cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 79 results. Next

A007587 12-gonal (or dodecagonal) pyramidal numbers: a(n) = n*(n+1)*(10*n-7)/6.

Original entry on oeis.org

0, 1, 13, 46, 110, 215, 371, 588, 876, 1245, 1705, 2266, 2938, 3731, 4655, 5720, 6936, 8313, 9861, 11590, 13510, 15631, 17963, 20516, 23300, 26325, 29601, 33138, 36946, 41035, 45415, 50096, 55088, 60401, 66045, 72030, 78366, 85063, 92131, 99580, 107420, 115661
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of [1, 12, 21, 10, 0, 0, 0, ...] = (1, 13, 46, 110, ...). - Gary W. Adamson, Nov 28 2007
This sequence is related to A000566 by a(n) = n*A000566(n) - Sum_{i=0..n-1} A000566(i) and this is the case d=5 in the identity n*(n*(d*n-d+2)/2) - Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n - 2*d + 3)/6. - Bruno Berselli, Oct 18 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093645 ((10, 1) Pascal, column m=3). Partial sums of A051624.
Cf. A000566.
See similar sequences listed in A237616.

Programs

  • GAP
    List([0..45], n-> n*(n+1)*(10*n-7)/6); # G. C. Greubel, Aug 30 2019
  • Magma
    [ n eq 1 select 0 else Self(n-1)+(n-1)*(5*n-9): n in [1..45] ]; // Klaus Brockhaus, Nov 20 2008
    
  • Maple
    A007587:=n->n*(n+1)*(10*n-7)/6: seq(A007587(n), n=0..50); # Wesley Ivan Hurt, Oct 23 2014
  • Mathematica
    CoefficientList[Series[x(1+9x)/(1-x)^4, {x,0,45}], x] (* Vincenzo Librandi, Jun 20 2013 *)
    Table[n(n+1)(10n-7)/6,{n,0,50}] (* Harvey P. Dale, Nov 13 2013 *)
  • PARI
    a(n)=if(n,([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,4,-6,4]^n*[0;1;13;46])[1,1],0) \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    vector(45, n, n*(n-1)*(10*n-17)/6) \\ G. C. Greubel, Aug 30 2019
    
  • Sage
    [n*(n+1)*(10*n-7)/6 for n in (0..45)] # G. C. Greubel, Aug 30 2019
    

Formula

a(n) = (10*n-7)*binomial(n+1, 2)/3.
G.f.: x*(1+9*x)/(1-x)^4.
a(n) = Sum_{k=0..n} k*(5*k-4). - Klaus Brockhaus, Nov 20 2008
a(n) = Sum_{i=0..n-1} (n-i)*(10*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Oct 23 2014
E.g.f.: exp(x)*x*(6 + 33*x + 10*x^2)/6. - Elmo R. Oliveira, Aug 04 2025

A011774 Nonprimes k that divide sigma(k) + phi(k).

Original entry on oeis.org

1, 312, 560, 588, 1400, 23760, 59400, 85632, 147492, 153720, 556160, 569328, 1590816, 2013216, 3343776, 4563000, 4695456, 9745728, 12558912, 22013952, 23336172, 30002960, 45326160, 52021242, 75007400, 113315400, 137617728, 153587720, 402831360, 699117024
Offset: 1

Views

Author

Keywords

Comments

2*k = sigma(k) + phi(k) if and only if k is 1 or a prime.
If 7*2^j - 1 is prime then m = 2^(j+2)*3*(7*2^j - 1) is in the sequence. Because phi(m) = 2^(j+2)*(7*2^j - 2); sigma(m) = 7*2^(j+2)*(2^(j+3) - 1) so phi(m) + sigma(m) = 2^(j+2)*((7*2^j - 2) + (7*2^(j+3) - 7)) = 2^(j+2)* (63*2^(j+2) - 9) = 3*(2^(j+2)*3*(7*2^j - 1)) = 3*m, hence m is a term of A011251 and consequently m is a term of this sequence. A112729 gives such m's. - Farideh Firoozbakht, Dec 01 2005
Conjecture: For n > 1, a(n) is a Zumkeller number (A083207). Verified for all n in [2,63]. - Ivan N. Ianakiev, Jan 25 2023

Examples

			a(26) = 113315400: sigma = 426535200, phi = 26726400, quotient = 4.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B42, p. 151.
  • Zhang Ming-Zhi, typescript submitted to Unsolved Problems section of Monthly, 96-01-10.

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[1, n]+EulerPhi[n], n]==0, Print[n]], {n, 1, 2*10^7}]
    Do[ If[ ! PrimeQ[n] && Mod[ DivisorSigma[1, n] + EulerPhi[n], n] == 0, Print[n] ], {n, 1, 10^8} ]
  • PARI
    sp(n)=my(f=factor(n));n*prod(i=1, #f[,1], 1-1/f[i,1]) + prod(i=1, #f[,1], (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1))
    p=2;forprime(q=3, 1e6, for(n=p+1, q-1, if(sp(n)%n==0, print1(n", ")));p=q) \\ Charles R Greathouse IV, Mar 19 2012

Extensions

More terms from David W. Wilson
Corrected by Labos Elemer, Feb 12 2004

A051487 Numbers k such that phi(k) = phi(k - phi(k)).

Original entry on oeis.org

2, 6, 12, 24, 48, 96, 150, 192, 300, 384, 600, 726, 750, 768, 1200, 1452, 1500, 1536, 2310, 2400, 2904, 3000, 3072, 3174, 3750, 4620, 4800, 5046, 5808, 5874, 6000, 6090, 6144, 6348, 6930, 7500, 7986, 9240, 9600, 10086, 10092, 10374, 11550, 11616, 11748, 12000
Offset: 1

Views

Author

Keywords

Comments

This sequence is infinite, in fact 3*2^n is a subsequence because if m = 3*2^n then phi(m-phi(m)) = phi(3*2^n-2^n) = 2^n = phi(m). Also, if p is a Sophie Germain prime greater than 3 then for each natural number n, 2^n*3*p^2 is in the sequence. Note that there exist terms of this sequence like 750 or 2310 that they aren't of either of these forms. - Farideh Firoozbakht, Jun 19 2005
If n is an even term greater than 2 in this sequence then 2n is also in the sequence. Because for even numbers m we have phi(2m) = 2*phi(m) so phi(2n) = 2*phi(n) = 2*phi(n-phi(n)) and since n is an even number greater than 2, n-phi(n) is even so 2*phi(n-phi(n)) = phi(2n-2*phi(n)) = phi(2n-phi(2n)) hence phi(2n) = phi(2n-phi(2n)) and 2n is in the sequence. Conjecture: All terms of this sequence are even. - Farideh Firoozbakht, Jul 04 2005
If n is in the sequence and the natural number m divides gcd(n,phi(n)) then m*n is in the sequence. The facts that I have found about this sequence earlier (Jun 19 2005 and Jul 04 2005) are consequences of this. If p is a Sophie Germain prime greater than 3, k>1 and k & n are natural numbers then 2^n*3*p^k are in the sequence. - Farideh Firoozbakht, Dec 10 2005
Numbers n such that phi(n) = phi(n + phi(n)) includes all n = 2^k. - Jonathan Vos Post, Oct 25 2007

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B42, p. 150.

Crossrefs

Programs

  • Haskell
    a051487 n = a051487_list !! (n-1)
    a051487_list = [x | x <- [2..], let t = a000010 x, t == a000010 (x - t)]
    -- Reinhard Zumkeller, Jun 03 2013
  • Mathematica
    Select[Range[11700], EulerPhi[ # ] == EulerPhi[ # - EulerPhi[ # ]] &] (* Farideh Firoozbakht, Jun 19 2005 *)
  • PARI
    isA051487(n) = eulerphi(n) == eulerphi(n - eulerphi(n)) \\ Michael B. Porter, Dec 07 2009
    

Extensions

More terms from James Sellers

A004401 Least number of edges in graph containing all trees on n nodes.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 11, 13, 16, 18
Offset: 1

Views

Author

Keywords

Comments

Paul Tabatabai's program only tests graphs on n nodes, but the term a(9) = 16 is now confirmed. It seems to be sufficient to test only graphs on n vertices (cf. Eqn. 3 and Related Question 1 in Chung and Graham). Moreover, if this assumption is true, then the next terms are a(11) = 22 and a(12) = 24. Also note that my program can be used to enumerate all possible solutions. - Manfred Scheucher, Jan 25 2018
Chung and Graham use n and T_n to refer to trees on n *edges* (i.e., n-1 nodes). - Eric W. Weisstein, Jan 30 2025
Graphs containing all trees on n nodes could be referred to as fully n-forested graphs. - Eric W. Weisstein, Jan 31 2025

References

  • R. L. Graham, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A380740 (numbers of smallest fully forested graphs).

Extensions

a(9) by Paul Tabatabai, Jul 17 2016
a(10) by Manfred Scheucher, Jan 25 2018

A046936 Same rule as Aitken triangle (A011971) except a(0,0)=0, a(1,0)=1.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 9, 12, 16, 22, 31, 31, 40, 52, 68, 90, 121, 121, 152, 192, 244, 312, 402, 523, 523, 644, 796, 988, 1232, 1544, 1946, 2469, 2469, 2992, 3636, 4432, 5420, 6652, 8196, 10142, 12611, 12611, 15080, 18072, 21708, 26140
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
0,
1, 1,
1, 2, 3,
3, 4, 6, 9,
9, 12, 16, 22, 31,
31, 40, 52, 68, 90, 121,
121, 152, 192, 244, 312, 402, 523,
523, 644, 796, 988, 1232, 1544, 1946, 2469,
2469, 2992, 3636, 4432, 5420, 6652, 8196, 10142, 12611,
12611, 15080, ...
		

Crossrefs

Borders give A040027. Reading across rows gives A007604.

Programs

  • Haskell
    a046936 n k = a046936_tabl !! n !! k
    a046936_row n = a046936_tabl !! n
    a046936_tabl = [0] : iterate (\row -> scanl (+) (last row) row) [1,1]
    -- Reinhard Zumkeller, Jan 01 2014
    
  • Mathematica
    a[0, 0] = 0; a[1, 0] = 1; a[n_, 0] := a[n, 0] = a[n-1, n-1]; a[n_, k_] := a[n, k] = a[n, k-1] + a[n-1, k-1]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 15 2013 *)
  • Python
    from itertools import accumulate
    def A046936(): # Compare function Gould_diag in A121207.
        yield [0]
        accu = [1, 1]
        while True:
            yield accu
            accu = list(accumulate([accu[-1]] + accu))
    g = A046936()
    [next(g) for  in range(9)] # _Peter Luschny, Apr 25 2016

A060984 a(1) = 1; a(n+1) = a(n) + (largest square <= a(n)).

Original entry on oeis.org

1, 2, 3, 4, 8, 12, 21, 37, 73, 137, 258, 514, 998, 1959, 3895, 7739, 15308, 30437, 60713, 121229, 242333, 484397, 967422, 1933711, 3865811, 7730967, 15459367, 30912128, 61814609, 123625653, 247235577, 494448306, 988888002, 1977738918, 3955408759, 7910812423
Offset: 1

Views

Author

R. K. Guy, May 11 2001

Keywords

Comments

Arises in analyzing "put-or-take" games (see Winning Ways, 484-486, 501-503), the prototype being Epstein's Put-or-Take-a-Square game.

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E26.

Crossrefs

Programs

  • Haskell
    a060984 n = a060984_list !! (n-1)
    a060984_list = iterate (\x -> x + a048760 x) 1
    -- Reinhard Zumkeller, Dec 24 2013
    
  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - 1] + Floor[ Sqrt[ a[n - 1] ] ]^2; Table[ a[n], {n, 1, 40} ]
    RecurrenceTable[{a[1]==1,a[n]==a[n-1]+Floor[Sqrt[a[n-1]]]^2},a,{n,40}] (* Harvey P. Dale, Nov 19 2011 *)
    NestList[#+Floor[Sqrt[#]]^2&,1,40] (* Harvey P. Dale, Jan 22 2013 *)
  • PARI
    { default(realprecision, 100); for (n=1, 500, if (n==1, a=1, a+=floor(sqrt(a))^2); write("b060984.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 15 2009
    
  • Python
    from sympy import integer_nthroot
    A060984_list = [1]
    for i in range(10**3): A060984_list.append(A060984_list[-1]+integer_nthroot(A060984_list[-1],2)[0]**2) # Chai Wah Wu, Apr 02 2021
    
  • Python
    from math import isqrt
    from itertools import accumulate
    def f(an, _): return an + isqrt(an)**2
    print(list(accumulate([1]*36, f))) # Michael S. Branicky, Apr 02 2021

Formula

a(n+1) = a(n)+[sqrt(a(n))]^2 = a(n)+A061886(n) = a(n)+A048760(a(n)) = A061887(a(n)). - Henry Bottomley, May 12 2001
a(n) ~ c * 2^n, where c = 0.11511532187216693... (see A237888). - Vaclav Kotesovec, Feb 15 2014

Extensions

More terms from David W. Wilson, Henry Bottomley and Robert G. Wilson v, May 12 2001

A060985 a(1) = 1; a(n+1) = a(n) + (largest triangular number <= a(n)).

Original entry on oeis.org

1, 2, 3, 6, 12, 22, 43, 79, 157, 310, 610, 1205, 2381, 4727, 9383, 18699, 37227, 74355, 148660, 296900, 593735, 1187240, 2373810, 4746741, 9491481, 18981027, 37956907, 75910735, 151820416, 303627016, 607253419, 1214497244, 2428978214, 4857918665
Offset: 1

Views

Author

R. K. Guy, May 11 2001

Keywords

Comments

Arises in analyzing 'put-or-take' games (see Winning Ways, 484-486, 501-503), the prototype being Epstein's Put-or-Take-a-Square game.

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982.

Crossrefs

Programs

  • Haskell
    a060985 n = a060985_list !! (n-1)
    a060985_list = iterate a061885 1  -- Reinhard Zumkeller, Feb 03 2012
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[ {k = 1}, While[ k*(k + 1)/2 <= a[n - 1], k++ ]; a[n - 1] + k*(k - 1)/2]; Table[ a[n], {n, 1, 40} ]
    f[n_]:=Module[{c=Floor[(Sqrt[1+8n]-1)/2]},(c(c+1))/2]; NestList[#+f[#]&, 1, 40] (* Harvey P. Dale, Jun 19 2011 *)
  • PARI
    { default(realprecision, 1000); for (n=1, 1000, if (n<2, a=1, k=(sqrt(1 + 8*a) - 1)\2; a+=k*(k + 1)/2 ); write("b060985.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 16 2009
    

Formula

a(n+1) = a(n) + A061883(n) = a(n) + A057944(a(n)) = A061885(a(n)). - Henry Bottomley, May 12 2001
a(n) ~ 0.28276... * 2^n. - Charles R Greathouse IV, Jun 19 2011

Extensions

More terms from David W. Wilson, Henry Bottomley and Robert G. Wilson v, May 12 2001

A063980 Pillai primes: primes p such that there exists an integer m such that m! + 1 == 0 (mod p) and p != 1 (mod m).

Original entry on oeis.org

23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499, 503, 521, 557, 563, 569, 571, 577, 593, 599, 601, 607
Offset: 1

Views

Author

R. K. Guy, Sep 08 2001

Keywords

Comments

Hardy & Subbarao prove that this sequence is infinite. An upper bound can be extracted from their proof: a(n) < e^e^...^e^O(n log n) with e appearing n times. This tetrational bound could be improved with results on the disjointness of the factorizations of numbers of the form k! + 1. - Charles R Greathouse IV, Sep 15 2015
Named after the Indian mathematician Subbayya Sivasankaranarayana Pillai (1901-1950). - Amiram Eldar, Jun 16 2021

Crossrefs

Smallest m is given in A063828, largest in A211411.

Programs

  • Mathematica
    ok[p_] := (r = False; Do[If[Mod[m! + 1, p] == 0 && Mod[p, m] != 1, r = True; Break[]], {m, 2, p}]; r); Select[Prime /@ Range[111], ok] (* Jean-François Alcover, Apr 22 2011 *)
    nn=1000; fact=1+Rest[FoldList[Times,1,Range[nn]]]; t={}; Do[p=Prime[i]; m=2; While[m
  • PARI
    is(p)=my(t=Mod(5040,p)); for(m=8, p-2, t*=m; if(t==-1 && p%m!=1, return(isprime(p)))); 0 \\ Charles R Greathouse IV, Feb 10 2013

Extensions

More terms from David W. Wilson, Sep 08 2001

A122036 Odd abundant numbers (A005231) which are not in A136446, i.e., not sum of some of their proper divisors > 1.

Original entry on oeis.org

351351
Offset: 1

Views

Author

N. J. A. Sloane, Apr 11 2008, following correspondence from R. K. Guy, M. F. Hasler and others

Keywords

Comments

It is conjectured that there are no odd weird numbers (A006037), i.e., that all odd abundant numbers (A005231) are pseudoperfect (A005835); this sequence lists those which are not equal to the sum of a subset of proper divisors > 1.
No second term in the range <= 53850001. - R. J. Mathar, Mar 21 2011
No other terms congruent to 21 (mod 30) below 10^9. - M. F. Hasler, Jul 16 2016
a(2) > 10^16. - Wenjie Fang, Jul 17 2017

Examples

			a(1) = 351351 = 3^3 * 7 * 11 * 13^2 is the sum of all its 47 proper divisors (including 1) except 7 and 11, but it is not possible to get the same sum without using the trivial divisor 1: The sum of all proper divisors *larger than 1* yields 351351 + 7 + 11 - 1 = 351351 + 17, and it is not possible to get 17 as sum of a subset of {3, 7, 9, 11, 13, 21, ...}. Thus, 351351 is not in A136446, and therefore in this sequence. - _M. F. Hasler_, Jul 16 2016, edited Mar 15 2021
		

Crossrefs

Programs

  • PARI
    is_A122036(n)={n>351350 && !is_A005835(n,n=divisors(n)[2..-2]) && n && vecsum(n)>=n[1]*n[#n] && n[1]>2} \\ (Checking for abundant & odd after is_A005835() rather than before, to make it faster when operating on candidates known to satisfy these conditions.) Updated for current PARI syntax by M. F. Hasler, Jul 16 2016, further edits Jan 31 2020
    forstep(n=1,10^7,2, is_A122036(n) && print1(n","))

Extensions

Comments and PARI code from M. F. Hasler, Apr 12 2008
Edited by M. F. Hasler, Jul 16 2016, Mar 15 2021

A169677 The first of a pair of sequences A and B with property that all the differences |a_i - b_j| are distinct - for precise definition see Comments lines.

Original entry on oeis.org

0, 1, 7, 18, 35, 59, 88, 125, 178, 233, 285, 344, 352, 442, 557, 675, 796, 797, 957, 1011, 1220, 1411, 1564, 1579, 1888, 2120, 2152, 2503, 2829, 2953, 3393, 3464, 3593, 3724, 4237, 4956, 5310, 5388, 5968, 6478, 6756, 7344, 7698, 8004, 8182
Offset: 1

Views

Author

R. K. Guy and N. J. A. Sloane, Mar 27 2010

Keywords

Comments

Consider pairs of sequences A = a_1 a_2 a_3 a_4 ... and B = b_1 b_2 b_3 ... such that
1: All the terms are nonnegative integers
2: The terms of A are strictly increasing
3: The terms of B are strictly increasing
4: All the numbers |a_i - b_j| are distinct
5: The terms are computed in the following order: a(1), b(1), a(2), b(2), ..., b(n-1), a(n), b(n), a(n+1), ... and always the smallest value is chosen that satisfies constraints 1-4.
Computed by Alois P. Heinz and Wouter Meeussen, Mar 27 2010

Crossrefs

Programs

  • Maple
    # Maple program from Alois P. Heinz:
    ab:=proc() false end: ab(0):=true:
    a:= proc(n) option remember;
    local ok,i,k,s;
    if n=1 then 0
    else b(n-1);
    for k from a(n-1)+1 do
    ok:=true;
    for i from 1 to n-1 do
    if ab(abs(k-b(i))) then ok:= false; break fi
    od;
    if ok then s:={};
    for i from 1 to n-1 do
    s:= s union {abs(k-b(i))};
    od
    fi;
    if ok and nops(s)=n-1 then break fi
    od;
    for i from 1 to n-1 do
    ab(abs(k-b(i))):=true
    od;
    k
    fi
    end;
    b:= proc(n) option remember;
    local ok,i,k,s;
    if n=1 then 0
    else a(n);
    for k from b(n-1)+1 do
    ok:=true;
    for i from 1 to n do
    if ab(abs(k-a(i))) then ok:= false; break fi
    od;
    if ok then s:={};
    for i from 1 to n do
    s:= s union {abs(k-a(i))};
    od
    fi;
    if ok and nops(s)=n then break fi
    od;
    for i from 1 to n do
    ab(abs(k-a(i))):=true
    od;
    k
    fi
    end;
    seq(a(n), n=1..80);
    seq(b(n), n=1..80);
  • Mathematica
    ClearAll[ab, a, b]; ab[] = False; ab[0] = True; a[n] := a[n] = Module[{ ok, i, k, s}, If[ n == 1 , 0, b[n-1]; For[ k = a[n-1] + 1 , True, k++, ok = True; For[ i = 1 , i <= n-1, i++, If[ ab[Abs[k - b[i]]] , ok = False; Break[] ]]; If[ ok , s = {}; For[ i=1 , i <= n-1 , i++, s = s ~Union~ {Abs[k - b[i]]};]]; If[ ok && (Length[s] == n-1) , Break[] ]]; For[ i=1 , i <= n-1 , i++, ab[Abs[k - b[i]]] = True]; k]]; b[n_] := b[n] = Module[{ ok, i, k, s}, If[ n == 1 , 0, a[n]; For[ k = b[n-1] + 1 , True, k++, ok = True; For[ i=1 , i <= n, i++, If[ ab[Abs[k - a[i]]] , ok = False; Break[] ]]; If[ ok , s = {}; For[ i=1 , i <= n , i++, s = s ~Union~ {Abs[k - a[i]]};]]; If[ ok && Length[s] == n , Break[] ]]; For[ i=1 , i <= n, i++, ab[Abs[k - a[i]]] := True]; k]]; Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Aug 13 2012, translated from Alois P. Heinz's Maple program *)

Extensions

Comments clarified by Zak Seidov and Alois P. Heinz, Apr 13 2010.
Previous Showing 51-60 of 79 results. Next