S_3} sign(p)*(-x)^(fix(p)).
p | fix(p) | sign(p) | (-1)^3*sign(p)*(-x)^fix(p)
========+========+=========+===========================
(123) | 3 | +1 | x^3
(132) | 1 | -1 | -x
(213) | 1 | -1 | -x
(231) | 0 | +1 | -1
(312) | 0 | +1 | -1
(321) | 1 | -1 | -x
========+========+=========+===========================
| R(3,x) = x^3 - 3*x - 2
- _Peter Bala_, Aug 08 2011
- Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. p. 17.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p.184 problem 3.
- Problem B6, The 66th William Lowell Putnam Mathematical Competition Saturday, Dec 03 2005
- M. Bhargava, K. Kedlaya, and L. Ng, Solutions to the 66th William Lowell Putnam Mathematical Competition Saturday, Dec 03 2005
- T. Copeland, Cycling through the Zeta Garden: Zeta functions for graphs, cycle index polynomials, and determinants
- T. Copeland, Riemann zeta function at positive integers and an Appell sequence of polynomials related to fractional calculus
-
M[n_] := Table[If[i == j, x, 1], {i, 1, n}, {j, 1, n}]; a = Join[{{1}}, Flatten[Table[CoefficientList[Det[M[n]], x], {n, 1, 10}]]] (* Roger L. Bagula, Feb 20 2009 *)
t[n_, k_] := (k-n+1)*Binomial[n, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2013, after Pari *)
-
T(n,k)=(1-n+k)*if(k<0 || k>n,0,n!/k!/(n-k)!)
A101391
Triangle read by rows: T(n,k) is the number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1,x_2,...,x_k) = 1 (1<=k<=n).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 2, 3, 1, 0, 4, 6, 4, 1, 0, 2, 9, 10, 5, 1, 0, 6, 15, 20, 15, 6, 1, 0, 4, 18, 34, 35, 21, 7, 1, 0, 6, 27, 56, 70, 56, 28, 8, 1, 0, 4, 30, 80, 125, 126, 84, 36, 9, 1, 0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1, 0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 1
T(6,3)=9 because we have 411,141,114 and the six permutations of 123 (222 does not qualify).
T(8,3)=18 because binomial(0,2)*mobius(8/1)+binomial(1,2)*mobius(8/2)+binomial(3,2)*mobius(8/4)+binomial(7,2)*mobius(8/8)=0+0+(-3)+21=18.
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 2, 3, 1;
0, 4, 6, 4, 1;
0, 2, 9, 10, 5, 1;
0, 6, 15, 20, 15, 6, 1;
0, 4, 18, 34, 35, 21, 7, 1;
0, 6, 27, 56, 70, 56, 28, 8, 1;
0, 4, 30, 80, 125, 126, 84, 36, 9, 1;
0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1;
0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1;
0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;
...
From _Gus Wiseman_, Oct 19 2020: (Start)
Row n = 6 counts the following compositions:
(15) (114) (1113) (11112) (111111)
(51) (123) (1122) (11121)
(132) (1131) (11211)
(141) (1212) (12111)
(213) (1221) (21111)
(231) (1311)
(312) (2112)
(321) (2121)
(411) (2211)
(3111)
Missing are: (42), (24), (33), (222).
(End)
- Alois P. Heinz, Rows n = 1..200, flattened
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- Temba Shonhiwa, Compositions with pairwise relatively prime summands within a restricted setting, Fibonacci Quart. 44 (2006), no. 4, 316-323.
A000837 counts relatively prime partitions.
A135278 counts compositions by length.
A282748 is the pairwise coprime instead of relatively prime version.
A291166 ranks these compositions (evidently).
-
with(numtheory): T:=proc(n,k) local d, j, b: d:=divisors(n): for j from 1 to tau(n) do b[j]:=binomial(d[j]-1,k-1)*mobius(n/d[j]) od: sum(b[i],i=1..tau(n)) end: for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields the sequence in triangular form
# second Maple program:
b:= proc(n, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
expand(add(b(n-j, igcd(g, j))*x, j=1..n)))
end:
T:= (n, k)-> coeff(b(n,0),x,k):
seq(seq(T(n,k), k=1..n), n=1..14); # Alois P. Heinz, May 05 2025
-
t[n_, k_] := Sum[Binomial[d-1, k-1]*MoebiusMu[n/d], {d, Divisors[n]}]; Table[t[n, k], {n, 2, 14}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],GCD@@#==1&]],{n,10},{k,2,n}] (* change {k,2,n} to {k,1,n} for the version with zeros. - Gus Wiseman, Oct 19 2020 *)
-
T(n, k) = sumdiv(n, d, binomial(d-1, k-1)*moebius(n/d)); \\ Michel Marcus, Mar 09 2016
A111492
Triangle read by rows: a(n,k) = (k-1)! * C(n,k).
Original entry on oeis.org
1, 2, 1, 3, 3, 2, 4, 6, 8, 6, 5, 10, 20, 30, 24, 6, 15, 40, 90, 144, 120, 7, 21, 70, 210, 504, 840, 720, 8, 28, 112, 420, 1344, 3360, 5760, 5040, 9, 36, 168, 756, 3024, 10080, 25920, 45360, 40320, 10, 45, 240, 1260, 6048, 25200, 86400, 226800, 403200, 362880
Offset: 1
a(3,3) = 2 because (3-1)!C(3,3) = 2.
1;
2 1;
3 3 2;
4 6 8 6;
5 10 20 30 24;
6 15 40 90 144 120;
7 21 70 210 504 840 720;
8 28 112 420 1344 3360 5760 5040;
9 36 168 756 3024 10080 25920 45360 40320;
-
/* As triangle: */ [[Factorial(k-1)*Binomial(n,k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 21 2014
-
Flatten[Table[(k - 1)!Binomial[n, k], {n, 10}, {k, n}]]
A344678
Coefficients for normal ordering of (x + D)^n and for the unsigned, probabilist's (or Chebyshev) Hermite polynomials H_n(x+y).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 3, 3, 1, 1, 4, 6, 6, 12, 4, 3, 6, 1, 1, 5, 10, 10, 30, 10, 15, 30, 5, 15, 10, 1, 1, 6, 15, 15, 60, 20, 45, 90, 15, 90, 60, 6, 15, 45, 15, 1, 1, 7, 21, 21, 105, 35, 105, 210, 35, 315, 210, 21, 105, 315, 105, 7, 105, 105, 21, 1
Offset: 0
(x + D)^0 = 1,
(x + D)^1 = x + D,
(x + D)^2 = x^2 + 2 x D + 1 + D^2,
(x + D)^3 = x^3 + 3 x^2 D + 3 x + 3 x D^2 + 3 D + D^3,
(x + D)^4 = x^4 + 4 x^3 D + 6 x^2 + 6 x^2 D^2 + 12 x D + 4 x D^3 + 3 + 6 D^2 + D^4.
(x + D)^5 = x^5 + 5 x^4 D + 10 x^3 + 10 x^3 D^2 + 30 x^2 D + 10 x^2 D^3 + 15 x + 30 x D^2 + 5 x D^4 + 15 D + 10 D^3 + D^5
H_6(x + y) = x^6 + 6 x^5 y + 15 x^4 + 15 x^4 y^2 + 60 x^3 y + 20 x^3 y^3 + 45 x^2 + 90 x^2 y^2 + 15 x^2 y^4 + 90 x y + 60 x y^3 + 6 x y^5 + 15 + 45 y^2 + 15 y^4 + y^6
H_7(x + y) = x^7 + 7 x^6 y + 21 x^5 + 21 x^5 y^2 + 105 x^4 y + 35 x^4 y^3 + 105 x^3 + 210 x^3 y^2 + 35 x^3 y^4 + 315 x^2 y + 210 x^2 y^3 + 21 x^2 y^5 + 105 x + 315 x y^2 + 105 x y^4 + 7 x y^6 + 105 y + 105 y^3 + 21 y^5 + y^7
-
Last /@ CoefficientRules[#, {x, y}] & /@ Table[Simplify[(-y)^n (-2)^(-n/2) HermiteH[n, (x + 1/y)/Sqrt[-2]]], {n, 0, 7}] // Flatten (* Andrey Zabolotskiy, Mar 08 2024 *)
A249548
Coefficients of reduced partition polynomials of A134264 for computing Lagrange compositional inversion.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 1, 5, 1, 6, 3, 5, 1, 7, 7, 21, 1, 8, 8, 4, 28, 28, 14, 1, 9, 9, 9, 36, 72, 12, 84, 1, 10, 10, 10, 5, 45, 90, 45, 45, 120, 180, 42, 1, 11, 11, 11, 11, 55, 110, 110, 55, 55, 165, 495, 165, 330, 1, 12, 12, 12, 12, 6, 66, 132, 132, 66, 66, 132, 22, 220, 660, 330, 660, 55, 495, 990, 132
Offset: 0
Prt(0) = 1
Prt(1;1,0) = 0
Prt(2;1,0,h_2) = 1 h_2
Prt(3;1,0,h_2,h_3) = 1 h_3
Prt(4;1,0,h_2,..,h_4) = 1 h_4 + 2 (h_2)^2
Prt(5;1,0,h_2,..,h_5) = 1 h_5 + 5 h_2 h_3
Prt(6;1,0,h_2,..,h_6) = 1 h_6 + 6 h_2 h_4 + 3 (h_3)^2 + 5 (h_2)^3
Prt(7;1,0,h_2,..,h_7) = 1 h_7 + 7 h_3 h_4 + 7 h_2 h_5 + 21 h_3 (h_2)^2
...
------------
With h_n denoted by (n'), the first seven partition polynomials of A134264 with h_0=1 are given by the first seven coefficients of the truncated Taylor series expansion of the Euler binomial transform
e^[(1') * t] * {1 + 1 (2') * t^2/2! + 1 (3') * t^3/3! + [1 (4') + 2 (2')^2] * t^4/4! + [1 (5') + 5 (2')(3')] * t^5/5! + [1 (6') + 6 (2')(4') + 3 (3')^2 + 5 (2')^3] * t^6/6!}, giving the truncated expansion
1 + 1 (1') * t + [1 (2') + 1 (1')^2] * t^2/2! + ... + [1 (6') + 6 (1')(5') + 6 (2')(4') + 3 (3')^2 + 15 (1')^2(4') + 30 (1')(2')(3') + 5 (2')^3 + 20 (1')^3(3') + 30 (1')^2(2')^2 + 15 (1')^4(2') + 1 (1')^6] * t^6/6!.
Extending the number of reduced partition polynomials of the transform allows for further complete polynomials of A134264 to be computed.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Rows lengths are given by
A002865 (except for row 1).
-
rows[n_] := {{1}, {0}}~Join~Module[
{g = 1 / D[t / (1 + Sum[h[k] t^k, {k, 2, n}] + O[t]^(n+1)), t], p = t, r},
r = Reap[Do[p = g D[p, t]/k; Sow[Expand[Normal@p /. {t -> 0}]], {k, n+1}]][[2, 1, 2 ;;]];
Table[Coefficient[r[[k]], Product[h[t], {t, p}]], {k, 2, n}, {p, Sort[Sort /@ IntegerPartitions[k, k, Range[2, k]]]}]];
rows[12] // Flatten (* Andrey Zabolotskiy, Feb 18 2024 *)
Formula for Prt(7,..) and a(12)-a(15) added by
Tom Copeland, Jul 22 2016
A321752
Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of e(v) in p(u), where H is Heinz number, e is elementary symmetric functions, and p is power sum symmetric functions.
Original entry on oeis.org
1, 1, -2, 1, 0, 1, 3, -3, 1, 0, -2, 1, -4, 2, 4, -4, 1, 0, 0, 1, 0, 4, 0, -4, 1, 0, 0, 3, -3, 1, 5, -5, -5, 5, 5, -5, 1, 0, 0, 0, -2, 1, -6, 6, 6, 3, -2, -6, -12, 9, 6, -6, 1, 0, -4, 0, 2, 4, -4, 1, 0, 0, -6, 6, 3, -5, 1, 0, 0, 0, 0, 1, 7, -7, -7, -7, 14, 7, 7
Offset: 1
Triangle begins:
1
1
-2 1
0 1
3 -3 1
0 -2 1
-4 2 4 -4 1
0 0 1
0 4 0 -4 1
0 0 3 -3 1
5 -5 -5 5 5 -5 1
0 0 0 -2 1
-6 6 6 3 -2 -6 -12 9 6 -6 1
0 -4 0 2 4 -4 1
0 0 -6 6 3 -5 1
0 0 0 0 1
7 -7 -7 -7 14 7 7 7 -7 -7 -21 14 7 -7 1
0 0 0 4 0 -4 1
For example, row 15 gives: p(32) = -6e(32) + 6e(221) + 3e(311) - 5e(2111) + e(11111).
Cf.
A005651,
A008480,
A056239,
A124794,
A124795,
A135278,
A296150,
A319193,
A319225,
A319226,
A321742-
A321765,
A321854.
A321918
Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in p(u), where u and v are integer partitions of n, H is Heinz number, e is elementary symmetric functions, and p is power sum symmetric functions.
Original entry on oeis.org
1, -2, 1, 0, 1, 3, -3, 1, 0, -2, 1, 0, 0, 1, -4, 2, 4, -4, 1, 0, 4, 0, -4, 1, 0, 0, 3, -3, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, 1, 5, -5, -5, 5, 5, -5, 1, 0, -4, 0, 2, 4, -4, 1, 0, 0, -6, 6, 3, -5, 1, 0, 0, 0, 4, 0, -4, 1, 0, 0, 0, 0, 3, -3, 1, 0, 0, 0, 0, 0, -2, 1
Offset: 1
Tetrangle begins (zeroes not shown):
(1): 1
.
(2): -2 1
(11): 1
.
(3): 3 -3 1
(21): -2 1
(111): 1
.
(4): -4 2 4 -4 1
(22): 4 -4 1
(31): 3 -3 1
(211): -2 1
(1111): 1
.
(5): 5 -5 -5 5 5 -5 1
(41): -4 2 4 -4 1
(32): -6 6 3 -5 1
(221): 4 -4 1
(311): 3 -3 1
(2111): -2 1
(11111): 1
For example, row 14 gives: p(32) = -6e(32) + 6e(221) + 3e(311) - 5e(2111) + e(11111).
This is a regrouping of the triangle
A321752.
Cf.
A005651,
A008480,
A056239,
A124794,
A124795,
A135278,
A215366,
A318284,
A319191,
A319193,
A319225,
A319226,
A321912-
A321935.
Comments