cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A001644 a(n) = a(n-1) + a(n-2) + a(n-3), a(0)=3, a(1)=1, a(2)=3.

Original entry on oeis.org

3, 1, 3, 7, 11, 21, 39, 71, 131, 241, 443, 815, 1499, 2757, 5071, 9327, 17155, 31553, 58035, 106743, 196331, 361109, 664183, 1221623, 2246915, 4132721, 7601259, 13980895, 25714875, 47297029, 86992799, 160004703, 294294531, 541292033, 995591267, 1831177831
Offset: 0

Views

Author

Keywords

Comments

For n >= 3, a(n) is the number of cyclic sequences consisting of n zeros and ones that do not contain three consecutive ones provided the positions of the zeros and ones are fixed on a circle. This is proved in Charalambides (1991) and Zhang and Hadjicostas (2015). For example, a(3)=7 because only the sequences 110, 101, 011, 001, 010, 100 and 000 avoid three consecutive ones. (For n=1,2 the statement is still true provided we allow the sequence to wrap around itself on a circle.) - Petros Hadjicostas, Dec 16 2016
For n >= 3, also the number of dominating sets on the n-cycle graph C_n. - Eric W. Weisstein, Mar 30 2017
For n >= 3, also the number of minimal dominating sets and maximal irredundant sets on the n-sun graph. - Eric W. Weisstein, Jul 28 and Aug 17 2017
For n >= 3, also the number of minimal edge covers in the n-web graph. - Eric W. Weisstein, Aug 03 2017
For n >= 1, also the number of ways to tile a bracelet of length n with squares, dominoes, and trominoes. - Ruijia Li and Greg Dresden, Sep 14 2019
If n is prime, then a(n)-1 is a multiple of n ; a counterexample for the converse is given by n = 182. - Robert FERREOL, Apr 03 2024

Examples

			G.f. = 3 + x + 3*x^2 + 7*x^3 + 11*x^4 + 21*x^5 + 39*x^6 + 71*x^7 + 131*x^8 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 500.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000073, A073145, A106293 (Pisano periods), A073728 (partial sums).
Cf. A058265.

Programs

  • GAP
    a:=[3,1,3];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Dec 18 2018
    
  • Haskell
    a001644 n = a001644_list !! n
    a001644_list = 3 : 1 : 3 : zipWith3 (((+) .) . (+))
                   a001644_list (tail a001644_list) (drop 2 a001644_list)
    -- Reinhard Zumkeller, Apr 13 2014
    
  • Magma
    I:=[3,1,3]; [n le 3 select I[n] else Self(n-1)+Self(n-2)+ Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 04 2017
    
  • Maple
    A001644:=-(1+2*z+3*z**2)/(z**3+z**2+z-1); # Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 3
    A001644 :=proc(n)
        option remember;
        if n <= 2 then
            1+2*modp(n+1,2)
        else
            procname(n-1)+procname(n-2)+procname(n-3);
        end if;
    end proc:
    seq(A001644(n),n=0..80) ;
  • Mathematica
    a[x_]:= a[x] = a[x-1] +a[x-2] +a[x-3]; a[0] = 3; a[1] = 1; a[2] = 3; Array[a, 40, 0]
    a[n_]:= n*Sum[Sum[Binomial[j, n-3*k+2*j]*Binomial[k, j], {j,n-3*k,k}]/k, {k, n}]; a[0] = 3; Array[a, 40, 0] (* Robert G. Wilson v, Feb 24 2011 *)
    LinearRecurrence[{1, 1, 1}, {3, 1, 3}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
    Table[RootSum[-1 - # - #^2 + #^3 &, #^n &], {n, 0, 40}] (* Eric W. Weisstein, Mar 30 2017 *)
    RootSum[-1 - # - #^2 + #^3 &, #^Range[0, 40] &] (* Eric W. Weisstein, Aug 17 2017 *)
  • PARI
    {a(n) = if( n<0, polsym(1 - x - x^2 - x^3, -n)[-n+1], polsym(1 + x + x^2 - x^3, n)[n+1])}; /* Michael Somos, Nov 02 2002 */
    
  • PARI
    my(x='x+O('x^40)); Vec((3-2*x-x^2)/(1-x-x^2-x^3)) \\ Altug Alkan, Apr 19 2018
    
  • SageMath
    ((3-2*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Mar 22 2019

Formula

Binet's formula: a(n) = r1^n + r2^n + r3^n, where r1, r2, r3 are the roots of the characteristic polynomial 1 + x + x^2 - x^3, see A058265.
a(n) = A000073(n) + 2*A000073(n-1) + 3*A000073(n-2).
G.f.: (3-2*x-x^2)/(1-x-x^2-x^3). - Miklos Kristof, Jul 29 2002
a(n) = n*Sum_{k=1..n} Sum_{j=n-3*k..k} binomial(j, n-3*k+2*j)*binomial(k,j)/k, n > 0, a(0)=3. - Vladimir Kruchinin, Feb 24 2011
a(n) = a(n-1) + a(n-2) + a(n-3), a(0)=3, a(1)=1, a(2)=3. - Harvey P. Dale, Feb 01 2015
a(n) = A073145(-n). for all n in Z. - Michael Somos, Dec 17 2016
Sum_{k=0..n} k*a(k) = (n*a(n+3) - a(n+2) - (n+1)*a(n+1) + 4)/2. - Yichen Wang, Aug 30 2020
a(n) = Trace(M^n), where M = [0, 0, 1; 1, 0, 1; 0, 1, 1] is the companion matrix to the monic polynomial x^3 - x^2 - x - 1. It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Dec 29 2022

Extensions

Edited by Mario Catalani (mario.catalani(AT)unito.it), Jul 17 2002
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A001638 A Fielder sequence: a(n) = a(n-1) + a(n-3) + a(n-4), n >= 4.

Original entry on oeis.org

4, 1, 1, 4, 9, 11, 16, 29, 49, 76, 121, 199, 324, 521, 841, 1364, 2209, 3571, 5776, 9349, 15129, 24476, 39601, 64079, 103684, 167761, 271441, 439204, 710649, 1149851, 1860496, 3010349, 4870849, 7881196, 12752041, 20633239, 33385284, 54018521, 87403801
Offset: 0

Views

Author

Keywords

Comments

For n > 1, a(n) is the number of ways of choosing a subset of vertices of an n-cycle so that every vertex of the n-cycle is adjacent to one of the chosen vertices. (Note that this is not the same as the number of dominating sets of the n-cycle, which is given by A001644.) - Joel B. Lewis, Sep 12 2010
For n >= 3, a(n) is also the number of total dominating sets in the n-cycle graph. - Eric W. Weisstein, Apr 10 2018
For n > 0, a(n) is the number of ways to tile a strip of length n with squares, trominos, and quadrominos where the inital tile (of length 1, 3, or 4) can take on 1, 3, or 4 colors respectively. - Greg Dresden and Yuan Shen, Aug 10 2024

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[4,1,1,4]; [n le 4 select I[n] else Self(n-1) + Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018
  • Maple
    A001638:=-(z+1)*(4*z**2-z+1)/(z**2+z-1)/(z**2+1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 4
  • Mathematica
    LinearRecurrence[{1, 0, 1, 1}, {4, 1, 1, 4}, 50] (* T. D. Noe, Aug 09 2012 *)
    Table[LucasL[n] + 2 Cos[n Pi/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 10 2018 *)
    CoefficientList[Series[(-4 + 3 x + x^3)/(-1 + x + x^3 + x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 10 2018 *)
  • PARI
    a(n)=if(n<0,0,fibonacci(n+1)+fibonacci(n-1)+simplify(I^n+(-I)^n))
    
  • PARI
    a(n)=if(n<0,0,polsym((1+x-x^2)*(1+x^2),n)[n+1])
    

Formula

G.f.: (1-x)*(4+x+x^2)/((1+x^2)*(1-x-x^2)).
a(n) = L(n) + i^n + (-i)^n, a(2n) = L(n)^2, a(2n+1) = L(2n+1) where L() is Lucas sequence A000032.
a(n) = a(n-1) + a(n-3) + a(n-4). - Eric W. Weisstein, Apr 10 2018
a(n) = Trace(M^n), where M = [0, 0, 0, 1; 1, 0, 0, 1; 0, 1, 0, 0; 0, 0, 1, 1] is the companion matrix to the monic polynomial x^4 - x^3 - x - 1. . It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Jan 08 2023

Extensions

Edited by Michael Somos, Feb 17 2002 and Nov 02 2002

A013979 Expansion of 1/(1 - x^2 - x^3 - x^4) = 1/((1 + x)*(1 - x - x^3)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 17, 24, 36, 52, 77, 112, 165, 241, 354, 518, 760, 1113, 1632, 2391, 3505, 5136, 7528, 11032, 16169, 23696, 34729, 50897, 74594, 109322, 160220, 234813, 344136, 504355, 739169, 1083304, 1587660, 2326828, 3410133, 4997792, 7324621
Offset: 0

Views

Author

Keywords

Comments

For n>0, number of compositions (ordered partitions) of n into 2's, 3's and 4's. - Len Smiley, May 08 2001
Diagonal sums of trinomial triangle A071675 (Riordan array (1, x*(1+x+x^2))). - Paul Barry, Feb 15 2005
For n>1, a(n) is number of compositions of n-2 into parts 1 and 2 with no 3 consecutive 1's. For example: a(7) = 5 because we have: 2+2+1, 2+1+2, 1+2+2, 1+2+1+1, 1+1+2+1. - Geoffrey Critzer, Mar 15 2014
In the same way [per 2nd comment for A006498, by Sreyas Srinivasan] that the sum of any two alternating terms (terms separated by one term) of A006498 produces a term from A000045 (the Fibonacci sequence), so it could therefore be thought of as a "metaFibonacci," the sum of any two (nonalternating) terms of this sequence produces a term from A000930 (Narayana’s cows), so this sequence could analogously be called "meta-Narayana’s cows" (e.g. 4+5=9, 5+8=13, 8+11=19, 11+17=28). - Michael Cohen and Yasuyuki Kachi, Jun 13 2024

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 5*x^7 + 8*x^8 + 11*x^9 + ...
		

Crossrefs

Cf. A060945 (Ordered partitions into 1's, 2's and 4's).
First differences of A023435.

Programs

  • Haskell
    a013979 n = a013979_list !! n
    a013979_list = 1 : 0 : 1 : 1 : zipWith (+) a013979_list
       (zipWith (+) (tail a013979_list) (drop 2 a013979_list))
    -- Reinhard Zumkeller, Mar 23 2012
    
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1+x)*(1-x-x^3)) )); // G. C. Greubel, Jul 17 2023
    
  • Mathematica
    a[n_]:= If[n<0, SeriesCoefficient[x^4/(1 +x +x^2 -x^4), {x, 0, -n}], SeriesCoefficient[1/(1 -x^2 -x^3 -x^4), {x,0,n}]]; (* Michael Somos, Jun 20 2015 *)
    LinearRecurrence[{0,1,1,1}, {1,0,1,1}, 50] (* G. C. Greubel, Jul 17 2023 *)
  • SageMath
    @CachedFunction
    def b(n): return 1 if (n<3) else b(n-1) + b(n-3) # b = A000930
    def A013979(n): return ((-1)^n +2*b(n) -b(n-1) +b(n-2) -int(n==1))/3
    [A013979(n) for n in (0..50)] # G. C. Greubel, Jul 17 2023

Formula

a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..floor(n/2)} C(k, 2i+3k-n)*C(2i+3k-n, i). - Paul Barry, Feb 15 2005
a(n) = a(n-4) + a(n-3) + a(n-2). - Jon E. Schoenfield, Aug 07 2006
a(n) + a(n+1) = A000930(n+1). - R. J. Mathar, Mar 14 2011
a(n) = (1/3)*(A000930(n) + A097333(n-2) + (-1)^n), n>1. - Ralf Stephan, Aug 15 2013
a(n) = (-1)^n * A077889(-4-n) = A107458(n+4) for all n in Z. - Michael Somos, Jun 20 2015
a(n) = Sum_{i=0..floor(n/2)} A078012(n-2*i). - Paul Curtz, Aug 18 2021
a(n) = (1/3)*((-1)^n + 2*b(n) - b(n-1) + b(n-2) - [n=1]), where b(n) = A000930(n). - G. C. Greubel, Jul 17 2023

A107458 Expansion of g.f.: (1-x^2-x^3)/( (1+x)*(1-x-x^3) ).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 17, 24, 36, 52, 77, 112, 165, 241, 354, 518, 760, 1113, 1632, 2391, 3505, 5136, 7528, 11032, 16169, 23696, 34729, 50897, 74594, 109322, 160220, 234813, 344136, 504355, 739169, 1083304, 1587660, 2326828, 3410133, 4997792, 7324621
Offset: 0

Views

Author

N. J. A. Sloane, Mar 08 2008

Keywords

Comments

The sequence can be interpreted as the top-left entry of the n-th power of a 4 X 4 (0,1) matrix. There are 12 different choices (out of 2^16) for that (0,1) matrix. - R. J. Mathar, Mar 19 2014

Crossrefs

Programs

  • GAP
    a:=[1,0,0,0];; for n in [5..50] do a[n]:=a[n-2]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 03 2020
  • Haskell
    a107458 n = a107458_list !! n
    a107458_list = 1 : 0 : 0 : 0 : zipWith (+) a107458_list
       (zipWith (+) (tail a107458_list) (drop 2 a107458_list))
    -- Reinhard Zumkeller, Mar 23 2012
    
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!(1-x^2-x^3)/( (1+x)*(1-x-x^3))); // Marius A. Burtea, Jan 02 2020
    
  • Maple
    seq(coeff(series( (1-x^2-x^3)/( (1+x)*(1-x-x^3) ), x, n+1), x, n), n = 0..50); # G. C. Greubel, Jan 03 2020
  • Mathematica
    CoefficientList[Series[(1-x^2-x^3)/(1-x^2-x^3-x^4),{x,0,50}],x] (* or *) LinearRecurrence[{0,1,1,1},{1,0,0,0},50] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x^2-x^3)/((1+x)*(1-x-x^3))) \\ G. C. Greubel, Apr 27 2017
    
  • Sage
    def A107458_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x^2-x^3)/((1+x)*(1-x-x^3)) ).list()
    A107458_list(50) # G. C. Greubel, Jan 03 2020
    

Formula

a(n) = a(n-2) + a(n-3) + a(n-4); a(0)=1, a(1)=0, a(2)=0, a(3)=0. - Harvey P. Dale, Jun 20 2011
a(n) + a(n-1) = A000930(n-4). - R. J. Mathar, Mar 19 2014

A001645 A Fielder sequence.

Original entry on oeis.org

1, 3, 7, 11, 26, 45, 85, 163, 304, 578, 1090, 2057, 3888, 7339, 13862, 26179, 49437, 93366, 176321, 332986, 628852, 1187596, 2242800, 4235569, 7998951, 15106172, 28528288, 53876211, 101746240, 192149690, 362878313, 685302531, 1294206745, 2444133829
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,3,7,11,26]; [n le 5 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001645:=-(1+2*z+3*z**2+5*z**4)/(-1+z+z**2+z**3+z**5); [Conjectured by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    LinearRecurrence[{1, 1, 1, 0, 1}, {1, 3, 7, 11, 26}, 50] (* T. D. Noe, Aug 09 2012 *)
    CoefficientList[Series[x*(1+2*x+3*x^2+5*x^4)/(1-x-x^2-x^3-x^5), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(x*(1+2*x+3*x^2+5*x^4)/(1-x-x^2-x^3-x^5)+x*O(x^n),n))
    

Formula

G.f.: x*(1+2*x+3*x^2+5*x^4)/(1-x-x^2-x^3-x^5).
a(n) = trace(M^n), where M = [0, 0, 0, 0, 1; 1, 0, 0, 0, 0; 0, 1, 0, 0, 1; 0, 0, 1, 0, 1; 0, 0, 0, 1, 1] is the 5 x 5 companion matrix to the monic polynomial x^5 - x^4 - x^3 - x^2 - 1. It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Jan 09 2023

A001641 A Fielder sequence: a(n) = a(n-1) + a(n-2) + a(n-4).

Original entry on oeis.org

1, 3, 4, 11, 16, 30, 50, 91, 157, 278, 485, 854, 1496, 2628, 4609, 8091, 14196, 24915, 43720, 76726, 134642, 236283, 414645, 727654, 1276941, 2240878, 3932464, 6900996, 12110401, 21252275, 37295140, 65448411, 114853952, 201554638, 353703730, 620706779
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,3,4,11]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018
  • Maple
    A001641:=-(1+2*z+4*z**3)/(z+1)/(z**3-z**2+2*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{1, 1, 0, 1}, {1, 3, 4, 11}, 50] (* T. D. Noe, Aug 09 2012 *)
  • Maxima
    a(n):=(sum(sum(binomial(j,n-4*k+3*j)*binomial(k,j),j,floor((4*k-n)/3),floor((4*k-n)/2))/k,k,1,n))*n; /* Vladimir Kruchinin, May 25 2011 */
    
  • PARI
    a(n)=if(n<0,0,polcoeff(x*(1+2*x+4*x^3)/(1-x-x^2-x^4)+x*O(x^n),n))
    

Formula

G.f.: x*(1+2*x+4*x^3)/(1-x-x^2-x^4).
a(n) = n*Sum_{k=1..n} Sum_{j=floor((4*k-n)/3)..floor((4*k-n)/2)} binomial(j,n-4*k+3*j)*binomial(k,j)/k. - Vladimir Kruchinin, May 25 2011
a(n) = Trace(M^n), where M = [0, 0, 0, 1; 1, 0, 0, 0; 0, 1, 0, 1; 0, 0, 1, 1] is the companion matrix to the monic polynomial x^4 - x^3 - x^2 - 1. It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Dec 31 2022

A175899 a(n) = a(n-2) + a(n-3) + 2*a(n-4), with a(1) = 0, a(2) = 2, a(3) = 3, a(4) = 10.

Original entry on oeis.org

0, 2, 3, 10, 5, 17, 21, 42, 48, 97, 132, 229, 325, 555, 818, 1338, 2023, 3266, 4997, 7965, 12309, 19494, 30268, 47733, 74380, 116989, 182649, 286835, 448398, 703462, 1100531, 1725530, 2700789, 4232985, 6627381, 10384834, 16261944, 25478185, 39901540, 62509797
Offset: 1

Views

Author

John W. Layman, Oct 11 2010

Keywords

Comments

According to the reference, p divides a(p) for every prime p.

Crossrefs

Programs

  • Haskell
    a175899 n = a175899_list !! (n-1)
    a175899_list = 0 : 2 : 3 : 10 : zipWith (+) (map (* 2) a175899_list)
       (zipWith (+) (tail a175899_list) (drop 2 a175899_list))
    -- Reinhard Zumkeller, Mar 23 2012
  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <2|1|1|0>>^n.
            <<4,0,2,3>>)[1, 1]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 21 2011
  • Mathematica
    LinearRecurrence[{0,1,1,2},{0,2,3,10},40] (* Harvey P. Dale, Jul 24 2011 *)
  • Maxima
    a(n):=n*sum(sum(binomial(j,n-4*k+2*j)*2^(k-j)*binomial(k,j), j,0,k)/k, k,1,n/2); /* Vladimir Kruchinin, Oct 21 2011 */
    

Formula

G.f.: x*(-2*x-3*x^2-8*x^3)/(-1+x^2+x^3+2*x^4). - Harvey P. Dale, Jul 24 2011
a(n) = n*sum(k=1..n/2, sum(j=0..k, binomial(j,n-4*k+2*j)*2^(k-j) * binomial(k,j))/k), n>0. - Vladimir Kruchinin, Oct 21 2011
Showing 1-7 of 7 results.