A001405 a(n) = binomial(n, floor(n/2)).
1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620, 92378, 184756, 352716, 705432, 1352078, 2704156, 5200300, 10400600, 20058300, 40116600, 77558760, 155117520, 300540195, 601080390, 1166803110
Offset: 0
Examples
For n = 4, the a(4) = 6 distinct strings of length 4, each of which is a prefix of a string of balanced parentheses, are ((((, (((), (()(, ()((, ()(), and (()). - _Lee A. Newberg_, Apr 26 2010 There are a(5)=10 symmetric balanced strings of 5 pairs of parentheses: [ 1] ((((())))) [ 2] (((()()))) [ 3] ((()()())) [ 4] ((())(())) [ 5] (()()()()) [ 6] (()(())()) [ 7] (())()(()) [ 8] ()()()()() [ 9] ()((()))() [10] ()(()())() - _Joerg Arndt_, Jul 25 2011 G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 35*x^7 + 70*x^8 + ... The a(4)=6 binary 4-tuples such that the number of 1's in the even positions is the same as the number of 1's in the odd positions are 0000, 1100, 1001, 0110, 0011, 1111. - _Juan A. Olmos_, Dec 21 2017
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 135.
- K. Engel, Sperner Theory, Camb. Univ. Press, 1997; Theorem 1.1.1.
- P. Frankl, Extremal sets systems, Chap. 24 of R. L. Graham et al., eds, Handbook of Combinatorics, North-Holland.
- J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.16(b), p. 452.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0 to 200 computed by T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math., Series 55, Tenth Printing, 1972.
- M. Aigner, Enumeration via ballot numbers, Discrete Math., Vol. 308 (2008), pp. 2544-2563.
- A. Asinowski and G. Rote, Point sets with many non-crossing matchings, arXiv preprint arXiv:1502.04925 [cs.CG], 2015.
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics, Volume 332 (October 2014), Pages 45-54.
- Axel Bacher, Improving the Florentine algorithms: recovering algorithms for Motzkin and Schröder paths, arXiv:1802.06030 [cs.DS], 2018.
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics, Vol. 67 (2018), pp. 71-77.
- Taylor Ball, David Galvin, Katie Hyry, and Kyle Weingartner, Independent set and matching permutations, arXiv:1901.06579 [math.CO], 2019.
- C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
- Elena Barcucci, Antonio Bernini, and Renzo Pinzani, Exhaustive generation of positive lattice paths, Semantic Sensor Networks Workshop 2018, CEUR Workshop Proceedings (2018) Vol. 2113.
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- Jean-Luc Baril and A. Petrossian, Equivalence Classes of Motzkin Paths Modulo a Pattern of Length at Most Two, J. Int. Seq., Vol. 18 (2015), Article 15.7.1.
- Jean-Luc Baril, Alexander Burstein, and Sergey Kirgizov, Pattern statistics in faro words and permutations, arXiv:2010.06270 [math.CO], 2020. See Table 1.
- Paul Barry, A Note on a One-Parameter Family of Catalan-Like Numbers, JIS, Vol. 12 (2009), Article 09.5.4.
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Paul Barry and A. Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.2. - From _N. J. A. Sloane_, Sep 21 2012
- F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, Vol. 139, No. 1-3 (1995), pp. 463-468.
- Miklós Bóna, Cheyne Homberger, Jay Pantone, and Vince Vatter, Pattern-avoiding involutions: exact and asymptotic enumeration, arxiv:1310.7003 [math.CO], 2013.
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
- Alin Bostan and Manuel Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2009.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- Henry Bottomley, Illustration of initial terms.
- J. M. Campbell, The expansion of immaculate functions in the ribbon basis, Discrete Math., Vol. 340 (2017), pp. 1716-1726.
- Colin Defant and Kai Zheng, Stack-Sorting with Consecutive-Pattern-Avoiding Stacks, arXiv:2008.12297 [math.CO], 2020.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- F. Disanto, A. Frosini, and S. Rinaldi, Square involutions, J. Int. Seq. 14 (2011) # 11.3.5.
- F. Disanto and S. Rinaldi, Symmetric convex permutominoes and involutions, PU. M. A., Vol. 22, No. 1 (2011), pp. 39-60.
- Justine Falque, Jean-Christophe Novelli, and Jean-Yves Thibon, Pinnacle sets revisited, arXiv:2106.05248 [math.CO], 2021.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 77.
- J. R. Griggs, On the distribution of sums of residues, arXiv:math/9304211 [math.NT], 1993.
- O. Guibert and T. Mansour, Restricted 132-involutions, Séminaire Lotharingien de Combinatoire, B48a, 23 pp, 2002.
- H. Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., Vol. 10, No. 8 (1979), pp. 964-999.
- R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seq., Vol. 3 (2000), Article 00.1.6.
- Zachary Hamaker and Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018.
- F. Harary and R. W. Robinson, The number of achiral trees, Jnl. Reine Angewandte Mathematik, Vol. 278 (1975), pp. 322-335. (Annotated scanned copy)
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct 2011.
- Zoe M. Himwich and Noah A. Rosenberg, Roadblocked monotonic paths and the enumeration of coalescent histories for non-matching caterpillar gene trees and species trees, arXiv:1901.04465 [q-bio.pE] (2019); Adv. Appl. Math. 113 (2020), 101939.
- Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
- W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003, Pages 7, 252-282, 338-393.
- Christian Krattenthaler and Daniel Yaqubi, Some determinants of path generating functions, II, Adv. Appl. Math., Vol. 101 (2018), pp. 232-265.
- Jean-Philippe Labbé and Carsten Lange, Cambrian acyclic domains: counting c-singletons, arXiv:1802.07978 [math.CO], 2018.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- P. Leroux and E. Rassart, Enumeration of Symmetry Classes of Parallelogram Polyominoes, arXiv:math/9901135 [math.CO], 1999.
- Steven Linton, James Propp, Tom Roby, and Julian West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, Journal of Integer Sequences, Vol. 15 (2012), Article 12.9.1.
- D. Lubell, A short proof of Sperner's lemma, J. Combin. Theory, Vol. 1 (1966), p. 299.
- Piera Manara and Claudio Perelli Cippo, The fine structure of 4321 avoiding involutions and 321 avoiding involutions, PU. M. A. Vol. 22 (2011), pp. 227-238.
- Eric Marberg and Brendan Pawlowski, Stanley symmetric functions for signed involutions, arXiv:1806.11208 [math.CO], 2018.
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- D. Merlini, Generating functions for the area below some lattice paths, Discrete Mathematics and Theoretical Computer Science AC, 2003, 217-228.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- M. A. Narcowich, Problem 73-6, SIAM Review, Vol. 16, No. 1, 1974, p. 97.
- Ran Pan, Exercise P, Project P.
- Saulo Queiroz, João Vilela, and Edmundo Monteiro, What is the Cost of the Index Selector Task for OFDM with Index Modulation?, 2019 Wireless Days (WD).
- Saulo Queiroz, João P. Vilela, and Edmundo Monteiro, Optimal Mapper for OFDM with Index Modulation: A Spectro-Computational Analysis, arXiv:2002.09382 [eess.SP], 2020. See also IEEE Access (2020) Vol. 8, 68365-68378.
- Alon Regev, Amitai Regev, and Doron Zeilberger, Identities in character tables of S_n, arXiv preprint arXiv:1507.03499 [math.CO], 2015.
- R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron, Vol. 32, No. 3 (1976), pp. 355-361. (Annotated scanned copy)
- Arnold Saunders, A Class of Random Recursive Tree Algorithms with Deletion, arXiv:1906.02720 [math.PR], 2019.
- V. Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., Vol. 35, No. 5 (2004), pp. 629-638.
- V. Shevelev, A problem of enumeration of two-color bracelets with several variations, arXiv:0710.1370 [math.CO], May 05 2011.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- Emanuel Sperner, Ein Satz über Untermengen einer endlichen Menge, Mathematische Zeitschrift (in German), Vol. 27, No. 1 (1928), pp. 544-548.
- P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
- P. J. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974. [Scanned annotated and corrected copy]
- I. Tasoulas, K. Manes, A. Sapounakis, and P. Tsikouras, Chains with Small Intervals in the Lattice of Binary Paths, arXiv:1911.10883 [math.CO], 2019.
- C. G. Wagner, Letter to N. J. A. Sloane, Sep 30 1974.
- Eric Weisstein's World of Mathematics, Central Binomial Coefficient.
- Eric Weisstein's World of Mathematics, Quota System.
- W. H. W. Wong and E. G. Tay, On Cross-intersecting Sperner Families, arXiv:2001.01910 [math.CO], 2020.
- Index entries for sequences of k-nomial coefficients
- Index entries for "core" sequences.
Crossrefs
Programs
-
GAP
List([0..40],n->Binomial(n,Int(n/2))); # Muniru A Asiru, Apr 08 2018
-
Haskell
a001405 n = a007318_row n !! (n `div` 2) -- Reinhard Zumkeller, Nov 09 2011
-
Magma
[Binomial(n, Floor(n/2)): n in [0..40]]; // Vincenzo Librandi, Nov 16 2014
-
Maple
A001405 := n->binomial(n, floor(n/2)): seq(A001405(n), n=0..33);
-
Mathematica
Table[Binomial[n, Floor[n/2]], {n, 0, 40}] (* Stefan Steinerberger, Apr 08 2006 *) Table[DifferenceRoot[Function[{a,n},{-4 n a[n]-2 a[1+n]+(2+n) a[2+n] == 0,a[1] == 1,a[2] == 1}]][n], {n, 30}] (* Luciano Ancora, Jul 08 2015 *) Array[Binomial[#,Floor[#/2]]&,40,0] (* Harvey P. Dale, Mar 05 2018 *)
-
Maxima
A001405(n):=binomial(n,floor(n/2))$ makelist(A001405(n),n,0,30); /* Martin Ettl, Nov 01 2012 */
-
PARI
a(n) = binomial(n, n\2);
-
PARI
first(n) = x='x+O('x^n); Vec((-1+2*x+sqrt(1-4*x^2))/(2*x-4*x^2)) \\ Iain Fox, Dec 20 2017 (edited by Iain Fox, May 07 2018)
-
Python
from math import comb def A001405(n): return comb(n,n//2) # Chai Wah Wu, Jun 07 2022
Formula
a(n) = max_{k=0..n} binomial(n, k).
By symmetry, a(n) = binomial(n, ceiling(n/2)). - Labos Elemer, Mar 20 2003
P-recursive with recurrence: a(0) = 1, a(1) = 1, and for n >= 2, (n+1)*a(n) = 2*a(n-1) + 4*(n-1)*a(n-2). - Peter Bala, Feb 28 2011
G.f.: (1+x*c(x^2))/sqrt(1-4*x^2) = 1/(1 - x - x^2*c(x^2)); where c(x) = g.f. for Catalan numbers A000108.
G.f.: (-1 + 2*x + sqrt(1-4*x^2))/(2*x - 4*x^2). - Lee A. Newberg, Apr 26 2010
G.f.: 1/(1 - x - x^2/(1 - x^2/(1 - x^2/(1 - x^2/(1 - ... (continued fraction). - Paul Barry, Aug 12 2009
a(0) = 1; a(2*m+2) = 2*a(2*m+1); a(2*m+1) = Sum_{k = 0..2*m} (-1)^k*a(k)*a(2*m-k). - Len Smiley, Dec 09 2001
G.f.: (sqrt((1+2*x)/(1-2*x)) - 1)/(2*x). - Vladeta Jovovic, Apr 28 2003
The o.g.f. A(x) satisfies A(x) + x*A^2(x) = 1/(1-2*x). - Peter Bala, Feb 28 2011
E.g.f.: BesselI(0, 2*x) + BesselI(1, 2*x). - Vladeta Jovovic, Apr 28 2003
a(0) = 1; a(2*m+2) = 2*a(2*m+1); a(2*m+1) = 2*a(2*m) - c(m), where c(m)=A000108(m) are the Catalan numbers. - Christopher Hanusa (chanusa(AT)washington.edu), Nov 25 2003
a(n) = Sum_{k=0..n} (-1)^k*2^(n-k)*binomial(n, k)*A000108(k). - Paul Barry, Jan 27 2005
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(1, n-2*k). - Paul Barry, May 13 2005
From Paul Barry, Nov 02 2004: (Start)
a(n) = Sum_{k=0..floor((n+1)/2)} (binomial(n+1, k)*(cos((n-2*k+1)*Pi/2) + sin((n-2*k+1)*Pi/2))).
a(n) = Sum_{k=0..n+1}, (binomial(n+1, (n-k+1)/2)*(1-(-1)^(n-k))*(cos(k*Pi/2) + sin(k*Pi))/2). (End)
a(n) = Sum_{k=floor(n/2)..n} (binomial(n,n-k) - binomial(n,n-k-1)). - Paul Barry, Sep 06 2007
Inverse binomial transform of A005773 starting (1, 2, 5, 13, 35, 96, ...) and double inverse binomial transform of A001700. Row sums of triangle A132815. - Gary W. Adamson, Aug 31 2007
a(n) = Sum_{k=0..n} A120730(n,k). - Philippe Deléham, Oct 16 2008
a(n) = Sum_{k = 0..floor(n/2)} (binomial(n,k) - binomial(n,k-1)). - Nishant Doshi (doshinikki2004(AT)gmail.com), Apr 06 2009
Sum_{n>=0} a(n)/10^(n+1) = 0.1123724... = (sqrt(3)-sqrt(2))/(2*sqrt(2)); Sum_{n>=0} a(n)/100^(n+1) = 0.0101020306102035... = (sqrt(51)-sqrt(49))/(2*sqrt(49)). - Mark Dols, Jul 15 2010
Conjectured: a(n) = 2^n*2F1(1/2,-n;2;2), useful for number of paths in 1-d for which the coordinate is never negative. - Benjamin Phillabaum, Feb 20 2011
a(2*m+1) = (2*m+1)*a(2*m)/(m+1), e.g., a(7) = (7/4)*a(6) = (7/4)*20 = 35. - Jon Perry, Jan 20 2011
From Peter Bala, Feb 28 2011: (Start)
Let F(x) be the logarithmic derivative of the o.g.f. A(x). Then 1+x*F(x) is the o.g.f. for A027306.
Let G(x) be the logarithmic derivative of 1+x*A(x). Then x*G(x) is the o.g.f. for A058622. (End)
Let M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and [1,0,0,0,...] in the main diagonal; and V = the vector [1,0,0,0,...]. a(n) = M^n*V, leftmost term. - Gary W. Adamson, Jun 13 2011
Let M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and [1,0,0,0,...] in the main diagonal. a(n) = M^n_{1,1}. - Corrected by Gary W. Adamson, Jan 30 2012
a(n) = A007318(n, floor(n/2)). - Reinhard Zumkeller, Nov 09 2011
a(n+1) = Sum_{k=0..n} a(n-k)*A097331(k) = a(n) + Sum_{k=0..(n-1)/2} A000108(k)*a(n-2*k-1). - Philippe Deléham, Nov 27 2011
a(n) = Sum_{k=0..n} A168511(n,k)*(-1)^(n-k). - Philippe Deléham, Mar 19 2013
a(n+2*p-2) = Sum_{k=0..floor(n/2)} A009766(n-k+p-1, k+p-1) + binomial(n+2*p-2, p-2), for p >= 1. - Johannes W. Meijer, Aug 02 2013
O.g.f.: (1-x*c(x^2))/(1-2*x), with the o.g.f. c(x) of Catalan numbers A000108. See the rewritten formula given by Lee A. Newberg above. This is the o.g.f. for the row sums the Riordan triangle A053121. - Wolfdieter Lang, Sep 22 2013
a(n) ~ 2^n / sqrt(Pi * n/2). - Charles R Greathouse IV, Oct 23 2015
a(n) = 2^n*hypergeom([1/2,-n], [2], 2). - Vladimir Reshetnikov, Nov 02 2015
a(2*k) = Sum_{i=0..k} binomial(k, i)*binomial(k, i), a(2*k+1) = Sum_{i=0..k} binomial(k+1, i)*binomial(k, i). - Juan A. Olmos, Dec 21 2017
a(0) = 1, a(n) = 2 * a(n-1) for even n, a(n) = (2*n/(n+1)) * a(n-1) for odd n. - James East, Sep 25 2019
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=0} 1/a(n) = 2*Pi/(3*sqrt(3)) + 2.
Sum_{n>=0} (-1)^n/a(n) = 2/3 - 2*Pi/(9*sqrt(3)). (End)
For k>2, Sum_{n>=0} a(n)/k^n = (sqrt((k+2)/(k-2)) - 1)*k/2. - Vaclav Kotesovec, May 13 2022
From Peter Bala, Mar 24 2023: (Start)
a(n) = Sum_{k = 0..n+1} (-1)^(k+binomial(n+2,2)) * k/(n+1) * binomial(n+1,k)^2.
(n + 1)*(2*n - 1)*a(n) = (-1)^(n+1)*2*a(n-1) + 4*(n - 1)*(2*n + 1)*a(n-2) with a(0) = a(1) = 1. (End)
a(n) = Integral_{x=-2..2} x^n*W(x)*dx, n>=0, where W(x) = sqrt((2+x)/(2-x))/(2*Pi) is a positive function on x=(-2,2) and is singular at x = 2. Therefore a(n) is a positive definite sequence. - Karol A. Penson, May 12 2025
Comments