A003215 Hex (or centered hexagonal) numbers: 3*n*(n+1)+1 (crystal ball sequence for hexagonal lattice).
1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, 3367, 3571, 3781, 3997, 4219, 4447, 4681, 4921, 5167, 5419, 5677, 5941, 6211, 6487, 6769
Offset: 0
Examples
G.f. = 1 + 7*x + 19*x^2 + 37*x^3 + 61*x^4 + 91*x^5 + 127*x^6 + 169*x^7 + 217*x^8 + ... From _Omar E. Pol_, Aug 21 2011: (Start) Illustration of initial terms: . . o o o o . o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o . o o o o . . 1 7 19 37 . (End) From _Klaus Purath_, Dec 03 2021: (Start) (1) a(19) is not a prime number, because besides a(19) = a(9) + P(29), a(19) = a(15) + P(20) = a(2) + P(33) is also true. (2) a(25) is prime, because except for a(25) = a(12) + P(38) there is no other equation of this pattern. (End)
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 81.
- M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 18.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- G. L. Alexanderson and John E. Wetzel, Dissections of a tetrahedron, J. Combinatorial Theory Ser. B 11 (1971), 58--66. MR0303412 (46 #2549). See p. 58.
- B. T. Bennett and R. B. Potts, Arrays and brooks, J. Austral. Math. Soc., 7 (1967), 23-31 (see p. 30).
- B. T. Bennett and R. B. Potts, Arrays and brooks, J. Austral. Math. Soc., 7 (1967), 23-31. [Annotated scanned copy]
- Aran Bingham, Commutative n-ary Arithmetic, University of New Orleans Theses and Dissertations, Paper 1959, 2015.
- Henry Bottomley, Illustration of initial terms.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 41.
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Dominique Désérable, Versatile Topology for Two-Dimensional Cellular Automata, Advances in Cellular Automata, Emergence, Complexity and Computation (ECC Vol 52) Springer, Cham (2025), Ch. 6, pp. 151-186.
- M. Gardner & N. J. A. Sloane, Correspondence, 1973-74
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Md. Towhidul Islam, Extending triangle
- G. S. Kazandzidis, On a Conjecture of Moessner and a General Problem, Bull. Soc. Math. Grèce, Nouvelle Série - vol. 2, fasc. 1-2, pp. 23-30 (1961).
- Ignacio Larrosa Cañestro, Hexágono y estrella determinados por tres pares de cevianas simétricas, (java applet).
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- Vladimir Pletser, Global Generalized Mersenne Numbers: Definition, Decomposition, and Generalized Theorems, Preprints.org, 2024. See p. 20.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- Eric Weisstein's World of Mathematics, Hex Number
- Eric Weisstein's World of Mathematics, Nexus Number
- Eric Weisstein's World of Mathematics, Outer Napoleon Triangle.
- Index entries for sequences related to centered polygonal numbers
- Index entries for crystal ball sequences
- Index entries for sequences related to A2 = hexagonal = triangular lattice
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A000124, A000166, A000217, A000290, A000578 (the cubes, or partial sums), A001263, A001498, A002061, A002378, A002407 (primes), A003514, A005408, A005449, A005891, A028896, A048766, A056105, A056106, A056107, A056108, A056109, A063496, A056220, A130298, A132111 (second diagonal), A158405, A215630, A239449, A243201.
See also A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A008292.
Cf. A154105.
Programs
-
Haskell
a003215 n = 3 * n * (n + 1) + 1 -- Reinhard Zumkeller, Oct 22 2011
-
Magma
[3*n*(n+1)+1: n in [0..50]]; // G. C. Greubel, Nov 04 2017
-
Maple
A003215:=n->3*n*(n+1)+1; seq(A003215(n), n=0..100); # Wesley Ivan Hurt, Mar 28 2014
-
Mathematica
FoldList[#1 + #2 &, 1, 6 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *) LinearRecurrence[{3, -3, 1}, {1, 7, 19}, 47] (* Robert G. Wilson v, Jul 06 2013 *)
-
Maxima
makelist(3*n*(n+1)+1, n, 0, 30); /* Martin Ettl, Nov 12 2012 */
-
PARI
{a(n) = 3*n*(n+1) + 1};
-
Python
[3*n*(n+1)+1 for n in range(47)] # Michael S. Branicky, Jan 07 2021
Formula
a(n) = 3*n*(n+1) + 1, n >= 0 (see the name).
a(n) = (n+1)^3 - n^3 = a(-1-n).
G.f.: (1 + 4*x + x^2) / (1 - x)^3. - Simon Plouffe in his 1992 dissertation
a(n) = 6*A000217(n) + 1.
a(n) = a(n-1) + 6*n = 2a(n-1) - a(n-2) + 6 = 3*a(n-1) - 3*a(n-2) + a(n-3) = A056105(n) + 5n = A056106(n) + 4*n = A056107(n) + 3*n = A056108(n) + 2*n = A056108(n) + n.
n-th partial arithmetic mean is n^2. - Amarnath Murthy, May 27 2003
a(n) = 1 + Sum_{j=0..n} (6*j). E.g., a(2)=19 because 1+ 6*0 + 6*1 + 6*2 = 19. - Xavier Acloque, Oct 06 2003
The sum of the first n hexagonal numbers is n^3. That is, Sum_{n>=1} (3*n*(n-1) + 1) = n^3. - Edward Weed (eweed(AT)gdrs.com), Oct 23 2003
a(n) = right term in M^n * [1 1 1], where M = the 3 X 3 matrix [1 0 0 / 2 1 0 / 3 3 1]. M^n * [1 1 1] = [1 2n+1 a(n)]. E.g., a(4) = 61, right term in M^4 * [1 1 1], since M^4 * [1 1 1] = [1 9 61] = [1 2n+1 a(4)]. - Gary W. Adamson, Dec 22 2004
Row sums of triangle A130298. - Gary W. Adamson, Jun 07 2007
a(n) = 3*n^2 + 3*n + 1. Proof: 1) If n occurs once, it may be in 3 positions; for the two other ones, n terms are independently possible, then we have 3*n^2 different triples. 2) If the term n occurs twice, the third one may be placed in 3 positions and have n possible values, then we have 3*n more different triples. 3) The term n may occurs 3 times in one way only that gives the formula. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Aug 20 2007
Binomial transform of [1, 6, 6, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 6, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = (n-1)*A000166(n) + (n-2)*A000166(n-1) = (n-1)floor(n!*e^(-1)+1) + (n-2)*floor((n-1)!*e^(-1)+1) (with offset 0). - Gary Detlefs, Dec 06 2009
a(n) = A028896(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = integral( (sin((n+1/2)x)/sin(x/2))^3, x=0..Pi)/Pi. - Yalcin Aktar, Dec 03 2011
Sum_{n>=0} 1/a(n) = Pi/sqrt(3)*tanh(Pi/(2*sqrt(3))) = 1.305284153013581... - Ant King, Jun 17 2012
a(n) = A002378(n+1) + A056220(n) = A005408(n) + 2*A005449(n) = 6*A000217(n) + 1. - Ivan N. Ianakiev, Sep 26 2013
a(n) = 6*A000124(n) - 5. - Ivan N. Ianakiev, Oct 13 2013
a(n) = A101321(6,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (1 + 6*x + 3*x^2)*exp(x). - Ilya Gutkovskiy, Jul 28 2016
a(n) = A045943(2n+1). - Miquel Cerda, Jan 22 2018
a(n) = 3*Integral_{x=n..n+1} x^2 dx. - Carmine Suriano, Apr 10 2018
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 10*e.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 2/e. (End)
G.f.: polylog(-3, x)*(1-x)/x. See the Simon Plouffe formula above, and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 08 2021
a(n) = T(n-1)^2 - 2*T(n)^2 + T(n+1)^2, n >= 1, T = triangular number A000217. - Klaus Purath, Oct 11 2021
a(n) = 1 + 2*Sum_{j=n..2n} j. - Klaus Purath, Oct 19 2021
From Leo Tavares, Dec 03 2021: (Start)
a(2*n+1) = A154105(n).
(End)
Extensions
Partially edited by Joerg Arndt, Mar 11 2010
Comments