A001006 Motzkin numbers: number of ways of drawing any number of nonintersecting chords joining n (labeled) points on a circle.
1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, 310572, 853467, 2356779, 6536382, 18199284, 50852019, 142547559, 400763223, 1129760415, 3192727797, 9043402501, 25669818476, 73007772802, 208023278209, 593742784829, 1697385471211
Offset: 0
Examples
G.f.: 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 51*x^6 + 127*x^7 + 323*x^8 + ... . The 21 Motzkin-paths of length 5: UUDDF, UUDFD, UUFDD, UDUDF, UDUFD, UDFUD, UDFFF, UFUDD, UFDUD, UFDFF, UFFDF, UFFFD, FUUDD, FUDUD, FUDFF, FUFDF, FUFFD, FFUDF, FFUFD, FFFUD, FFFFF.
References
- F. Bergeron, L. Favreau, and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, vol. 139, no. 1-3 (1995), 463-468.
- F. R. Bernhart, Catalan, Motzkin, and Riordan numbers, Discr. Math., 204 (1999) 73-112.
- R. Bojicic and M. D. Petkovic, Orthogonal Polynomials Approach to the Hankel Transform of Sequences Based on Motzkin Numbers, Bulletin of the Malaysian Mathematical Sciences, 2015, doi:10.1007/s40840-015-0249-3.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pp. 24, 298, 618, 912.
- A. J. Bu, Automated counting of restricted Motzkin paths, Enumerative Combinatorics and Applications, ECA 1:2 (2021) Article S2R12.
- Naiomi Cameron, JE McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
- L. Carlitz, Solution of certain recurrences, SIAM J. Appl. Math., 17 (1969), 251-259.
- Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
- D. E. Davenport, L. W. Shapiro, and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33.
- E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
- T. Doslic, D. Svrtan, and D. Veljan, Enumerative aspects of secondary structures, Discr. Math., 285 (2004), 67-82.
- Tomislav Doslic and Darko Veljan, Logarithmic behavior of some combinatorial sequences. Discrete Math. 308 (2008), no. 11, 2182-2212. MR2404544 (2009j:05019).
- S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8, 1998, 169-191.
- M. Dziemianczuk, "Enumerations of plane trees with multiple edges and Raney lattice paths." Discrete Mathematics 337 (2014): 9-24.
- Wenjie Fang, A partial order on Motzkin paths, Discrete Math., 343 (2020), #111802.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (5.2.10).
- N. S. S. Gu, N. Y. Li, and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- Kris Hatch, Presentation of the Motzkin Monoid, Senior Thesis, Univ. Cal. Santa Barbara, 2012; http://ccs.math.ucsb.edu/senior-thesis/Kris-Hatch.pdf.
- V. Jelinek, Toufik Mansour, and M. Shattuck, On multiple pattern avoiding set partitions, Advances in Applied Mathematics Volume 50, Issue 2, February 2013, pp. 292-326.
- Hana Kim and R. P. Stanley, A refined enumeration of hex trees and related polynomials, http://www-math.mit.edu/~rstan/papers/hextrees.pdf, Preprint 2015.
- S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. See p. 399 Table A.7.
- A. Kuznetsov et al., Trees associated with the Motzkin numbers, J. Combin. Theory, A 76 (1996), 145-147.
- T. Lengyel, On divisibility properties of some differences of Motzkin numbers, Annales Mathematicae et Informaticae, 41 (2013) pp. 121-136.
- W. A. Lorenz, Y. Ponty, and P. Clote, Asymptotics of RNA Shapes, Journal of Computational Biology. 2008, 15(1): 31-63. doi:10.1089/cmb.2006.0153.
- Piera Manara and Claudio Perelli Cippo, The fine structure of 4321 avoiding involutions and 321 avoiding involutions, PU. M. A. Vol. 22 (2011), 227-238; http://www.mat.unisi.it/newsito/puma/public_html/22_2/manara_perelli-cippo.pdf.
- Toufik Mansour, Restricted 1-3-2 permutations and generalized patterns, Annals of Combin., 6 (2002), 65-76.
- Toufik Mansour, Matthias Schork, and Mark Shattuck, Catalan numbers and pattern restricted set partitions. Discrete Math. 312(2012), no. 20, 2979-2991. MR2956089.
- T. S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc., 54 (1948), 352-360.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
- J. Riordan, Enumeration of plane trees by branches and endpoints, J. Combin. Theory, A 23 (1975), 214-222.
- A. Sapounakis et al., Ordered trees and the inorder transversal, Disc. Math., 306 (2006), 1732-1741.
- A. Sapounakis, I. Tasoulas, and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- E. Schroeder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376.
- L. W. Shapiro et al., The Riordan group, Discrete Applied Math., 34 (1991), 229-239.
- Mark Shattuck, On the zeros of some polynomials with combinatorial coefficients, Annales Mathematicae et Informaticae, 42 (2013) pp. 93-101, http://ami.ektf.hu.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.37. Also Problem 7.16(b), y_3(n).
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
- Z.-W. Sun, Conjectures involving arithmetical sequences, Number Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H.-Z. Li and J.-Y. Liu), Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258; http://math.nju.edu.cn/~zwsun/142p.pdf.
- Chenying Wang, Piotr Miska, and István Mező, "The r-derangement numbers." Discrete Mathematics 340.7 (2017): 1681-1692.
- Ying Wang and Guoce Xin, A Classification of Motzkin Numbers Modulo 8, Electron. J. Combin., 25(1) (2018), #P1.54.
- Wen-Jin Woan, A combinatorial proof of a recursive relation of the Motzkin sequence by lattice paths. Fibonacci Quart. 40 (2002), no. 1, 3-8.
- Wen-jin Woan, A Recursive Relation for Weighted Motzkin Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.6.
- F. Yano and H. Yoshida, Some set partition statistics in non-crossing partitions and generating functions, Discr. Math., 307 (2007), 3147-3160.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..2106 (first 501 terms from N. J. A. Sloane)
- M. Abrate, S. Barbero, U. Cerruti, and N. Murru, Fixed Sequences for a Generalization of the Binomial Interpolated Operator and for some Other Operators, J. Int. Seq. 14 (2011) # 11.8.1.
- M. Aigner, Motzkin Numbers, Europ. J. Comb. 19 (1998), 663-675.
- M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
- J. L. Arregui, Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles, arXiv:math/0109108 [math.NT], 2001.
- Marcello Artioli, Giuseppe Dattoli, Silvia Licciardi, and Simonetta Pagnutti, Motzkin Numbers: an Operational Point of View, arXiv:1703.07262 [math.CO], 2017.
- Andrei Asinowski, Axel Bacher, Cyril Banderier, and Bernhard Gittenberger, Analytic Combinatorics of Lattice Paths with Forbidden Patterns: Enumerative Aspects, in International Conference on Language and Automata Theory and Applications, S. Klein, C. Martín-Vide, D. Shapira (eds), Springer, Cham, pp 195-206, 2018.
- Andrei Asinowski, Axel Bacher, Cyril Banderier, and Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- A. Asinowski and G. Rote, Point sets with many non-crossing matchings, arXiv preprint arXiv:1502.04925 [cs.CG], 2015.
- Axel Bacher, Improving the Florentine algorithms: recovering algorithms for Motzkin and Schröder paths, arXiv:1802.06030 [cs.DS], 2018.
- C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, and D. Gouyou-Beauchamps, Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
- Elena Barcucci, Alberto Del Lungo, Elisa Pergola, and Renzo Pinzani, A methodology for plane tree enumeration, Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand, 1995). Discrete Math. 180 (1998), no. 1-3, 45--64. MR1603693 (98m:05090).
- E. Barcucci et al., From Motzkin to Catalan Permutations, Discr. Math., 217 (2000), 33-49.
- E. Barcucci, R. Pinzani and R. Sprugnoli, The Motzkin family, P.U.M.A. Ser. A, Vol. 2, 1991, No. 3-4, pp. 249-279.
- Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Jean-Luc Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol 17, No 3 (2016).
- Jean-Luc Baril, David Bevan, and Sergey Kirgizov, Bijections between directed animals, multisets and Grand-Dyck paths, arXiv:1906.11870 [math.CO], 2019.
- Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, 2016.
- Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Discrete Mathematics, 340(10) (2017), 2550-2558.
- Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck paths with a first return decomposition constrained by height, 2017.
- Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck paths with a first return decomposition constrained by height, Discrete Mathematics, 341(6) (2018), 1620-1628.
- Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Motzkin paths with a restricted first return decomposition, Integers (2019) Vol. 19, A46.
- Jean-Luc Baril, Sergey Kirgizov, José L. Ramírez, and Diego Villamizar, The Combinatorics of Motzkin Polyominoes, arXiv:2401.06228 [math.CO], 2024. See pages 1 and 7.
- Jean-Luc Baril, Toufik Mansour, and A. Petrossian, Equivalence classes of permutations modulo excedances, 2014.
- Jean-Luc Baril and J.-M. Pallo, Motzkin subposet and Motzkin geodesics in Tamari lattices, 2013.
- Jean-Luc Baril, and Jean-Marcel Pallo, A Motzkin filter in the Tamari lattice, Discrete Mathematics 338(8) (2015), 1370-1378.
- Jean-Luc Baril and A. Petrossian, Equivalence classes of Dyck paths modulo some statistics, 2004.
- Marilena Barnabei, Flavio Bonetti, and Niccolò Castronuovo, Motzkin and Catalan Tunnel Polynomials, J. Int. Seq., Vol. 21 (2018), Article 18.8.8.
- Marilena Barnabei, Flavio Bonetti, and Matteo Silimbani, Restricted involutions and Motzkin paths, Advances in Applied Mathematics 47 (2011), 102-115.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, 8 (2005), #05.4.5.
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009), #09.7.6
- Paul Barry, Generalized Catalan Numbers, Hankel Transforms and Somos-4 Sequences, J. Int. Seq. 13 (2010), #10.7.2.
- Paul Barry, On sequences with {-1, 0, 1} Hankel transforms, arXiv:1205.2565 [math.CO], 2012.
- Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, 15 (2012), #12.8.2.
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, 15 (2012), #12.8.7.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., 22 (2019), #19.5.8.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- A. M. Baxter and L. K. Pudwell, Ascent sequences avoiding pairs of patterns, preprint, 2014.
- A. M. Baxter and L. K. Pudwell, Ascent sequences avoiding pairs of patterns, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.58.
- Christian Bean, Finding structure in permutation sets, Ph.D. Dissertation, Reykjavík University, School of Computer Science, 2018.
- Christian Bean, A. Claesson, and H. Ulfarsson, Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3, arXiv:1512.03226 [math.CO], 2015.
- Jan Bok, Graph-indexed random walks on special classes of graphs, arXiv:1801.05498 [math.CO], 2018.
- Miklós Bóna, Cheyne Homberger, Jay Pantone, and Vince Vatter, Pattern-avoiding involutions: exact and asymptotic enumeration, arxiv:1310.7003 [math.CO], 2013.
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, Mar 28 2013.
- Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d'Informatique de Paris Nord, Université Paris 13, December 2017.
- Alin Bostan and Manuel Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2009.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- Henry Bottomley, Illustration of initial terms.
- Rob Burns, Structure and asymptotics for Motzkin numbers modulo primes using automata, arXiv:1703.00826 [math.NT], 2017.
- Alexander Burstein and J. Pantone, Two examples of unbalanced Wilf-equivalence, arXiv:1402.3842 [math.CO], 2014.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- N. T. Cameron, Random walks, trees and extensions of Riordan group techniques, Dissertation, Howard University, 2002.
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, 8 (2005), #05.3.7.
- Giulio Cerbai, Anders Claesson, Luca Ferrari, and Einar Steingrímsson, Sorting with pattern-avoiding stacks: the 132-machine, arXiv:2006.05692 [math.CO], 2020.
- Gi-Sang Cheon, S.-T. Jin, and L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Volume 491, 15 February 2016, Pages 123-137.
- J. Cigler, Some nice Hankel determinants. arXiv:1109.1449 [math.CO], 2011.
- Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
- J. B. Cosgrave, The Gauss-Factorial Motzkin connection (Maple worksheet, change suffix to .mw).
- R. De Castro, A. L. Ramírez, and J. L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv:1310.2449 [cs.DM], 2013.
- J. Cigler, Hankel determinants of some polynomial sequences, preprint, 2012.
- Colin Defant, Motzkin intervals and valid hook configurations, arXiv:1904.10451 [math.CO], 2019.
- Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020.
- C. Defant and K. Zheng, Stack-Sorting with Consecutive-Pattern-Avoiding Stacks, arXiv:2008.12297 [math.CO], 2020.
- E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
- R. M. Dickau, Delannoy and Motzkin Numbers.
- R. M. Dickau, The 9 paths in a 4 X 4 grid.
- Yun Ding and Rosena R. X. Du, Counting Humps in Motzkin paths, arXiv preprint arXiv:1109.2661 [math.CO], 2011.
- Filippo Disanto and Thomas Wiehe, Some instances of a sub-permutation problem on pattern avoiding permutations, arXiv:1210.6908 [math.CO], 2012.
- I. Dolinka, J. East, A. Evangelou, D. FitzGerald, and N. Ham, Idempotent Statistics of the Motzkin and Jones Monoids, arXiv:1507.04838 [math.CO], 2015.
- I. Dolinka, J. East, and R. D. Gray, Motzkin monoids and partial Brauer monoids, arXiv:1512.02279 [math.GR], 2015.
- Robert Donaghey, Restricted plane tree representations for four Motzkin-Catalan equations, J. Combin. Theory, Series B, Vol. 22, No. 2 (1977), pp. 114-121.
- Robert Donaghey, Automorphisms on Catalan trees and bracketings, Journal of Combinatorial Theory, Series B, Vol. 29, No. 1 (August 1980), pp. 75-90.
- Robert Donaghey and Louis W. Shapiro, Motzkin numbers, J. Combin. Theory, Series A, Vol. 23, No. 3 (1977), pp. 291-301.
- Robert W. Donley Jr, Binomial arrays and generalized Vandermonde identities, arXiv:1905.01525 [math.CO], 2019.
- Ivana Đurđev, Igor Dolinka, and James East, Sandwich semigroups in diagram categories, arXiv:1910.10286 [math.GR], 2019.
- E. S. Egge, Restricted 3412-Avoiding Involutions: Continued Fractions, Chebyshev Polynomials and Enumerations, arXiv:math/0307050 [math.CO], 2003, sec. 8.
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, 2017.
- Gennady Eremin, Generating function for Naturalized Series: The case of Ordered Motzkin Words, arXiv:2002.08067 [math.CO], 2020.
- Gennady Eremin, Naturalized bracket row and Motzkin triangle, arXiv:2004.09866 [math.CO], 2020.
- Gennady Eremin, Walking in the OEIS: From Motzkin numbers to Fibonacci numbers. The "shadows" of Motzkin numbers, arXiv:2108.10676 [math.CO], 2021.
- Jackson Evoniuk, Steven Klee, and Van Magnan, Enumerating Minimal Length Lattice Paths, J. Int. Seq., 21 (2018), #18.3.6.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see pages 68 and 81.
- Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, 21 (2018), #18.1.2.
- Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018. Also Discrete Mathematics (2019), Article 111705. doi:10.1016/j.disc.2019.111705
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- Samuele Giraudo, The combinator M and the Mockingbird lattice, arXiv:2204.03586 [math.CO], 2022.
- Taras Goy and Mark Shattuck, Determinant identities for the Catalan, Motzkin and Schröder numbers, Art Discrete Appl. Math. Vol. 7 (2024), #P1.09.
- Taras Goy and Mark Shattuck, Determinants of some Hessenberg-Toeplitz matrices with Motzkin number entries, J. Integer Seq., 26 (2023), Art. 23.3.4.
- Nils Haug, T. Prellberg, and G. Siudem, Scaling in area-weighted generalized Motzkin paths, arXiv:1605.09643 [cond-mat.stat-mech], 2016.
- Nickolas Hein and Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015-2016.
- Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
- Anders Hyllengren, Letter to N. J. A. Sloane, Oct 04 1985
- Anders Hyllengren, Four integer sequences, Oct 04 1985. Observes essentially that A000984 and A002426 are inverse binomial transforms of each other, as are A000108 and A001006.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 50
- Manuel Kauers and Doron Zeilberger, Counting Standard Young Tableaux With Restricted Runs, arXiv:2006.10205 [math.CO], 2020.
- D. E. Knuth, Letter to L. W. Shapiro, R. K. Guy. N. J. A. Sloane, R. P. Stanley, H. Wilf regarding A001006 and A005043, Jan 18, 1989.
- Nadav Kohen, Density and Symmetry in the Generalized Motzkin Numbers mod p, arXiv:2411.03681 [math.CO], 2024.
- Dmitry V. Kruchinin and Vladimir V. Kruchinin, A Generating Function for the Diagonal T_{2n,n} in Triangles, Journal of Integer Sequences, 18 (2015), #15.4.6.
- Marie-Louise Lackner and M. Wallner, An invitation to analytic combinatorics and lattice path counting, preprint, 2015.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- W. A. Lorenz, Y. Ponty, and P. Clote, Asymptotics of RNA Shapes, Journal of Computational Biology 15(1) (2008), 31-63.
- K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015.
- Toufik Mansour, Statistics on Dyck Paths, Journal of Integer Sequences, 9 (2006), #06.1.5.
- Toufik Mansour, Restricted 1-3-2 permutations and generalized patterns, arXiv:math/0110039 [math.CO], 2001.
- Toufik Mansour and Mark Shattuck, Enumeration of Catalan and smooth words according to capacity, Integers (2025) Vol. 25, Art. No. A5. See p. 22.
- V. Mazorchuk and B. Steinberg, Double Catalan monoids, arXiv:1105.5313 [math.GR], 2011.
- Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
- Cam McLeman and Erin McNicholas, Graph Invertibility, arXiv:1108.3588 [math.CO], 2011.
- Zhousheng Mei and Suijie Wang, Pattern Avoidance of Generalized Permutations, arXiv:1804.06265 [math.CO], 2018.
- D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math., 49 (1997), 301-320.
- T. Motzkin, The hypersurface cross ratio, Bull. Amer. Math. Soc., 51 (1945), 976-984.
- Heinrich Niederhausen, Inverses of Motzkin and Schroeder Paths, arXiv:1105.3713 [math.CO], 2011.
- J.-C. Novelli and J.-Y. Thibon, Noncommutative Symmetric Functions and Lagrange Inversion, arXiv:math/0512570 [math.CO], 2005-2006.
- William P. Orrick, Remark on parentheses patterns of fully parenthesized expressions, 2024.
- Roy Oste and Joris Van der Jeugt, Motzkin paths, Motzkin polynomials and recurrence relations, The Electronic Journal of Combinatorics, 22(2) (2015), #P2.8.
- Ran Pan, Dun Qiu, and Jeffrey Remmel, Counting Consecutive Pattern Matches in S_n(132) and S_n(123), arXiv:1809.01384 [math.CO], 2018.
- Ville H. Pettersson, Enumerating Hamiltonian Cycles, The Electronic Journal of Combinatorics, 21(4) (2014), #P4.7.
- Simon Plouffe, The first 4431 terms.
- Helmut Prodinger, Deutsch paths and their enumeration, arXiv:2003.01918 [math.CO], 2020.
- Helmut Prodinger, Cornerless, peakless, valleyless Motzkin paths (regular and skew) and applications to bargraphs, arXiv:2501.13645 [math.CO], 2025. See p. 8.
- L. Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012.
- L. Pudwell, A. Baxter, Ascent sequences avoiding pairs of patterns, 2014
- L. Pudwell, Pattern-avoiding ascent sequences, Slides from a talk, 2015
- José L. Ramírez, The Pascal Rhombus and the Generalized Grand Motzkin Paths, arXiv:1511.04577 [math.CO], 2015.
- J. L. Ramírez and V. F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38.
- Alon Regev, Amitai Regev, and Doron Zeilberger, Identities in character tables of S_n, arXiv:1507.03499 [math.CO], 2015.
- John Riordan, Letter to N. J. A. Sloane, 1974.
- Dan Romik, Some formulas for the central trinomial and Motzkin numbers, J. Integer Seqs., 6 (2003).
- E. Rowland and R. Yassawi, Automatic congruences for diagonals of rational functions, arXiv:1310.8635 [math.NT], 2013.
- E. Rowland and D. Zeilberger, A Case Study in Meta-AUTOMATION: AUTOMATIC Generation of Congruence AUTOMATA For Combinatorial Sequences, arXiv:1311.4776 [math.CO], 2013.
- E. Royer, Interprétation combinatoire des moments négatifs des valeurs de fonctions L au bord de la bande critique, Ann. Sci. Ecole Norm. Sup. (4) 36 (2003), no. 4, 601-620.
- Martin Rubey and Christian Stump, Double deficiencies of Dyck paths via the Billey-Jockusch-Stanley bijection, arXiv:1708.05092 [math.CO], 2017.
- J. Salas and A. D. Sokal, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial, J. Stat. Phys. 135 (2009) 279-373, arXiv preprint, arXiv:0711.1738 [cond-mat.stat-mech], 2007-2009. Mentions this sequence.
- A. Sapounakis and P. Tsikouras, On k-colored Motzkin words, Journal of Integer Sequences, 7 (2004), #04.2.5.
- E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376. [Annotated scanned copy]
- Paolo Serafini, An Iterative Scheme to Compute Size Probabilities in Random Graphs and Branching Processes, Scientific Programming (2018), Article ID 3791075.
- N. J. A. Sloane, Illustration of initial terms.
- N. J. A. Sloane, Classic Sequences.
- N. J. A. Sloane, An Application of the OEIS (Vugraph from a talk about the OEIS).
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, pp. 1, 3.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers. [Corrected annotated scanned copy]
- R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, 3 (2000), #00.1.
- Hua Sun and Yi Wang, A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers, J. Int. Seq. 17 (2014), #14.5.2
- Yidong Sun and Fei Ma, Minors of a Class of Riordan Arrays Related to Weighted Partial Motzkin Paths, arXiv:1305.2015 [math.CO], 2013.
- Zhi-Wei Sun, Conjectures involving arithmetical sequences, in: Number Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H. Li and J. Liu), Proc. 6th China-Japan Seminar (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258.
- L. Takacs, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (6).
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
- Paul Tarau, On logic programming representations of lambda terms: de Bruijn indices, compression, type inference, combinatorial generation, normalization, 2015.
- P. Tarau, A Logic Programming Playground for Lambda Terms, Combinators, Types and Tree-based Arithmetic Computations, arXiv:1507.06944 [cs.LO], 2015.
- Paul Tarau, A Hiking Trip Through the Orders of Magnitude: Deriving Efficient Generators for Closed Simply-Typed Lambda Terms and Normal Forms, arXiv preprint arXiv:1608.03912 [cs.PL], 2016.
- Jonas Wahl, Traces On Diagram Algebras I: Free Partition Quantum Groups, Random Lattice Paths And Random Walks On Trees, arXiv:2006.07312 [math.PR], 2020.
- Chen Wang and Zhi-Wei Sun, Congruences involving central trinomial coefficients, arXiv:1910.06850 [math.NT], 2019.
- Y. Wang and Z.-H. Zhang, Combinatorics of Generalized Motzkin Numbers, J. Int. Seq. 18 (2015), #15.2.4.
- Yi Wang and Bao-Xuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, arXiv preprint arXiv:1303.5595 [math.CO], 2013.
- Eric Weisstein's World of Mathematics, Motzkin Number.
- Wikipedia, Motzkin number.
- W.-J. Woan, Hankel Matrices and Lattice Paths, J. Integer Sequences, 4 (2001), #01.1.2.
- J. Y. X. Yang, M. X. X. Zhong, and R. D. P. Zhou, On the Enumeration of (s, s+ 1, s+2)-Core Partitions, arXiv:1406.2583 [math.CO], 2014.
- Huan Xiong, The number of simultaneous core partitions, arXiv:1409.7038 [math.CO], 2014.
- Yan X. Zhang, Four Variations on Graded Posets, arXiv:1508.00318 [math.CO], 2015.
- Yan Zhuang, A generalized Goulden-Jackson cluster method and lattice path enumeration, arXiv:1508.02793 [math.CO], 2015-2018; Discrete Mathematics 341.2 (2018): 358-379.
- Index entries for "core" sequences
Crossrefs
Cf. A026300, A005717, A020474, A001850, A004148. First column of A064191, A064189, A000108, A088615, A007971, A001405, A005817, A049401, A007579, A007578, A097862, A005773, A178515, A217275. First row of A064645.
Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
Programs
-
Haskell
a001006 n = a001006_list !! n a001006_list = zipWith (+) a005043_list $ tail a005043_list -- Reinhard Zumkeller, Jan 31 2012
-
Maple
# Three different Maple scripts for this sequence: A001006 := proc(n) add(binomial(n,2*k)*A000108(k),k=0..floor(n/2)) ; end proc: A001006 := proc(n) option remember; local k; if n <= 1 then 1 else procname(n-1) + add(procname(k)*procname(n-k-2),k=0..n-2); end if; end proc: # n -> [a(0),a(1),..,a(n)] A001006_list := proc(n) local w, m, j, i; w := proc(i,j,n) option remember; if min(i,j,n) < 0 or max(i,j) > n then 0 elif n = 0 then if i = 0 and j = 0 then 1 else 0 fi else w(i, j + 1, n - 1) + w(i - 1, j, n - 1) + w(i + 1, j - 1, n - 1) fi end: [seq( add( add( w(i, j, m), i = 0..m), j = 0..m), m = 0..n)] end: A001006_list(29); # Peter Luschny, May 21 2011
-
Mathematica
a[0] = 1; a[n_Integer] := a[n] = a[n - 1] + Sum[a[k] * a[n - 2 - k], {k, 0, n - 2}]; Array[a, 30] (* Second program: *) CoefficientList[Series[(1 - x - (1 - 2x - 3x^2)^(1/2))/(2x^2), {x, 0, 29}], x] (* Jean-François Alcover, Nov 29 2011 *) Table[Hypergeometric2F1[(1-n)/2, -n/2, 2, 4], {n,0,29}] (* Peter Luschny, May 15 2016 *) Table[GegenbauerC[n,-n-1,-1/2]/(n+1),{n,0,100}] (* Emanuele Munarini, Oct 20 2016 *) MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]]; Table[MotzkinNumber[n], {n, 0, 29}] (* Jean-François Alcover, Oct 27 2021 *)
-
Maxima
a[0]:1$ a[1]:1$ a[n]:=((2*n+1)*a[n-1]+(3*n-3)*a[n-2])/(n+2)$ makelist(a[n],n,0,12); /* Emanuele Munarini, Mar 02 2011 */
-
Maxima
M(n) := coeff(expand((1+x+x^2)^(n+1)),x^n)/(n+1); makelist(M(n),n,0,60); /* Emanuele Munarini, Apr 04 2012 */
-
Maxima
makelist(ultraspherical(n,-n-1,-1/2)/(n+1),n,0,12); /* Emanuele Munarini, Oct 20 2016 */
-
PARI
{a(n) = polcoeff( ( 1 - x - sqrt((1 - x)^2 - 4 * x^2 + x^3 * O(x^n))) / (2 * x^2), n)}; /* Michael Somos, Sep 25 2003 */
-
PARI
{a(n) = if( n<0, 0, n++; polcoeff( serreverse( x / (1 + x + x^2) + x * O(x^n)), n))}; /* Michael Somos, Sep 25 2003 */
-
PARI
{a(n) = if( n<0, 0, n! * polcoeff( exp(x + x * O(x^n)) * besseli(1, 2 * x + x * O(x^n)), n))}; /* Michael Somos, Sep 25 2003 */
-
Python
from gmpy2 import divexact A001006 = [1, 1] for n in range(2, 10**3): A001006.append(divexact(A001006[-1]*(2*n+1)+(3*n-3)*A001006[-2],n+2)) # Chai Wah Wu, Sep 01 2014
-
Python
def mot(): a, b, n = 0, 1, 1 while True: yield b//n n += 1 a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1)) A001006 = mot() print([next(A001006) for n in range(30)]) # Peter Luschny, May 16 2016
-
Python
# A simple generator of Motzkin-paths (see the first comment of David Callan). C = str.count def aGen(n: int): a = [""] for w in a: if len(w) == n: if C(w, "U") == C(w, "D"): yield w else: for j in "UDF": u = w + j if C(u, "U") >= C(u, "D"): a += [u] return a for n in range(6): MP = [w for w in aGen(n)]; print(len(MP), ":", MP) # Peter Luschny, Dec 03 2024
Formula
G.f.: A(x) = ( 1 - x - (1-2*x-3*x^2)^(1/2) ) / (2*x^2).
G.f. A(x) satisfies A(x) = 1 + x*A(x) + x^2*A(x)^2.
G.f.: F(x)/x where F(x) is the reversion of x/(1+x+x^2). - Joerg Arndt, Oct 23 2012
a(n) = (-1/2) Sum_{i+j = n+2, i >= 0, j >= 0} (-3)^i*C(1/2, i)*C(1/2, j).
a(n) = (3/2)^(n+2) * Sum_{k >= 1} 3^(-k) * Catalan(k-1) * binomial(k, n+2-k). [Doslic et al.]
a(n) ~ 3^(n+1)*sqrt(3)*(1 + 1/(16*n))/((2*n+3)*sqrt((n+2)*Pi)). [Barcucci, Pinzani and Sprugnoli]
Limit_{n->infinity} a(n)/a(n-1) = 3. [Aigner]
a(n+2) - a(n+1) = a(0)*a(n) + a(1)*a(n-1) + ... + a(n)*a(0). [Bernhart]
a(n) = (1/(n+1)) * Sum_{i} (n+1)!/(i!*(i+1)!*(n-2*i)!). [Bernhart]
From Len Smiley: (Start)
a(n) = (1/(n+1))*Sum_{k=0..ceiling((n+1)/2)} binomial(n+1, k)*binomial(n+1-k, k-1);
D-finite with recurrence: (n+2)*a(n) = (2*n+1)*a(n-1) + (3*n-3)*a(n-2). (End)
a(n) = Sum_{k=0..n} C(n, 2k)*A000108(k). - Paul Barry, Jul 18 2003
E.g.f.: exp(x)*BesselI(1, 2*x)/x. - Vladeta Jovovic, Aug 20 2003
The Hankel transform of this sequence gives A000012 = [1, 1, 1, 1, 1, 1, ...]. E.g., Det([1, 1, 2, 4; 1, 2, 4, 9; 2, 4, 9, 21; 4, 9, 21, 51]) = 1. - Philippe Deléham, Feb 23 2004
a(n) = (1/(n+1))*Sum_{j=0..floor(n/3)} (-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n). - Emeric Deutsch, Mar 13 2004
G.f.: A(x)=(1-y+y^2)/(1-y)^2 where (1+x)*(y^2-y)+x=0; A(x)=4*(1+x)/(1+x+sqrt(1-2*x-3*x^2))^2; a(n)=(3/4)*(1/2)^n*Sum_(k=0..2*n, 3^(n-k)*C(k)*C(k+1, n+1-k) ) + 0^n/4 [after Doslic et al.]. - Paul Barry, Feb 22 2005
G.f.: c(x^2/(1-x)^2)/(1-x), c(x) the g.f. of A000108. - Paul Barry, May 31 2006
Asymptotic formula: a(n) ~ sqrt(3/4/Pi)*3^(n+1)/n^(3/2). - Benoit Cloitre, Jan 25 2007
a(n) = A007971(n+2)/2. - Zerinvary Lajos, Feb 28 2007
a(n) = (1/(2*Pi))*Integral_{x=-1..3} x^n*sqrt((3-x)*(1+x)) is the moment representation. - Paul Barry, Sep 10 2007
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example, Phi([1]) is the Catalan numbers A000108. The present sequence is Phi([0,1,1]), see the 6th formula. - Gary W. Adamson, Oct 27 2008
G.f.: 1/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/.... (continued fraction). - Paul Barry, Dec 06 2008
G.f.: 1/(1-(x+x^2)/(1-x^2/(1-(x+x^2)/(1-x^2/(1-(x+x^2)/(1-x^2/(1-.... (continued fraction). - Paul Barry, Feb 08 2009
a(n) = (-3)^(1/2)/(6*(n+2)) * (-1)^n*(3*hypergeom([1/2, n+1],[1],4/3) - hypergeom([1/2, n+2],[1],4/3)). - Mark van Hoeij, Nov 12 2009
G.f.: 1/(1-x/(1-x/(1-x^2/(1-x/(1-x/(1-x^2/(1-x/(1-x/(1-x^2/(1-... (continued fraction). - Paul Barry, Mar 02 2010
G.f.: 1/(1-x/(1-x/(1+x-x/(1-x/(1+x-x/(1-x/(1+x-x/(1-x/(1+x-x/(1-... (continued fraction). - Paul Barry, Jan 26 2011 [Adds apparently a third '1' in front. - R. J. Mathar, Jan 29 2011]
Let A(x) be the g.f., then B(x)=1+x*A(x) = 1 + 1*x + 1*x^2 + 2*x^3 + 4*x^4 + 9*x^5 + ... = 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1+x) (continued fraction); more generally B(x)=C(x/(1+x)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
a(n) = (2/Pi)*Integral_{x=-1..1} (1+2*x)^n*sqrt(1-x^2). - Peter Luschny, Sep 11 2011
G.f.: (1-x-sqrt(1-2*x-3*(x^2)))/(2*(x^2)) = 1/2/(x^2)-1/2/x-1/2/(x^2)*G(0); G(k) = 1+(4*k-1)*x*(2+3*x)/(4*k+2-x*(2+3*x)*(4*k+1)*(4*k+2) /(x*(2+3*x)*(4*k+1)+(4*k+4)/G(k+1))), if -1 < x < 1/3; (continued fraction). - Sergei N. Gladkovskii, Dec 01 2011
G.f.: (1-x-sqrt(1-2*x-3*(x^2)))/(2*(x^2)) = (-1 + 1/G(0))/(2*x); G(k) = 1-2*x/(1+x/(1+x/(1-2*x/(1-x/(2-x/G(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, Dec 11 2011
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * ( -3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) unless n=-2. - Michael Somos, Mar 23 2012
a(n) = (-1)^n*hypergeometric([-n,3/2],[3],4). - Peter Luschny, Aug 15 2012
Representation in terms of special values of Jacobi polynomials P(n,alpha,beta,x), in Maple notation: a(n)= 2*(-1)^n*n!*JacobiP(n,2,-3/2-n,-7)/(n+2)!, n>=0. - Karol A. Penson, Jun 24 2013
G.f.: Q(0)/x - 1/x, where Q(k) = 1 + (4*k+1)*x/((1+x)*(k+1) - x*(1+x)*(2*k+2)*(4*k+3)/(x*(8*k+6)+(2*k+3)*(1+x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
Catalan(n+1) = Sum_{k=0..n} binomial(n,k)*a(k). E.g.: 42 = 1*1 + 4*1 + 6*2 + 4*4 + 1*9. - Doron Zeilberger, Mar 12 2015
G.f. A(x) with offset 1 satisfies: A(x)^2 = A( x^2/(1-2*x) ). - Paul D. Hanna, Nov 08 2015
a(n) = GegenbauerPoly(n,-n-1,-1/2)/(n+1). - Emanuele Munarini, Oct 20 2016
a(n) = a(n-1) + A002026(n-1). Number of Motzkin paths that start with an F step plus number of Motzkin paths that start with an U step. - R. J. Mathar, Jul 25 2017
G.f. A(x) satisfies A(x)*A(-x) = F(x^2), where F(x) is the g.f. of A168592. - Alexander Burstein, Oct 04 2017
G.f.: A(x) = exp(int((E(x)-1)/x dx)), where E(x) is the g.f. of A002426. Equivalently, E(x) = 1 + x*A'(x)/A(x). - Alexander Burstein, Oct 05 2017
G.f. A(x) satisfies: A(x) = Sum_{j>=0} x^j * Sum_{k=0..j} binomial(j,k)*x^k*A(x)^k. - Ilya Gutkovskiy, Apr 11 2019
From Gennady Eremin, May 08 2021: (Start)
G.f.: 2/(1 - x + sqrt(1-2*x-3*x^2)).
Revert transform of A049347 (after Michael Somos). - Gennady Eremin, Jun 11 2021
Sum_{n>=0} 1/a(n) = 2.941237337631025604300320152921013604885956025483079699366681494505960039781389... - Vaclav Kotesovec, Jun 17 2021
Let a(-1) = (1 - sqrt(-3))/2 and a(n) = a(-3-n)*(-3)^(n+3/2) for all n in Z. Then a(n) satisfies my previous formula relation from Mar 23 2012 now for all n in Z. - Michael Somos, Apr 17 2022
Let b(n) = 1 for n <= 1, otherwise b(n) = Sum_{k=2..n} b(k-1) * b(n-k), then a(n) = b(n+1) (conjecture). - Joerg Arndt, Jan 16 2023
From Peter Bala, Feb 03 2024: (Start)
G.f.: A(x) = 1/(1 + x)*c(x/(1 + x))^2 = 1 + x/(1 + x)*c(x/(1 + x))^3, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
A(x) = 1/(1 - 3*x)*c(-x/(1 -3*x))^2.
a(n+1) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n, k)*A000245(k+1).
a(n) = 3^n * Sum_{k = 0..n} (-3)^(-k)*binomial(n, k)*Catalan(k+1).
a(n) = 3^n * hypergeom([3/2, -n], [3], 4/3). (End)
G.f. A(x) satisfies A(x) = exp( x*A(x) + Integral x*A(x)/(1 - x^2*A(x)) dx ). - Paul D. Hanna, Mar 04 2024
a(n) = hypergeom([-n/2,1/2-n/2],[2],4). - Karol A. Penson, May 18 2025
Comments