cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 67 results. Next

A244049 Sum of all proper divisors of all positive integers <= n.

Original entry on oeis.org

0, 0, 0, 2, 2, 7, 7, 13, 16, 23, 23, 38, 38, 47, 55, 69, 69, 89, 89, 110, 120, 133, 133, 168, 173, 188, 200, 227, 227, 268, 268, 298, 312, 331, 343, 397, 397, 418, 434, 483, 483, 536, 536, 575, 607, 632, 632, 707, 714, 756, 776, 821, 821, 886, 902
Offset: 1

Views

Author

Omar E. Pol, Jun 24 2014

Keywords

Comments

The proper divisors of n are all divisors except 1 and n itself. Therefore noncomposite numbers have no proper divisors.
For the sum of all aliquot divisors of all positive integers <= n see A153485.
For the sum all divisors of all positive integers <= n see A024916.
a(n) = a(n - 1) if and only if n is prime.
For n >= 3 a(n) equals the area of an arrowhead-shaped polygon formed by two zig-zag paths and the Dyck path described in the n-th row of A237593 as shown in the Links section. Note that there is a similar diagram of A153485(n) in A153485. - Omar E. Pol, Jun 14 2022

Examples

			a(4) = 2 because the only proper divisor of 4 is 2 and the previous n contributed no proper divisors to the sum.
a(5) = 2 because 5 is prime and contributes no proper divisors to the sum.
a(6) = 7 because the proper divisors of 6 are 2 and 3, which add up to 5, and a(5) + 5 = 2 + 5 = 7.
		

Crossrefs

Programs

  • Mathematica
    propDivsRunSum[1] := 0; propDivsRunSum[n_] := propDivsRunSum[n] = propDivsRunSum[n - 1] + (Plus@@Divisors[n]) - (n + 1); Table[propDivsRunSum[n], {n, 60}] (* Alonso del Arte, Jun 30 2014 *)
    Accumulate[Join[{0},Table[Total[Most[Divisors[n]]]-1,{n,2,60}]]] (* Harvey P. Dale, Aug 12 2016 *)
    Accumulate[Join[{0}, Table[DivisorSigma[1, n] - n - 1, {n, 2, 55}]]] (* Amiram Eldar, Jun 18 2022 *)
  • PARI
    a(n) = sum(k=2, n, sigma(k)-k-1); \\ Michel Marcus, Mar 30 2021
    
  • Python
    from math import isqrt
    def A244049(n): return ((-n*(n+3)-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)))>>1)+1 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = A024916(n) - A034856(n).
a(n) = A153485(n) - n + 1.
G.f.: (1/(1 - x))*Sum_{k>=2} k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Jan 22 2017
a(n) = A161680(n-1) - A004125(n). - Omar E. Pol, Mar 25 2021
a(n) = A000290(n) - A034856(n) - A004125(n). - Omar E. Pol, Mar 26 2021
a(n) = c * n^2 + O(n*log(n)), where c = Pi^2/12 - 1/2 = 0.322467... . - Amiram Eldar, Nov 27 2023

A022288 a(n) = n*(31*n-1)/2.

Original entry on oeis.org

0, 15, 61, 138, 246, 385, 555, 756, 988, 1251, 1545, 1870, 2226, 2613, 3031, 3480, 3960, 4471, 5013, 5586, 6190, 6825, 7491, 8188, 8916, 9675, 10465, 11286, 12138, 13021, 13935, 14880, 15856, 16863, 17901
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences of the form n*((2*k+1)*n - 1)/2: A161680 (k=0), A000326 (k=1), A005476 (k=2), A022264 (k=3), A022266 (k=4), A022268 (k=5), A022270 (k=6), A022272 (k=7), A022274 (k=8), A022276 (k=9), A022278 (k=10), A022280 (k=11), A022282 (k=12), A022284 (k=13), A022286 (k=14), this sequence (k=15).

Programs

  • Mathematica
    Table[n (31 n - 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 15, 61}, 40] (* Harvey P. Dale, Mar 31 2014 *)
  • PARI
    a(n)=n*(31*n-1)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 31*n + a(n-1) - 16 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(0)=0, a(1)=15, a(2)=61; for n>2, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Mar 31 2014
G.f.: x*(15 + 16*x)/(1 - x)^3. - R. J. Mathar, Sep 02 2016
a(n) = A000217(16*n-1) - A000217(15*n-1). In general, n*((2*k+1)*n - 1)/2 = A000217((k+1)*n-1) - A000217(k*n-1), and the ordinary generating function is x*(k + (k+1)*x)/(1 - x)^3. - Bruno Berselli, Oct 14 2016
E.g.f.: (x/2)*(31*x + 30)*exp(x). - G. C. Greubel, Aug 24 2017

A157897 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-3) + delta(n,0)*delta(k,0), T(n,k<0) = T(n

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 1, 2, 0, 1, 4, 3, 3, 2, 0, 1, 5, 6, 5, 6, 0, 1, 1, 6, 10, 9, 12, 3, 3, 0, 1, 7, 15, 16, 21, 12, 6, 3, 0, 1, 8, 21, 27, 35, 30, 14, 12, 0, 1, 1, 9, 28, 43, 57, 61, 35, 30, 6, 4, 0, 1, 10, 36, 65, 91, 111, 81, 65, 30, 10, 4, 0, 1, 11, 45, 94, 142, 189, 169, 135, 90, 30, 20, 0, 1
Offset: 0

Views

Author

Gary W. Adamson, Mar 08 2009

Keywords

Comments

T(n, k) is the number of tilings of an n-board that use k (1/2, 1)-fences and n-k squares. A (1/2, 1)-fence is a tile composed of two pieces of width 1/2 separated by a gap of width 1. (Result proved in paper by K. Edwards - see the links section.) - Michael A. Allen, Apr 28 2019
T(n, k) is the (n, n-k)-th entry in the (1/(1-x^3), x*(1+x)/(1-x^3)) Riordan array. - Michael A. Allen, Mar 11 2021

Examples

			First few rows of the triangle are:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  0,  1;
  1,  3,  1,  2,  0;
  1,  4,  3,  3,  2,  0;
  1,  5,  6,  5,  6,  0,  1;
  1,  6, 10,  9, 12,  3,  3,  0;
  1,  7, 15, 16, 21, 12,  6,  3,  0;
  1,  8, 21, 27, 35, 30, 14, 12,  0,  1;
  ...
T(9,3) = 27 = T(8,3) + T(7,2) + T(6,0) = 16 + 10 + 1.
		

Crossrefs

Cf. A000073 (row sums), A006498, A120415.
Other triangles related to tiling using fences: A059259, A123521, A335964.

Programs

  • Magma
    function T(n,k) // T = A157897
      if k lt 0 or k gt n then return 0;
      elif k eq 0 then return 1;
      else return T(n-1, k) + T(n-2, k-1) + T(n-3, k-3);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 01 2022
    
  • Mathematica
    T[n_,k_]:= If[nMichael A. Allen, Apr 28 2019 *)
  • SageMath
    def T(n,k): # T = A157897
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        else: return T(n-1, k) + T(n-2, k-1) + T(n-3, k-3)
    flatten([[T(n,k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Sep 01 2022

Formula

T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-3) + delta(n,0)*delta(k,0), T(n,k<0) = T(n
Sum_{k=0..n} T(n, k) = A000073(n+2). - Reinhard Zumkeller, Jun 25 2009
From G. C. Greubel, Sep 01 2022: (Start)
T(n, k) = T(n-1, k) + T(n-2, k-1) + T(n-3, k-3), with T(n, 0) = 1.
T(n, n) = A079978(n).
T(n, n-1) = A087508(n), n >= 1.
T(n, 1) = A001477(n-1).
T(n, 2) = A161680(n-2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A120415(n). (End)

Extensions

Name clarified by Michael A. Allen, Apr 28 2019
Definition improved by Michael A. Allen, Mar 11 2021

A325006 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using up to k colors.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 3, 0, 0, 10, 15, 1, 0, 0, 15, 45, 20, 0, 0, 0, 21, 105, 120, 15, 0, 0, 0, 28, 210, 455, 210, 6, 0, 0, 0, 36, 378, 1330, 1365, 252, 1, 0, 0, 0, 45, 630, 3276, 5985, 3003, 210, 0, 0, 0, 0, 55, 990, 7140, 20475, 20349, 5005, 120, 0, 0, 0, 0, 66, 1485, 14190, 58905, 98280, 54264, 6435, 45, 0, 0, 0, 0
Offset: 1

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. The chiral colorings of its facets come in pairs, each the reflection of the other.
Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.

Examples

			Array begins with A(1,1):
0 1 3  6  10   15     21       28        36         45          55 ...
0 0 3 15  45  105    210      378       630        990        1485 ...
0 0 1 20 120  455   1330     3276      7140      14190       26235 ...
0 0 0 15 210 1365   5985    20475     58905     148995      341055 ...
0 0 0  6 252 3003  20349    98280    376992    1221759     3478761 ...
0 0 0  1 210 5005  54264   376740   1947792    8145060    28989675 ...
0 0 0  0 120 6435 116280  1184040   8347680   45379620   202927725 ...
0 0 0  0  45 6435 203490  3108105  30260340  215553195  1217566350 ...
0 0 0  0  10 5005 293930  6906900  94143280  886163135  6358402050 ...
0 0 0  0   1 3003 352716 13123110 254186856 3190187286 29248649430 ...
For a(2,3)=3, each chiral pair consists of two adjacent edges of the square with one of the three colors.
		

Crossrefs

Cf. A325004 (oriented), A325005 (unoriented), A325007 (achiral), A325010 (exactly k colors)
Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325014 (orthoplex)
Rows 1-3 are A161680, A050534, A093566(n+1), A234249(n-1)

Programs

  • Mathematica
    Table[Binomial[Binomial[d-n+1,2],n],{d,1,12},{n,1,d}] // Flatten
  • PARI
    a(n, k) = binomial(binomial(k, 2), n)
    array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print(""))
    /* Print initial 10 rows and 11 columns of array as follows: */
    array(10, 11) \\ Felix Fröhlich, May 30 2019

Formula

A(n,k) = binomial(binomial(k,2),n).
A(n,k) = Sum_{j=1..2*n} A325010(n,j) * binomial(k,j).
A(n,k) = A325004(n,k) - A325005(n,k) = (A325004(n,k) - A325007(n,k)) / 2 = A325005(n,k) - A325007(n,k).
G.f. for row n: Sum{j=1..2*n} A325010(n,j) * x^j / (1-x)^(j+1).
Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j).
G.f. for column k: (1+x)^binomial(k,2) - 1.

A381299 Irregular triangular array read by rows. T(n,k) is the number of ordered set partitions of [n] with exactly k descents, n>=0, 0<=k<=binomial(n,2).

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 4, 1, 8, 12, 18, 18, 12, 6, 1, 16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1, 32, 80, 176, 300, 448, 572, 650, 658, 596, 478, 334, 206, 102, 40, 10, 1, 64, 192, 480, 944, 1632, 2476, 3428, 4300, 5008, 5372, 5356, 4936, 4220, 3316, 2392, 1556, 904, 456, 188, 60, 12, 1
Offset: 0

Author

Geoffrey Critzer, Feb 19 2025

Keywords

Comments

Let p = ({b_1},{b_2},...,{b_m}) be an ordered set partition of [n] into m blocks for some m, 1<=m<=n. A descent in p is an ordered pair (x,y) in [n]X[n] such that x is in b_i, y is in b_j, iy.
T(n,binomial(n,2)) = 1 (counts the ordered set partition ({n},{n-1},...,{2},{1})).
For n>=1, T(n,0) = 2^(n-1).
Sum_{k>=0} T(n,k)*2^k = A289545(n).
Sum_{k>=0} T(n,k)*3^k = A347841(n).
Sum_{k>=0} T(n,k)*4^k = A347842(n).
Sum_{k>=0} T(n,k)*5^k = A347843(n).
Sum_{k>=0} T(n,k)*6^k = A385408(n).
Sum_{k>=0} T(n,k)*7^k = A347844(n).
Sum_{k>=0} T(n,k)*8^k = A347845(n).
Sum_{k>=0} T(n,k)*9^k = A347846(n).
T(n,k) is the number of preferential arrangements of n labeled elements with exactly k inversions. For example, there 4 preferential rearrangements of length 3 with 1 inversion: 132, 213, 212, 131. - Kyle Celano, Aug 18 2025

Examples

			Triangle T(n,k) begins:
  1;
  1;
  2,  1;
  4,  4,  4,  1;
  8, 12, 18, 18,  12,  6,  1;
 16, 32, 60, 84, 100, 92, 76, 48, 24, 8, 1;
 ...
		

Crossrefs

Columns k=0-2 give: A011782, A001787(n-1) for n>=1, 2*A268586.
Cf. A000670 (row sums), A008302 (the cases where each block has size 1).

Programs

  • Maple
    b:= proc(o, u, t) option remember; expand(`if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(x^(u+j-1)*b(o-j, u+j-1, 1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..8);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    nn = 7; B[n_] := FunctionExpand[QFactorial[n, u]]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 -(e[z] - 1)), {z, 0, nn}], z]] // Grid

Formula

Sum_{k=0..binomial(n,2)} k * T(n,k) = A240796(n). - Alois P. Heinz, Feb 20 2025
T(n,k) = Sum_{w} 2^(asc(w)), where w runs through the set of permutations with k inversions and asc(w) is the number of ascents of w. - Kyle Celano, Aug 18 2025

A293500 Number of orientable strings of length n using a maximum of k colors, array read by descending antidiagonals, T(n,k) for n >= 1 and k >= 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 3, 2, 0, 0, 6, 9, 6, 0, 0, 10, 24, 36, 12, 0, 0, 15, 50, 120, 108, 28, 0, 0, 21, 90, 300, 480, 351, 56, 0, 0, 28, 147, 630, 1500, 2016, 1053, 120, 0, 0, 36, 224, 1176, 3780, 7750, 8064, 3240, 240, 0, 0, 45, 324, 2016, 8232, 23220, 38750, 32640, 9720, 496, 0
Offset: 1

Author

Andrew Howroyd, Oct 10 2017

Keywords

Comments

Reversing the string does not leave it unchanged. Only one string from each pair is counted.
Equivalently, the number of nonequivalent strings up to reversal that are not palindromes.
Except for the first term, column k is the "BHK" (reversible, identity, unlabeled) transform of k,0,0,0,... [Corrected by Petros Hadjicostas, Jul 01 2018]
From Petros Hadjicostas, Jul 01 2018: (Start)
Consider the input sequence (c_k(n): n >= 1) with g.f. C_k(x) = Sum_{n>=1} c_k(n)*x^n. Let a_k(n) = BHK(c_k(n): n >= 1) be the output sequence under Bower's BHK transform. It can be proved that the g.f. of BHK(c_k(n): n >= 1) is A_k(x) = (C_k(x)^2 - C_k(x^2))/(2*(1-C_k(x))*(1-C_k(x^2))) + C_k(x). (See the comments for sequences A032096, A032097, and A032098.)
For column k of this two-dimensional array, the input sequence is defined by c_k(1) = k and c_k(n) = 0 for n >= 1. Thus, C_k(x) = k*x, and hence the g.f. of column k (with the term C_k(x) = k*x excluded) is (C_k(x)^2 - C_k(x^2))/(2*(1-C_k(x))*(1-C_k(x^2))) = (1/2)*(k - 1)*k*x^2/((k*x^2 - 1)*(k*x - 1)), from which we can easily prove Howroyd's formula.
(End)
Comment from Bahman Ahmadi, Aug 05 2019: (Start)
We give an alternative definition for the square array A(n,k) = T(n,k) with n >= 2 and k >= 0. A(n,k) is the number of inequivalent "distinguishing colorings" of the path on n vertices using at most k colors. The rows are indexed by n, the number of vertices of the path, and the columns are indexed by k, the number of permissible colors.
A vertex-coloring of a graph G is called "distinguishing" if it is only preserved by the identity automorphism of G. This notion is considered in the context of "symmetry breaking" of simple (finite or infinite) graphs. Two vertex-colorings of a graph are called "equivalent" if there is an automorphism of the graph which preserves the colors of the vertices. Given a graph G, we use the notation Phi_k(G) to denote the number of inequivalent distinguishing colorings of G with at most k colors. This sequence gives A(n,k) = Phi_k(P_n), i.e., the number of inequivalent distinguishing colorings of the path P_n on n vertices with at most k colors.
For n=3, we can color the vertices of P_3 with at most 2 colors in 3 ways such that all the colorings distinguish the graph (i.e., no non-identity automorphism of the path P_3 preserves the coloring) and that all the three colorings are inequivalent.
We have Phi_k(P_n) = binomial(k,2)*k^(n-2) + k*Phi_k(P_(n-2)) for n >= 4; Phi_k(P_2) = binomial(k,2); Phi_k(P_3) = k*binomial(k,2).
(End)

Examples

			Array begins:
======================================================
n\k| 1   2    3     4      5      6       7       8
---|--------------------------------------------------
1  | 0   0    0     0      0      0       0       0...
2  | 0   1    3     6     10     15      21      28...
3  | 0   2    9    24     50     90     147     224...
4  | 0   6   36   120    300    630    1176    2016...
5  | 0  12  108   480   1500   3780    8232   16128...
6  | 0  28  351  2016   7750  23220   58653  130816...
7  | 0  56 1053  8064  38750 139320  410571 1046528...
8  | 0 120 3240 32640 195000 839160 2881200 8386560...
...
For T(4,2)=6, the chiral pairs are AAAB-BAAA, AABA-ABAA, AABB-BBAA, ABAB-BABA, ABBB-BBBA, and BABB-BBAB.
		

Crossrefs

Columns 2-5 for n > 1 are A032085, A032086, A032087, A032088.
Column 6 is A320524.
Rows 2-6 are A161680, A006002(n-1), A083374, A321672, A085744.
Cf. A003992 (oriented), A277504 (unoriented), A321391 (achiral).

Programs

  • Mathematica
    Table[Function[n, (k^n - k^(Ceiling[n/2]))/2][m - k + 1], {m, 11}, {k, m, 1, -1}] // Flatten (* Michael De Vlieger, Oct 11 2017 *)
  • PARI
    T(n,k) = (k^n - k^(ceil(n/2)))/2;

Formula

T(n,k) = (k^n - k^(ceiling(n/2)))/2.
G.f. for column k: (1/2)*(k - 1)*k*x^2/((k*x^2 - 1)*(k*x - 1)). - Petros Hadjicostas, Jul 07 2018
From Robert A. Russell, Nov 16 2018: (Start)
T(n,k) = (A003992(k,n) - A321391(n,k)) / 2.
T(n,k) = = A003992(k,n) - A277504(n,k) = A277504(n,k) - A321391(n,k).
G.f. for row n: (Sum_{j=0..n} S2(n,j)*j!*x^j/(1-x)^(j+1) - Sum_{j=0..ceiling(n/2)} S2(ceiling(n/2),j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f. for row n>1: x * Sum_{k=1..n-1} A145883(n,k) * x^k / (1-x)^(n+1).
E.g.f. for row n: (Sum_{k=0..n} S2(n,k)*x^k - Sum_{k=0..ceiling(n/2)} S2(ceiling(n/2),k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
T(0,k) = T(1,k) = 0; T(2,k) = binomial(k,2); for n>2, T(n,k) = k*(T(n-3,k)+T(n-2,k)-k*T(n-1,k)).
For k>n, T(n,k) = Sum_{j=1..n+1} -binomial(j-n-2,j) * T(n,k-j). (End)

A325014 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

Original entry on oeis.org

0, 1, 0, 3, 0, 0, 6, 3, 1, 0, 10, 15, 66, 94, 0, 15, 45, 920, 97974, 1047816, 0, 21, 105, 6350, 10700090, 481141220994, 400140831558512, 0, 28, 210, 29505, 390081800, 4802390808840576, 74515656021475803734579625, 527471421741473576372948457251328, 0
Offset: 1

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. The chiral colorings of its facets come in pairs, each the reflection of the other.
Also the number of chiral pairs of colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

Examples

			Array begins with A(1,1):
0  1     3        6        10         15          21           28 ...
0  0     3       15        45        105         210          378 ...
0  1    66      920      6350      29505      106036       317856 ...
0 94 97974 10700090 390081800 7280687610 86121007714 730895668104 ...
For A(2,3)=3, each square has one of the three colors on two adjacent edges.
		

Crossrefs

Cf. A325012 (oriented), A325013 (unoriented), A325015 (achiral), A325018 (exactly k colors).
Other n-dimensional polytopes: A007318(k,n+1) (simplex), A325006 (orthotope).
Rows 1-2 are A161680, A050534.

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[((CI0[#] - CI1[#]) pc[#]) & /@ IntegerPartitions[n]])/(n! 2^n)] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k
    Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
A(k,n) = A325012(n,k) - A325013(n,k) = (A325012(n,k) - A325015(n,k)) / 2 = A325013(n,k) - A325015(n,k).
A(n,k) = Sum_{j=2..2^n} A325018(n,j) * binomial(k,j).

A188919 Triangle read by rows: T(n,k) = number of permutations of length n with k inversions that avoid the "dashed pattern" 1-32.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 3, 3, 1, 1, 1, 2, 4, 7, 8, 9, 9, 6, 4, 1, 1, 1, 2, 4, 7, 13, 16, 22, 26, 29, 26, 23, 17, 10, 5, 1, 1, 1, 2, 4, 7, 13, 22, 31, 44, 60, 74, 89, 95, 98, 93, 82, 63, 47, 29, 15, 6, 1, 1, 1, 2, 4, 7, 13, 22, 38, 55, 83, 116, 160, 207, 259, 304, 347, 375, 386, 378, 348, 304, 249, 190, 131, 85, 46, 21, 7, 1
Offset: 0

Author

N. J. A. Sloane, Apr 13 2011

Keywords

Comments

Row n has length 1 + binomial(n,2) and sum A000110(n) (a Bell number).

Examples

			Triangle begins:
1
1
1 1
1 1 2 1
1 1 2 4 3 3 1
1 1 2 4 7 8 9 9 6 4 1
...
		

Crossrefs

The column limits are given by A188920.

Programs

  • Maple
    b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
           add(b(u-j, o+j-1)*x^(o+j-1), j=1..u)+
           add(`if`(u=0, b(u+j-1, o-j)*x^(o-j), 0), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 14 2015
  • Mathematica
    b[u_, o_] := b[u, o] = Expand[If[u+o == 0, 1, Sum[b[u-j, o+j-1]* x^(o+j-1), {j, 1, u}] + Sum[If[u == 0, b[u+j-1, o-j]*x^(o-j), 0], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}] ][b[0, n]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 01 2016, after Alois P. Heinz *)

Extensions

More terms from Andrew Baxter, May 17 2011.

A330302 Number of chains of 2-element subsets of {0,1, 2, ..., n} that contain no consecutive integers.

Original entry on oeis.org

1, 1, 3, 51, 18731, 408990251, 921132763911411, 324499299994016295527283, 25190248259800264134073495741338539, 576797123806621878513443912437627670334052360619
Offset: 0

Author

S. R. Kannan, Rajesh Kumar Mohapatra, Jan 01 2020

Keywords

Comments

For n >= 1, a(n) is the number of chains of binary reflexive symmetric matrices of order n.
The number of chains of strictly upper triangular or strictly lower triangular matrices.
Also, number of chains in power set of (n^2-n)/2 elements.
a(n) is the number of distinct reflexive symmetric fuzzy matrices of order n.

Crossrefs

Programs

  • Maple
    # P are the polynomials defined in A007047.
    a:= n -> (m-> 2^m*subs(x=1/2, P(m, x)))(n*(n-1)/2):
    seq(a(n), n=0..9);
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 4,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> `if`(n<2, 1, b(n*(n-1)/2)-1):
    seq(a(n), n=0..10);  # Alois P. Heinz, Feb 11 2020
  • Mathematica
    Array[2 PolyLog[-(#^2-#)/2, 1/2] - 1 &, 10, 0]
    Table[2*PolyLog[-(n^2-n)/2, 1/2] - 1, {n, 0, 29}]
    Table[LerchPhi[1/2, -(n^2-n)/2, 2]/2, {n, 0, 19}]

Formula

a(n) = A007047((n^2-n)/2) = A007047(A161680(n)).

A264388 Numerators of binomial(n-1, 2)/(6*n), for n >= 1. Numerators of Dedekind sum s(1, n).

Original entry on oeis.org

0, 0, 1, 1, 1, 5, 5, 7, 14, 3, 15, 55, 11, 13, 91, 35, 20, 34, 51, 57, 95, 35, 77, 253, 46, 25, 325, 117, 63, 203, 145, 155, 248, 44, 187, 595, 105, 111, 703, 247, 130, 205, 287, 301, 473, 165, 345, 1081, 188, 98, 1225, 425, 221, 689, 477, 495, 770, 133, 551
Offset: 1

Author

Wolfdieter Lang, Jan 11 2016

Keywords

Comments

For the denominators see A264389.
This gives the numerators of the rational numbers r(n) = s(1,n), where s(h,k) = Sum_{r=1..(k-1)} (r/k)*(h*r/k - floor(h*r/k)- 1/2), k >=1, are the Dedekind sums. See the Apostol reference, pp. 52, 61-69, 72-73, and the Weisstein link, where GCD(h,k) = 1 is assumed.
s(h,k) = Sum_{r = 1..k} ((r/k))*((h*r/k)) with ((x)) = x - floor(x) - 1/2 if x is not an integer, else 0.
s(h,k) = (Sum_{r=1..(k-1)} cot(Pi*h*r/k)*cot(Pi*r/k))/(4*k), k >= 1, r and h integers. Exercise 11, p. 72 of the Apostol reference.
6*n*s(1,n) = binomial(n-1, 2) = A161680(n-1), n >= 1.

References

  • Apostol, Tom, M., Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990.

Crossrefs

Programs

Formula

a(n) = numerator(binomial(n-1, 2)/(6*n)) (in lowest terms), n >= 1.
a(n) = numerator(r(n)), with r(n) = s(1,n) = Sum_{r=1..(n-1)} (r/n)*(r/n - floor(r/n)- 1/2), n >= 1. For other forms see the above comments.
Previous Showing 11-20 of 67 results. Next