A000332 Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24.
0, 0, 0, 0, 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, 10626, 12650, 14950, 17550, 20475, 23751, 27405, 31465, 35960, 40920, 46376, 52360, 58905, 66045, 73815, 82251, 91390, 101270, 111930, 123410
Offset: 0
Examples
a(5) = 5 from the five independent components of an antisymmetric tensor A of rank 4 and dimension 5, namely A(1,2,3,4), A(1,2,3,5), A(1,2,4,5), A(1,3,4,5) and A(2,3,4,5). See the Dec 10 2015 comment. - _Wolfdieter Lang_, Dec 10 2015
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 8.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 70.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 294.
- J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Charles W. Trigg, Mathematical Quickies, New York: Dover Publications, Inc., 1985, p. 53, #191.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 127.
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 0..1002
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015.
- Gaston A. Brouwer, Jonathan Joe, Abby A. Noble, and Matt Noble, Problems on the Triangular Lattice, arXiv:2405.12321 [math.CO], 2024. Mentions this sequence.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
- Paul Erdős, Norbert Kaufman, R. H. Koch, and Arthur Rosenthal, E750 (Interior diagonal points), Amer. Math. Monthly, 54 (Jun, 1947), p. 344.
- Th. Grüner, A. Kerber, R. Laue, and M. Meringer, Mathematics for Combinatorial Chemistry.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 4.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 254.
- Milan Janjic, Two Enumerative Functions.
- Peter Kagey, A Proof Without Words: Triangles in the Triangular Grid, arXiv:2211.00186 [math.HO], 2022.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Iva Kodrnja and Helena Koncul, Polynomials vanishing on a basis of S_m(Gamma_0(N)), Glasnik Matematički (2024) Vol. 59, No. 79, 313-325. See p. 324.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 13, 15.
- Tim McDevitt and Kathryn Sutcliffe, A New Look at an Old Triangle Counting Problem. The Mathematics Teacher. Vol. 110, No. 6 (February 2017), pp. 470-474.
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Les Reid, Counting Triangles in an Array.
- Les Reid, Counting Triangles in an Array. [Cached copy]
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42.
- Kirill S. Shardakov and Vladimir P. Bubnov, Stochastic Model of a High-Loaded Monitoring System of Data Transmission Network, Selected Papers of the Models and Methods of Information Systems Research Workshop, CEUR Workshop Proceedings, (St. Petersburg, Russia, 2019), 29-34.
- Eric Weisstein's World of Mathematics, Composition.
- Eric Weisstein's World of Mathematics, Pentatope Number.
- Eric Weisstein's World of Mathematics, Pentatope.
- A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
- Index to sequences related to pyramidal numbers.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
- Index entries for sequences related to Benford's law.
Crossrefs
binomial(n, k): A161680 (k = 2), A000389 (k = 5), A000579 (k = 6), A000580 (k = 7), A000581 (k = 8), A000582 (k = 9).
Cf. A158824.
Cf. A006008 (Number of ways to color the faces (or vertices) of a regular tetrahedron with n colors when mirror images are counted as two).
Cf. A104712 (third column, k=4).
See A269747 for a 3-D analog.
Programs
-
GAP
A000332 := List([1..10^2], n -> Binomial(n, 4)); # Muniru A Asiru, Oct 16 2017
-
Magma
[Binomial(n,4): n in [0..50]]; // Vincenzo Librandi, Nov 23 2014
-
Maple
A000332 := n->binomial(n,4); [seq(binomial(n,4), n=0..100)];
-
Mathematica
Table[ Binomial[n, 4], {n, 0, 45} ] (* corrected by Harvey P. Dale, Aug 22 2011 *) Table[(n-4)(n-3)(n-2)(n-1)/24, {n, 100}] (* Artur Jasinski, Dec 02 2007 *) LinearRecurrence[{5,-10,10,-5,1}, {0,0,0,0,1}, 45] (* Harvey P. Dale, Aug 22 2011 *) CoefficientList[Series[x^4 / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 23 2014 *)
-
PARI
a(n)=binomial(n,4);
-
Python
# Starts at a(3), i.e. computes n*(n+1)*(n+2)*(n+3)/24 # which is more in line with A000217 and A000292. def A000332(): x, y, z, u = 1, 1, 1, 1 yield 0 while True: yield x x, y, z, u = x + y + z + u + 1, y + z + u + 1, z + u + 1, u + 1 a = A000332(); print([next(a) for i in range(41)]) # Peter Luschny, Aug 03 2019
-
Python
print([n*(n-1)*(n-2)*(n-3)//24 for n in range(50)]) # Gennady Eremin, Feb 06 2022
Formula
a(n) = n*(n-1)*(n-2)*(n-3)/24.
G.f.: x^4/(1-x)^5. - Simon Plouffe in his 1992 dissertation
a(n) = n*a(n-1)/(n-4). - Benoit Cloitre, Apr 26 2003, R. J. Mathar, Jul 07 2009
a(n) = Sum_{k=1..n-3} Sum_{i=1..k} i*(i+1)/2. - Benoit Cloitre, Jun 15 2003
Convolution of natural numbers {1, 2, 3, 4, ...} and A000217, the triangular numbers {1, 3, 6, 10, ...}. - Jon Perry, Jun 25 2003
a(n) = A110555(n+1,4). - Reinhard Zumkeller, Jul 27 2005
a(n+1) = ((n^5-(n-1)^5) - (n^3-(n-1)^3))/24 - (n^5-(n-1)^5-1)/30; a(n) = A006322(n-2)-A006325(n-1). - Xavier Acloque, Oct 20 2003; R. J. Mathar, Jul 07 2009
a(4*n+2) = Pyr(n+4, 4*n+2) where the polygonal pyramidal numbers are defined for integers A>2 and B>=0 by Pyr(A, B) = B-th A-gonal pyramid number = ((A-2)*B^3 + 3*B^2 - (A-5)*B)/6; For all positive integers i and the pentagonal number function P(x) = x*(3*x-1)/2: a(3*i-2) = P(P(i)) and a(3*i-1) = P(P(i) + i); 1 + 24*a(n) = (n^2 + 3*n + 1)^2. - Jonathan Vos Post, Nov 15 2004
First differences of A000389(n). - Alexander Adamchuk, Dec 19 2004
For n > 3, the sum of the first n-2 tetrahedral numbers (A000292). - Martin Steven McCormick (mathseq(AT)wazer.net), Apr 06 2005 [Corrected by Doug Bell, Jun 25 2017]
Starting (1, 5, 15, 35, ...), = binomial transform of [1, 4, 6, 4, 1, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
Sum_{n>=4} 1/a(n) = 4/3, from the Taylor expansion of (1-x)^3*log(1-x) in the limit x->1. - R. J. Mathar, Jan 27 2009
A034263(n) = (n+1)*a(n+4) - Sum_{i=0..n+3} a(i). Also A132458(n) = a(n)^2 - a(n-1)^2 for n>0. - Bruno Berselli, Dec 29 2010
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=1. - Harvey P. Dale, Aug 22 2011
a(n) = (binomial(n-1,2)^2 - binomial(n-1,2))/6. - Gary Detlefs, Nov 20 2011
a(n) = Sum_{k=1..n-2} Sum_{i=1..k} i*(n-k-2). - Wesley Ivan Hurt, Sep 25 2013
a(n) = (A000217(A000217(n-2) - 1))/3 = ((((n-2)^2 + (n-2))/2)^2 - (((n-2)^2 + (n-2))/2))/(2*3). - Raphie Frank, Jan 16 2014
Sum_{n>=0} a(n)/n! = e/24. Sum_{n>=3} a(n)/(n-3)! = 73*e/24. See A067764 regarding the second ratio. - Richard R. Forberg, Dec 26 2013
Sum_{n>=4} (-1)^(n+1)/a(n) = 32*log(2) - 64/3 = A242023 = 0.847376444589... . - Richard R. Forberg, Aug 11 2014
4/(Sum_{n>=m} 1/a(n)) = A027480(m-3), for m>=4. - Richard R. Forberg, Aug 12 2014
E.g.f.: x^4*exp(x)/24. - Robert Israel, Nov 23 2014
a(n+3) = C(n,1) + 3*C(n,2) + 3*C(n,3) + C(n,4). Each term indicates the number of ways to use n colors to color a tetrahedron with exactly 1, 2, 3, or 4 colors.
a(n) = A080852(1,n-4). - R. J. Mathar, Jul 28 2016
From Gary W. Adamson, Feb 06 2017: (Start)
G.f.: Starting (1, 5, 14, ...), x/(1-x)^5 can be written
as (x * r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = (1+x)^5;
as (x * r(x) * r(x^3) * r(x^9) * r(x^27) * ...) where r(x) = (1+x+x^2)^5;
as (x * r(x) * r(x^4) * r(x^16) * r(x^64) * ...) where r(x) = (1+x+x^2+x^3)^5;
... (as a conjectured infinite set). (End)
From Robert A. Russell, Jan 22 2020: (Start)
a(n) = A007318(n,4).
a(n+3) = A325000(3,n). (End)
Product_{n>=5} (1 - 1/a(n)) = cosh(sqrt(15)*Pi/2)/(100*Pi). - Amiram Eldar, Jan 21 2021
Extensions
Some formulas that referred to another offset corrected by R. J. Mathar, Jul 07 2009
Comments