A001792 a(n) = (n+2)*2^(n-1).
1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816, 6144, 13312, 28672, 61440, 131072, 278528, 589824, 1245184, 2621440, 5505024, 11534336, 24117248, 50331648, 104857600, 218103808, 452984832, 939524096, 1946157056, 4026531840, 8321499136, 17179869184, 35433480192
Offset: 0
Examples
a(0) = 1, a(1) = 2*1 + 1 = 3, a(2) = 2*3 + 2 = 8, a(3) = 2*8 + 4 = 20, a(4) = 2*20 + 8 = 48, a(5) = 2*48 + 16 = 112, a(6) = 2*112 + 32 = 256, ... - _Philippe Deléham_, Apr 19 2009 a(2) = 8 since there are 8 length-4 binary sequences with a subsequence of ones of length 2 or more, namely, 1111, 1110, 1101, 1011, 0111, 1100, 0110, and 0011. - _Dennis P. Walsh_, Oct 25 2012 G.f. = 1 + 3*x + 8*x^2 + 20*x^3 + 48*x^4 + 112*x^5 + 256*x^6 + 576*x^7 + ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Stepin and A. T. Tagi-Zade, Words with restrictions, pp. 67-74 of Kvant Selecta: Combinatorics I, Amer. Math. Soc., 2001 (G_n on p. 70).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Marco Abrate, Stefano Barbero, Umberto Cerruti and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", Discrete Math., Vol. 335 (2014), pp. 1-7. MR3248794.
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", arXiv:1409.6454 [math.NT], 2014.
- Milica Andelic, C. M. da Fonseca and A. Pereira, The mu-permanent, a new graph labeling, and a known integer sequence, arXiv preprint arXiv:1609.04208 [math.CO], 2016.
- Félix Balado and Guénolé C. M. Silvestre, Runs of Ones in Binary Strings, arXiv:2302.11532 [math.CO], 2023. See pp. 6-7.
- Jean-Luc Baril and Nathanaël Hassler, Intervals in a family of Fibonacci lattices, Univ. de Bourgogne (France, 2024). See p. 7.
- Neil J. Calkin, A curious binomial identity, Discr. Math., Vol. 131, No. 1-3 (1994), pp. 335-337.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs., Vol. 3 (2000), #00.1.5.
- Filippo Disanto and Simone Rinaldi, Symmetric convex permutominoes and involutions, PU. M. A., Vol. 22, No. 1 (2011), pp. 39-60.
- Frank Ellermann, Illustration of binomial transforms.
- David Eppstein, Non-crossing Hamiltonian Paths and Cycles in Output-Polynomial Time, arXiv:2303.00147 [cs.CG], 2023, pp. 2, 19.
- Guillermo Esteban, Clemens Huemer and Rodrigo I. Silveira, New production matrices for geometric graphs, arXiv:2003.00524 [math.CO], 2020.
- M. Hirschhorn, Calkin's binomial identity, Discr. Math., Vol. 159, No. 1-3 (1996), pp. 273-278.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 146.
- Milan Janjić, Two Enumerative Functions
- Milan Janjić and Boris Petković, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjić and Boris Petković, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- C. W. Jones, J. C. P. Miller, J. F. C. Conn and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A., Vol. 62, No. 2 (1946), pp. 187-203.
- Sergey Kitaev and Jeffrey B. Remmel, A note on p-Ascent Sequences, Preprint, 2016.
- Sergey Kitaev and Jeffrey Remmel, p-Ascent Sequences, arXiv preprint arXiv:1503.00914 [math.CO], 2015.
- Ivaylo Kortezov, problem 8.4 ("Задача 8.4" in Bulgarian) in National Math Contest "Atanas Radev" 2020.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Maohua Le, Two Classes of Smarandache Determinants, Scientia Magna, Vol. 2, No. 1 (2006), pp. 20-25.
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021.
- John Riordan and N. J. A. Sloane, Correspondence, 1974.
- N. J. A. Sloane, Transforms.
- I. Tasoulas, K. Manes, and A. Sapounakis, Hamiltonian intervals in the lattice of binary paths, Elect. J. Comb. (2024) Vol. 31, Issue 1, P1.39.
- Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., Vol. 274 (2004), 331-342.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
GAP
List([0..35],n->(n+2)*2^(n-1)); # Muniru A Asiru, Sep 25 2018
-
Haskell
a001792 n = a001792_list !! n a001792_list = scanl1 (+) a045623_list -- Reinhard Zumkeller, Jul 21 2013
-
Magma
[(n+2)*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Nov 10 2014
-
Maple
A001792 := n-> (n+2)*2^(n-1); spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/4, n=2..30); # Zerinvary Lajos, Oct 09 2006 A001792:=-(-3+4*z)/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, which gives the sequence without the initial 1 G(x):=1/exp(2*x)*(1-x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(abs(f[n]),n=0..28 ); # Zerinvary Lajos, Apr 17 2009 a := n -> hypergeom([-n, 2], [1], -1); seq(round(evalf(a(n),32)), n=0..31); # Peter Luschny, Aug 02 2014
-
Mathematica
matrix[n_Integer /; n >= 1] := Table[Abs[p - q] + 1, {q, n}, {p, n}]; a[n_Integer /; n >= 1] := Abs[Det[matrix[n]]] (* Josh Locker (joshlocker(AT)macfora.com), Apr 29 2004 *) g[n_,m_,r_] := Binomial[n - 1, r - 1] Binomial[m + 1, r] r; Table[1 + Sum[g[n, k - n, r], {r, 1, k}, {n, 1, k - 1}], {k, 1, 29}] (* Geoffrey Critzer, Jul 02 2009 *) a[n_] := (n + 2)*2^(n - 1); a[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *) LinearRecurrence[{4, -4}, {1, 3}, 40] (* Harvey P. Dale, Aug 29 2011 *) CoefficientList[Series[(1 - x) / (1 - 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *) b[i_]:=i; a[n_]:=Abs[Det[ToeplitzMatrix[Array[b, n], Array[b, n]]]]; Array[a, 40] (* Stefano Spezia, Sep 25 2018 *) a[n_]:=Hypergeometric2F1[2,-n+1,1,-1];Array[a,32] (* Giorgos Kalogeropoulos, Jan 04 2022 *)
-
PARI
A001792(n)=(n+2)<<(n-1) \\ M. F. Hasler, Dec 17 2008
-
Python
for n in range(0,40): print(int((n+2)*2**(n-1)), end=' ') # Stefano Spezia, Oct 16 2018
Formula
a(n) = (n+2)*2^(n-1).
G.f.: (1 - x)/(1 - 2*x)^2 = 2F1(1,3;2;2x).
a(n) = 4*a(n-1) - 4*a(n-2).
G.f. (-1 + (1-2*x)^(-2))/(x*2^2). - Wolfdieter Lang
a(n) = A018804(2^n). - Matthew Vandermast, Mar 01 2003
a(n) = Sum_{k=0..n+2} binomial(n+2, 2k)*k. - Paul Barry, Mar 06 2003
a(n) = (1/4)*A001787(n+2). - Emeric Deutsch, May 24 2003
With a leading 0, this is ((n+1)2^n - 0^n)/4 = Sum_{m=0..n} binomial(n - 1, m - 1)*m, the binomial transform of A004526(n+1). - Paul Barry, Jun 05 2003
a(n) = Sum_{k=0..n} binomial(n, k)*(k + 1). - Lekraj Beedassy, Jun 24 2004
Row sums of triangle A130585. - Gary W. Adamson, Jun 06 2007
Equals A125092 * [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, Nov 16 2007
G.f.: F(3, 1; 2; 2x). - Paul Barry, Sep 03 2008
a(n) = 1 + Sum_{k=1..n} (n - k + 4)2^(n - k - 1). This follows from the result that the number of parts equal to k in all compositions of n is (n - k + 3)2^(n - k - 2) for 0 < k < n. - Geoffrey Critzer, Sep 21 2008
a(n) = 2^(n-1) + 2 a(n-1) ; a(n-1) = det(n - |i - j|){i, j = 1..n}. - _M. F. Hasler, Dec 17 2008
a(n) = 2*a(n-1) + 2^(n-1). - Philippe Deléham, Apr 19 2009
a(n) = A164910(2^n). - Gary W. Adamson, Aug 30 2009
a(n) = Sum_{i=1..2^n} gcd(i, 2^n) = A018804(2^n). So we have: 2^0 * phi(2^n) + ... + 2^n * phi(2^0) = (n + 2)*2^(n-1), where phi is the Euler totient function. - Jeffrey R. Goodwin, Nov 11 2011
a(n) = Sum_{j=0..n} Sum_{i=0..n} binomial(n, i + j). - Yalcin Aktar, Jan 17 2012
Eigensequence of an infinite lower triangular matrix with 2^n as the left border and the rest 1's. - Gary W. Adamson, Jan 30 2012
G.f.: 1 + 2*x*U(0) where U(k) = 1 + (k + 1)/(2 - 8*x/(4*x + (k + 1)/U(k + 1))); (continued fraction, 3 - step). - Sergei N. Gladkovskii, Oct 19 2012
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(n,j). - Peter Luschny, Dec 03 2013
a(n) = Hyper2F1([-n, 2], [1], -1). - Peter Luschny, Aug 02 2014
G.f.: 1 / (1 - 3*x / (1 + x / (3 - 4*x))). - Michael Somos, Aug 26 2015
a(n) = -A053120(2+n, n), n >= 0, the negative of the third (sub)diagonal of the triangle of Chebyshev's T polynomials. - Wolfdieter Lang, Nov 26 2019
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=0} 1/a(n) = 8*log(2) - 4.
Sum_{n>=0} (-1)^n/a(n) = 4 - 8*log(3/2). (End)
E.g.f.: exp(2*x)*(1 + x). - Stefano Spezia, Jun 11 2021
Comments