A000384 Hexagonal numbers: a(n) = n*(2*n-1).
0, 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 3003, 3160, 3321, 3486, 3655, 3828, 4005, 4186, 4371, 4560
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 38.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 53-54, 129-130, 132.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 21.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 122-123.
Links
- Daniel Mondot, Table of n, a(n) for n = 0..10000 (first 1000 terms by T. D. Noe)
- C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
- Elena Deza and Michel Deza, Figurate Numbers: presentation of a book, 3rd Montreal-Toronto Workshop in Number Theory, October 7-9, 2011.
- Anicius Manlius Severinus Boethius, De institutione arithmetica, Book 2, section 15.
- Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, The Ramanujan Journal, October 2011, 26:109. DOI: 10.1007/s11139-011-9325-y.
- Cesar Ceballos and Viviane Pons, The s-weak order and s-permutahedra II: The combinatorial complex of pure intervals, arXiv:2309.14261 [math.CO], 2023. See p. 41.
- Paul Cooijmans, Odds.
- Tom Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras.
- Olivier Danvy, Summa Summarum: Moessner's Theorem without Dynamic Programming, arXiv:2412.03127 [cs.DM], 2024. See p. 33.
- Tomislav Došlić and Luka Podrug, Sweet division problems: from chocolate bars to honeycomb strips and back, arXiv:2304.12121 [math.CO], 2023.
- Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 32.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 340.
- Milan Janjic, Two Enumerative Functions.
- Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
- Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Peter D. Loly and Ian D. Cameron, Frierson's 1907 Parameterization of Compound Magic Squares Extended to Orders 3^L, L = 1, 2, 3, ..., with Information Entropy, arXiv:2008.11020 [math.HO], 2020.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Omar E. Pol, Illustration of initial terms of A000217, A000290, A000326, A000384, A000566, A000567.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- J. C. Su, On some properties of two simultaneous polygonal sequences, JIS 10 (2007) 07.10.4, example 4.6.
- Leo Tavares, Illustration: Rectangles.
- A. J. Turner and J. F. Miller, Recurrent Cartesian Genetic Programming Applied to Famous Mathematical Sequences, 2014.
- Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Dominating Set.
- Eric Weisstein's World of Mathematics, Hexagonal Number.
- Eric Weisstein's World of Mathematics, Maximal Irredundant Set.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008), pp. 45-52.
- Index to sequences related to polygonal numbers.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Haskell
a000384 n = n * (2 * n - 1) a000384_list = scanl (+) 0 a016813_list -- Reinhard Zumkeller, Dec 16 2012
-
Maple
A000384:=n->n*(2*n-1); seq(A000384(k), k=0..100); # Wesley Ivan Hurt, Sep 27 2013
-
Mathematica
Table[n*(2 n - 1), {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *) LinearRecurrence[{3, -3, 1}, {0, 1, 6}, 50] (* Harvey P. Dale, Sep 10 2015 *) Join[{0}, Accumulate[Range[1, 312, 4]]] (* Harvey P. Dale, Mar 26 2016 *) (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[6], n], {n, 0, 48}] (* Arkadiusz Wesolowski, Aug 27 2016 *) PolygonalNumber[6, Range[0, 20]] (* Eric W. Weisstein, Aug 17 2017 *) CoefficientList[Series[x*(1 + 3*x)/(1 - x)^3 , {x, 0, 100}], x] (* Stefano Spezia, Sep 02 2018 *)
-
PARI
a(n)=n*(2*n-1)
-
PARI
a(n) = binomial(2*n,2) \\ Altug Alkan, Oct 06 2015
-
Python
# Intended to compute the initial segment of the sequence, not isolated terms. def aList(): x, y = 1, 1 yield 0 while True: yield x x, y = x + y + 4, y + 4 A000384 = aList() print([next(A000384) for i in range(49)]) # Peter Luschny, Aug 04 2019
Formula
a(n) = Sum_{k=1..n} tan^2((k - 1/2)*Pi/(2n)). - Ignacio Larrosa Cañestro, Apr 17 2001
E.g.f.: exp(x)*(x+2x^2). - Paul Barry, Jun 09 2003
G.f.: x*(1+3*x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation, dropping the initial zero
a(n) = 4*A000217(n-1) + n. - Lekraj Beedassy, Jun 03 2004
a(n) = right term of M^n * [1,0,0], where M = the 3 X 3 matrix [1,0,0; 1,1,0; 1,4,1]. Example: a(5) = 45 since M^5 *[1,0,0] = [1,5,45]. - Gary W. Adamson, Dec 24 2006
Row sums of triangle A131914. - Gary W. Adamson, Jul 27 2007
Row sums of n-th row, triangle A134234 starting (1, 6, 15, 28, ...). - Gary W. Adamson, Oct 14 2007
Starting with offset 1, = binomial transform of [1, 5, 4, 0, 0, 0, ...]. Also, A004736 * [1, 4, 4, 4, ...]. - Gary W. Adamson, Oct 25 2007
a(n)^2 + (a(n)+1)^2 + ... + (a(n)+n-1)^2 = (a(n)+n+1)^2 + ... + (a(n)+2n-1)^2 + n^2; e.g., 6^2 + 7^2 = 9^2 + 2^2; 28^2 + 29^2 + 30^2 + 31^2 = 33^2 + 34^2 + 35^2 + 4^2. - Charlie Marion, Nov 10 2007
a(n) = binomial(n+1,2) + 3*binomial(n,2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=6. - Jaume Oliver Lafont, Dec 02 2008
a(n) = T(n) + 3*T(n-1), where T(n) is the n-th triangular number. - Vincenzo Librandi, Nov 10 2010
a(n) = a(n-1) + 4*n - 3 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
a(n) = 2*a(n-1) - a(n-2) + 4. - Ant King, Aug 26 2011
a(n+1) = A045896(2*n). - Reinhard Zumkeller, Dec 12 2011
a(2^n) = 2^(2n+1) - 2^n. - Ivan N. Ianakiev, Apr 13 2013
a(n) = binomial(2*n,2). - Gary Detlefs, Jul 28 2013
a(n+1) = A128918(2*n+1). - Reinhard Zumkeller, Oct 13 2013
a(4*a(n)+7*n+1) = a(4*a(n)+7*n) + a(4*n+1). - Vladimir Shevelev, Jan 24 2014
Sum_{n>=1} 1/a(n) = 2*log(2) = 1.38629436111989...= A016627. - Vaclav Kotesovec, Apr 27 2016
Sum_{n>=1} (-1)^n/a(n) = log(2) - Pi/2. - Vaclav Kotesovec, Apr 20 2018
a(n+1) = trinomial(2*n+1, 2) = trinomial(2*n+1, 4*n), for n >= 0, with the trinomial irregular triangle A027907. a(n+1) = (n+1)*(2*n+1) = (1/Pi)*Integral_{x=0..2} (1/sqrt(4 - x^2))*(x^2 - 1)^(2*n+1)*R(4*n-2, x) with the R polynomial coefficients given in A127672. [Comtet, p. 77, the integral formula for q=3, n -> 2*n+1, k = 2, rewritten with x = 2*cos(phi)]. - Wolfdieter Lang, Apr 19 2018
Sum_{n>=1} 1/(a(n))^2 = 2*Pi^2/3-8*log(2) = 1.0345588... = 10*A182448 - A257872. - R. J. Mathar, Sep 12 2019
Product_{n>=2} (1 - 1/a(n)) = 2/3. - Amiram Eldar, Jan 21 2021
a(n) = floor(Sum_{k=(n-1)^2..n^2} sqrt(k)), for n >= 1. - Amrit Awasthi, Jun 13 2021
a(n+1) = A084265(2*n), n>=0. - Hartmut F. W. Hoft, Feb 02 2022
Extensions
Partially edited by Joerg Arndt, Mar 11 2010
Comments