A000165 Double factorial of even numbers: (2n)!! = 2^n*n!.
1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 1428329123020800, 42849873690624000, 1371195958099968000, 46620662575398912000, 1678343852714360832000, 63777066403145711616000
Offset: 0
Examples
The following permutations and their reversals are all of the permutations of order 5 having the double-downgrade property: 0 1 2 3 4 0 3 2 1 4 1 0 2 4 3 1 4 2 0 3 G.f. = 1 + 2*x + 8*x^2 + 48*x^3 + 384*x^4 + 3840*x^5 + 46080*x^6 + 645120*x^7 + ...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
- Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- CombOS - Combinatorial Object Server, Generate colored permutations
- R. Coquereaux and J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163 [math.CO], 2015.
- Colin Defant, Rupert Li, James Propp, and Benjamin Young, Tilings of Benzels via the Abacus Bijection, arXiv preprint, arXiv:2209.05717 [math.CO], 2022.
- Eric S. Egge, Restricted symmetric permutations, Ann. Combin., 11 (2007), 405-434.
- Peter C. Fishburn, Signed Orders, Choice Probabilities and Linear Polytopes, Journal of Mathematical Psychology, Volume 45, Issue 1, (2001), pp. 53-80.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- G. Gordon, The answer is 2^n*n! What is the question?, Amer. Math. Monthly, 106 (1999), 636-645.
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Hamed Hatami and Pooya Hatami, Perfect dominating sets in the Cartesian products of prime cycles, arXiv:math/0701018 [math.CO], 2006-2009.
- Jason D. Hildebrand, Differentiating Arctan(x)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 136
- E. Lappo and N. A. Rosenberg, A lattice structure for ancestral configurations arising from the relationship between gene trees and species trees, Adv. Appl. Math. 343 (2024), 65-81.
- L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
- E. Lucas, Théorie des nombres (annotated scans of a few selected pages)
- Eugene McDonnell, Magic Squares and Permutations, APL Quote Quad 7.3 (Fall 1976).
- B. E. Meserve, Double Factorials, American Mathematical Monthly, 55 (1948), 425-426.
- G. A. Miller, Groups formed by special matrices, Bull. Amer. Math. Soc. 24 (1918), 203-206.
- R. Ondrejka, Tables of double factorials, Math. Comp., 24 (1970), 231.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
- M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
- Eric Weisstein's World of Mathematics, Double Factorial
- Eric Weisstein's World of Mathematics, Graph Automorphism
- Eric Weisstein's World of Mathematics, Ladder Rung Graph
- Index to divisibility sequences
- Index entries for sequences related to factorial numbers
Programs
-
Haskell
a000165 n = product [2, 4 .. 2 * n] -- Reinhard Zumkeller, Mar 28 2015
-
Magma
[2^n*Factorial(n): n in [0..35]]; // Vincenzo Librandi, Apr 22 2011
-
Magma
I:=[2,8]; [1] cat [n le 2 select I[n] else (3*n-1)*Self(n-1)-2*(n-1)^2*Self(n-2): n in [1..35] ]; // Vincenzo Librandi, Feb 19 2015
-
Maple
A000165 := proc(n) option remember; if n <= 1 then 1 else n*A000165(n-2); fi; end; ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 0)}, labelled]: seq(combstruct[count](ZL, size=n), n=0..17); # Zerinvary Lajos, Mar 26 2008 G(x):=(1-2*x)^(-1): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..17); # Zerinvary Lajos, Apr 03 2009 A000165 := proc(n) doublefactorial(2*n) ; end proc; seq(A000165(n),n=0..10) ; # R. J. Mathar, Oct 20 2009
-
Mathematica
Table[(2 n)!!, {n, 30}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *) (2 Range[0, 30])!! (* Harvey P. Dale, Jan 23 2015 *) RecurrenceTable[{a[n] == 2 n*a[n-1], a[0] == 1}, a, {n,0,30}] (* Ray Chandler, Jul 30 2015 *)
-
PARI
a(n)=n!<
Charles R Greathouse IV, Feb 11 2011 -
PARI
{a(n) = prod( k=1, n, 2*k)}; /* Michael Somos, Jan 04 2013 */
-
Python
from math import factorial def A000165(n): return factorial(n)<
Chai Wah Wu, Jan 24 2023 -
SageMath
[2^n*factorial(n) for n in range(31)] # G. C. Greubel, Jul 21 2024
Formula
E.g.f.: 1/(1-2*x).
a(n) = A001044(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (2*i+2) = 2^n*Pochhammer(1,n). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
D-finite with recurrence a(n) = 2*n * a(n-1), n>0, a(0)=1. - Paul Barry, Aug 26 2004
This is the binomial mean transform of A001907. See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
a(n) = Integral_{x>=0} x^n*exp(-x/2)/2 dx. - Paul Barry, Jan 28 2008
G.f.: 1/(1-2x/(1-2x/(1-4x/(1-4x/(1-6x/(1-6x/(1-.... (continued fraction). - Paul Barry, Feb 07 2009
a(n) = A006882(2*n). - R. J. Mathar, Oct 20 2009
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) = upper left term in M^n, M = a production matrix (twice Pascal's triangle deleting the first "2", with the rest zeros; cf. A028326):
2, 2, 0, 0, 0, 0, ...
2, 4, 2, 0, 0, 0, ...
2, 6, 6, 2, 0, 0, ...
2, 8, 12, 8, 2, 0, ...
2, 10, 20, 20, 10, 2, ...
... (End)
From Sergei N. Gladkovskii, Apr 11 2013, May 01 2013, May 24 2013, Sep 30 2013, Oct 27 2013: (Start)
Continued fractions:
G.f.: 1 + x*(Q(0) - 1)/(x+1) where Q(k) = 1 + (2*k+2)/(1-x/(x+1/Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 + 2*k*x - 2*x*(k+1)/Q(k+1).
G.f.: G(0)/2 where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) + 1/G(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 - x*(4*k+2) - 4*x^2*(k+1)^2/Q(k+1).
G.f.: R(0) where R(k) = 1 - x*(2*k+2)/(x*(2*k+2)-1/(1-x*(2*k+2)/(x*(2*k+2) -1/R(k+1)))). (End)
a(n) = (2n-2)*a(n-2) + (2n-1)*a(n-1), n>1. - Ivan N. Ianakiev, Aug 06 2013
From Peter Bala, Feb 18 2015: (Start)
Recurrence equation: a(n) = (3*n - 1)*a(n-1) - 2*(n - 1)^2*a(n-2) with a(1) = 2 and a(2) = 8.
The sequence b(n) = A068102(n) also satisfies this second-order recurrence. This leads to the generalized continued fraction expansion lim_{n -> oo} b(n)/a(n) = log(2) = 1/(2 - 2/(5 - 8/(8 - 18/(11 - ... - 2*(n - 1)^2/((3*n - 1) - ... ))))). (End)
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = sqrt(e) (A019774).
Sum_{n>=0} (-1)^n/a(n) = 1/sqrt(e) (A092605). (End)
Limit_{n->oo} a(n)^4 / (n * A134372(n)) = Pi. - Daniel Suteu, Apr 09 2022
a(n) = 1/([x^n] hypergeom([1], [1], x/2)). - Peter Luschny, Sep 13 2024
a(n) = Sum_{k=0..n} k!*(n-k)!*binomial(n,k)^2. - Ridouane Oudra, Jul 13 2025
Comments