cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 136 results. Next

A143608 A005319 and A002315 interleaved.

Original entry on oeis.org

0, 1, 4, 7, 24, 41, 140, 239, 816, 1393, 4756, 8119, 27720, 47321, 161564, 275807, 941664, 1607521, 5488420, 9369319, 31988856, 54608393, 186444716, 318281039, 1086679440, 1855077841, 6333631924, 10812186007, 36915112104, 63018038201, 215157040700
Offset: 0

Views

Author

Originally submitted by Clark Kimberling, Aug 27 2008. Merged with an essentially identical sequence submitted by Kenneth J Ramsey, Jun 01 2012, by N. J. A. Sloane, Aug 02 2012

Keywords

Comments

Also, numerators of the lower principal and intermediate convergents to 2^(1/2). The lower principal and intermediate convergents to 2^(1/2), beginning with 1/1, 4/3, 7/5, 24/17, 41/29, form a strictly increasing sequence; essentially, numerators=A143608 and denominators=A079496.
Sequence a(n) such that a(2*n) = sqrt(2*A001108(2*n)) and a(2*n+1) = sqrt(A001108(2*n+1)).
For n > 0, a(n) divides A******(k+1,n+1)-A******(k,n+1) where A****** is any one of A182431, A182439, A182440, A182441 and k is any nonnegative integer.
If p is a prime of the form 8*r +/- 3 then a(p+1) == 0 (mod p); if p is a prime of the form 8*r +/- 1 then a(p-1) == 0 (mod p).
Numbers n such that sqrt(floor(n^2/2 + 1)) is an integer. The integer square roots are given by A079496. - Richard R. Forberg, Aug 01 2013
From Peter Bala, Mar 23 2018: (Start)
Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. Then we have
a(2*n + 1) = 1 o 1 o ... o 1 (2*n + 1 terms) and
a(2*n) = sqrt(2)*(1 o 1 o ... o 1) (2*n terms). Cf. A084068.
This is a fourth-order divisibility sequence. Indeed, a(2*n) = sqrt(2)*U(2*n) and a(2*n+1) = U(2*n+1), where U(n) is the Lehmer sequence [Lehmer, 1930] defined by the recurrence U(n) = 2*sqrt(2)*U(n-1) - U(n-2) with U(0) = 0 and U(1) = 1. The solution to the recurrence is U(n) = (1/2)*( (sqrt(2) + 1)^n - (sqrt(2) - 1)^n ). (End)

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.

Crossrefs

Programs

  • Magma
    I:=[0,1,4,7]; [n le 4 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Mar 27 2018
  • Maple
    A143608 := proc(n)
        option remember;
        if n <= 3 then
            op(n+1,[0,1,4,7]) ;
        else
            6*procname(n-2)-procname(n-4) ;
        end if;
    end proc: # R. J. Mathar, Jul 22 2012
  • Mathematica
    a = -4; b = -1; Reap[While[b<2000000000, t = 4*b-a; Sow[t]; a=b; b=t; t = 2*b-a; Sow[t]; a=b; b=t]][[2,1]]
    CoefficientList[Series[x*(1 + 4*x + x^2)/(1 - 6*x^2 + x^4), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 24 2014 *)
    LinearRecurrence[{0, 6, 0, -1}, {0, 1, 4, 7}, 31] (* Jean-François Alcover, Sep 21 2017 *)
  • PARI
    a(n)=([0,1,0,0;0,0,1,0;0,0,0,1;-1,0,6,0]^n*[0;1;4;7])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    concat(0, Vec(x*(1+4*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)) + O(x^50))) \\ Colin Barker, Mar 27 2016
    

Formula

a(2*n) = (a(2*n - 1) + a(2*n + 1))/2.
a(2*n + 1) = (a(2*n) + a(2*n + 2))/4.
a(2*n) = 4*A001109(n).
a(2*n + 1) = 4*A001109(n) + A001541(n).
From Colin Barker, Jun 29 2012: (Start)
a(n) = 6*a(n-2) - a(n-4).
G.f.: x*(1 + 4*x + x^2)/((1 + 2*x - x^2)*(1 - 2*x - x^2)) = x*(1 + 4*x + x^2)/(1 - 6*x^2 + x^4). (End)
2*a(n) = A078057(n) - A123335(n-1). - R. J. Mathar, Jul 04 2012
a(2n) = A005319(n); a(2n+1) = A002315(n). - R. J. Mathar, Jul 17 2009
a(n)*a(n+1) + 1 = A001653(n+1). - Charlie Marion, Dec 11 2012
a(n) = (((-2 - sqrt(2) + (-1)^n * (-2+sqrt(2))) * ((-1+sqrt(2))^n - (1+sqrt(2))^n)))/(4*sqrt(2)). - Colin Barker, Mar 27 2016
a(n) = A084068(n) - A079496(n). - César Aguilera, Feb 14 2023

A113224 a(2n) = A002315(n), a(2n+1) = A082639(n+1).

Original entry on oeis.org

1, 2, 7, 16, 41, 98, 239, 576, 1393, 3362, 8119, 19600, 47321, 114242, 275807, 665856, 1607521, 3880898, 9369319, 22619536, 54608393, 131836322, 318281039, 768398400, 1855077841, 4478554082, 10812186007, 26102926096, 63018038201
Offset: 0

Views

Author

Creighton Dement, Oct 18 2005

Keywords

Comments

From Paul D. Hanna, Oct 22 2005: (Start)
The logarithmic derivative of this sequence is twice the g.f. of A113282, where a(2*n) = A113282(2*n), a(4*n+1) = A113282(4*n+1) - 3, a(4*n+3) = A113282(4*n+3) - 1.
Equals the self-convolution of integer sequence A113281. (End)
With an offset of 1, this sequence is the case P1 = 2, P2 = 0, Q = -1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 19 2015
Floretion Algebra Multiplication Program, FAMP Code: -2ibaseiseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e

Crossrefs

Programs

  • Magma
    [Floor((1+Sqrt(2))^(n+1)/2): n in [0..30]]; // Vincenzo Librandi, Mar 20 2015
  • Mathematica
    a[n_] := n*Sum[ Sum[ Binomial[i, n-k-i]*Binomial[k+i-1, k-1], {i, Ceiling[(n-k)/2], n-k}]*(1-(-1)^k)/(2*k), {k, 1, n}]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
    CoefficientList[Series[(1 + x^2) / ((x^2 - 1) (x^2 + 2 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    LinearRecurrence[{2,2,-2,-1},{1,2,7,16},30] (* Harvey P. Dale, Oct 10 2017 *)
  • Maxima
    a(n):=n*sum(sum(binomial(i,n-k-i)*binomial(k+i-1,k-1),i,ceiling((n-k)/2),n-k)*(1-(-1)^k)/(2*k),k,1,n); /* Vladimir Kruchinin, Apr 11 2011 */
    
  • PARI
    {a(n)=local(x=X+X*O(X^n));polcoeff((1+x^2)/(1-x^2)/(1-2*x-x^2),n,X)} \\ Paul D. Hanna
    

Formula

G.f.: (1+x^2)/((x-1)*(x+1)*(x^2+2*x-1)).
a(n+2) - a(n+1) - a(n) = A100828(n+1).
a(n) = -(u^(n+1)-1)*(v^(n+1)-1)/2 with u = 1+sqrt(2), v = 1-sqrt(2). - Vladeta Jovovic, May 30 2007
a(n) = n * Sum_{k=1..n} Sum_{i=ceiling((n-k)/2)..n-k} binomial(i,n-k-i)*binomial(k+i-1,k-1)*(1-(-1)^k)/(2*k). - Vladimir Kruchinin, Apr 11 2011
a(n) = A001333(n+1) - A000035(n). - R. J. Mathar, Apr 12 2011
a(n) = floor((1+sqrt(2))^(n+1)/2). - Bruno Berselli, Feb 06 2013
From Peter Bala, Mar 19 2015: (Start)
a(n) = (1/2) * A129744(n+1).
exp( Sum_{n >= 1} 2*a(n-1)*x^n/n ) = 1 + 2*Sum_{n >= 1} Pell(n) *x^n. (End)
a(n) = A105635(n-1) + A105635(n+1). - R. J. Mathar, Mar 23 2023

A008843 Squares of NSW numbers (A002315): x^2 such that x^2 - 2y^2 = -1 for some y.

Original entry on oeis.org

1, 49, 1681, 57121, 1940449, 65918161, 2239277041, 76069501249, 2584123765441, 87784138523761, 2982076586042449, 101302819786919521, 3441313796169221281, 116903366249966604049, 3971273138702695316401, 134906383349641674153601, 4582845760749114225906049, 155681849482120242006652081
Offset: 0

Views

Author

Keywords

Comments

Also indices of triangular numbers (A000217) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 16 2015
a(n)-th triangular number is a square; subsequence of A001108. - Jaroslav Krizek, Aug 05 2016

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 288.
  • P. F. Teilhet, Note #2094, L'Intermédiaire des Mathématiciens, 10 (1903), pp. 235-238.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{35,-35,1},{1,49,1681},17] (* Stefano Spezia, Aug 17 2024 *)

Formula

a(n) = 34*a(n-1) - a(n-2) + 16 = A002315(n)^2 = 2*A001653(n)^2 - 1 = 2*A008844(n) - 1 = floor(A046176(n)*sqrt(2)) = 6*A055792(n+1) - a(n-1) + 4 = (6*A055792(n+2) + a(n-1) - 20)/35. - Henry Bottomley, Nov 13 2001
a(n) = A001108(2n+1). - Ira M. Gessel, Nov 05 2014
a(n) = Sum_{k=1..2*n+1} 2^(k-1)*binomial(4*n+2, 2*k). - Zoltan Zachar (zachar(AT)fellner.sulinet.hu), Oct 03 2003
O.g.f.: -(1+14*x+x^2)/((-1+x)*(1-34*x+x^2)). - R. J. Mathar, Nov 23 2007
a(n) = -(cosh((2*n - 1)*arctanh(sqrt(2))))^2 = -1 - (sinh((2*n - 1)*arctanh(sqrt(2))))^2. - Artur Jasinski, Oct 30 2008
a(n) = Sum_{k=0..4n+1} A000129(k), see Santana and Diaz-Barrero link at A002315. - Ivan N. Ianakiev, Jul 15 2022

Extensions

a(14)-a(17) from Stefano Spezia, Aug 17 2024

A330276 NSW pseudoprimes: odd composite numbers k such that A002315((k-1)/2) == 1 (mod k).

Original entry on oeis.org

169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441, 6601, 7107, 7801, 8119, 10945, 11285, 13067, 15841, 18241, 19097, 20833, 24727, 27971, 29953, 31417, 34561, 35459, 37345, 37505, 38081, 39059, 42127, 45451, 45961, 47321, 49105, 52633, 53041, 55969, 56953, 58241
Offset: 1

Views

Author

Amiram Eldar, Dec 08 2019

Keywords

Comments

If p is an odd prime, then A002315((p-1)/2) == 1 (mod p). This sequence consists of the odd composite numbers for which this congruence holds.
Equivalently, odd composite numbers k such that A001652((k-1)/2) is divisible by k.

Examples

			169 = 13^2 is a term since it is composite and A002315((169-1)/2) - 1 = A002315(84) - 1 is divisible by 169.
		

Crossrefs

Programs

  • Mathematica
    a0 = 1; a1 = 7; k = 5; seq = {}; Do[a = 6 a1 - a0; a0 = a1; a1 = a; If[CompositeQ[k] && Divisible[a - 1, k], AppendTo[seq, k]]; k += 2, {n, 2, 10^4}]; seq

A377016 Semiperimeter of the unique primitive Pythagorean triple whose short leg is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

1, 28, 861, 28680, 970921, 32963140, 1119662181, 38034888528, 1292062686481, 43892073946540, 1491038320325421, 50651410052600280, 1720656899012149561, 58451683130389395028, 1985636569382856677301, 67453191675004485098400, 2291422880375627492063521, 77840924741066359629967420
Offset: 0

Views

Author

Keywords

Comments

a(0) = 1 is included by convention. This corresponds to the Pythagorean triple 1^2 + 0^2 = 1^2.

Examples

			For n=2, the short leg is A002315(2) = 41 and the hypotenuse is A008844(n) = 841 so the semiperimeter is then a(2) = (41 + 840 + 841)/2 = 861.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Programs

  • Mathematica
    s[n_]:=s[n]=Module[{a, b},a=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;b=(a^2-1)/2;{(a+2b+1)/2}];semis={};Do[semis=Join[semis,FullSimplify[s[n]]],{n,0,17}];semis
  • PARI
    Vec((1 - 13*x - 41*x^2 + 21*x^3)/((1 - 34*x + x^2)*(1 - 6*x + x^2)*(1 - x)) + O(x^20)) \\ Andrew Howroyd, Oct 14 2024

Formula

a(n) = (A002315(n) + 2*A008844(n) - 1)/2.
G.f.: (1 - 13*x - 41*x^2 + 21*x^3)/((1 - 34*x + x^2)*(1 - 6*x + x^2)*(1 - x)). - Andrew Howroyd, Oct 14 2024

A377725 Length of the short leg of the unique primitive Pythagorean triple whose inradius is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

3, 15, 83, 479, 2787, 16239, 94643, 551615, 3215043, 18738639, 109216787, 636562079, 3710155683, 21624372015, 126036076403, 734592086399, 4281516441987, 24954506565519, 145445522951123, 847718631141215, 4940866263896163, 28797478952235759, 167844007449518387
Offset: 1

Views

Author

Keywords

Examples

			Triangles begin:
  n=1:      3,         4,         5;
  n=2:     15,       112,       113;
  n=3:     83,      3444,      3445;
  n=4:    479,    114720,    114721;
  ...
This sequence gives the first column.
		

Crossrefs

Cf. A002315, A377016, A377017, A377726, A385977 (long leg).

Formula

a(n) = 2*A002315(n) + 1.

A377017 Area of the unique primitive Pythagorean triple whose short leg is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

0, 84, 17220, 3412920, 675761016, 133797385260, 26491207202460, 5245125232676784, 1038508304885968560, 205619399242324129860, 40711602541676078766516, 8060691683852625858745320, 1595976241800278270688414120, 315995235184771245126273789084, 62565460590342906257639745449100
Offset: 0

Views

Author

Keywords

Comments

a(0)=0 is included by convention. This corresponds to the Pythagorean triple 1^2 + 0^2 = 1^2.
All terms in this sequence are divisible by 84.

Examples

			For n=2, the short leg is A002315(2) = 41 and the long leg is A008844(2)-1 = 840 so the area is then a(2) = 41*840/2 = 17220.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Programs

  • Mathematica
    s[n_]:=s[n]=Module[{a, b}, a=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2; b=(a^2-1)/2; {(a*b)/2}]; areas={}; Do[areas=Join[areas, FullSimplify[s[n]]], {n, 0, 17}]; areas

Formula

a(n) = A002315(n)*(A008844(n)-1)/2.
G.f.: 84*x*(1 + x)/((1 - 198*x + x^2)*(1 - 6*x + x^2)). - Andrew Howroyd, Oct 14 2024

A377726 Lengths of the long leg of the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

84, 3280, 113764, 3878112, 131820084, 4478459440, 152138450884, 5168244315840, 175568258308884, 5964153062868112, 202605638937276964, 6882627588628286880, 233806732478308836084, 7942546277279354556400, 269812766698548756220804, 9165691521493946935370112
Offset: 1

Views

Author

Keywords

Examples

			Triangles begins:
  n=1:     13,        84,        85;
  n=2:     81,      3280,      3281;
  n=3:    477,    113764,    113765;
  ...
This sequence gives the middle column.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Cf. A002315, A377016, A377017, A377725, A362545 (short legs).

Programs

  • Mathematica
    ra[n_]:=ra[n]=Module[{ra},ra=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{2ra-1,2ra^2-2ra,2ra^2-2ra+1}];exradio={};Do[exradio=Join[exradio,FullSimplify[ra[n]]],{n,0,10}];exradio

Formula

a(n) = 2 * A002315(n) * (A002315(n) - 1).

A378965 Semiperimeter of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

1, 91, 3321, 114003, 3879505, 131828203, 4478506761, 152138726691, 5168245923361, 175568267678203, 5964153117476505, 202605639255558003, 6882627590483364721, 233806732489121022091, 7942546277342372594601, 269812766698916052264003, 9165691521496087693591105, 311363698964228006760021403
Offset: 0

Views

Author

Keywords

Examples

			For n=2, the short leg is A377726(2,1) = 13, the long leg is A377725(2,2) = 842 and the hypotenuse is A377725(2,3) = 85 so the semiperimeter is then a(2) = (13 + 84 + 85)/2 = 91.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Programs

  • Mathematica
    s[n_]:=s[n]=Module[{ra},ra=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{ra(2ra-1)}];semis={};Do[semis=Join[semis,FullSimplify[s[n]]],{n,0,17}];semis

Formula

a(n) = (A377726(n,1) + A377726(n,2) + A377726(n,3))/2.

A111647 a(n) = A001541(n)*A001653(n+1)*A002315(n).

Original entry on oeis.org

1, 105, 20213, 3998709, 791704585, 156753394977, 31036379835581, 6145046450172525, 1216688160731724433, 240898110778299543129, 47696609245941810082565, 9443687732585695622131557
Offset: 0

Views

Author

Charlie Marion, Aug 24 2005

Keywords

Examples

			a(1) = 105 = 3*5*7.
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    CoefficientList[Series[(1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)), {x, 0, 30}], x] (* G. C. Greubel, Jul 15 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1))) \\ G. C. Greubel, Jul 15 2018
    

Formula

2*a(n) = A001109(3*n+1) + A001109(n+1).
a(n) = sqrt(A011900(2*n)*A046090(2*n)*A001109(2*n+1)).
a(n) = A001541(3*n) + 2*A001109(n)*A001541(n-1)*A001541(n).
For n>0, a(n) = A001652(3*n) - A053141(2*n)*A002315(n-1) - A001652(n-1).
G.f.: (1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
2*a(n) = A001109(n+1) + A097731(n) + 6*A097731(n-1). - R. J. Mathar, Jan 31 2024
Showing 1-10 of 136 results. Next