cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A005009 a(n) = 7*2^n.

Original entry on oeis.org

7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168, 14336, 28672, 57344, 114688, 229376, 458752, 917504, 1835008, 3670016, 7340032, 14680064, 29360128, 58720256, 117440512, 234881024, 469762048, 939524096, 1879048192, 3758096384
Offset: 0

Views

Author

Keywords

Comments

The first differences are the sequence itself. - Alexandre Wajnberg & Eric Angelini, Sep 07 2005

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), this sequence (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).
Row sums of (6, 1)-Pascal triangle A093563 and of (1, 6)-Pascal triangle A096956, n>=1.

Programs

Formula

G.f.: 7/(1-2*x).
a(n) = A118416(n+1,4) for n > 3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 2*a(n-1), for n > 0, with a(0)=7 . - Philippe Deléham, Nov 23 2008
a(n) = 7 * A000079(n). - Omar E. Pol, Dec 16 2008
a(n) = A173787(n+3,n). - Reinhard Zumkeller, Feb 28 2010
Intersection of A014311 and A212191: all terms and their squares are the sum of exactly three distinct powers of 2, A000120(a(n)) = A000120(a(n)^2) = 3. - Reinhard Zumkeller, May 03 2012
G.f.: 2/x/G(0) - 1/x + 9, where G(k)= 1 + 1/(1 - x*(7*k+2)/(x*(7*k+9) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
E.g.f.: 7*exp(2*x). - Stefano Spezia, May 15 2021

A093645 (10,1) Pascal triangle.

Original entry on oeis.org

1, 10, 1, 10, 11, 1, 10, 21, 12, 1, 10, 31, 33, 13, 1, 10, 41, 64, 46, 14, 1, 10, 51, 105, 110, 60, 15, 1, 10, 61, 156, 215, 170, 75, 16, 1, 10, 71, 217, 371, 385, 245, 91, 17, 1, 10, 81, 288, 588, 756, 630, 336, 108, 18, 1, 10, 91, 369, 876, 1344, 1386, 966, 444, 126, 19, 1
Offset: 0

Views

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

The array F(10;n,m) gives in the columns m >= 1 the figurate numbers based on A017281, including the 12-gonal numbers A051624 (see the W. Lang link).
This is the tenth member, d=10, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-5 and A093644 for d=1..9.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x) := Sum_{m=0..n} a(n,m)*x^m is G(z,x) = (1+9*z)/(1-(1+x)*z).
The SW-NE diagonals give A022100(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k, k), n >= 1, with n=0 value 9. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.

Examples

			Triangle begins
   1;
  10,  1;
  10, 11,  1;
  10, 21, 12,  1;
  ...
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch. 5, pp. 109-122.

Crossrefs

Row sums: 1 for n=0 and A005015(n-1), n >= 1, alternating row sums are 1 for n=0, 9 for n=2 and 0 otherwise.
The column sequences give for m=1..9: A017281, A051624 (12-gonal), A007587, A051799, A051880, A050406, A052254, A056125, A093646.

Programs

  • Haskell
    a093645 n k = a093645_tabl !! n !! k
    a093645_row n = a093645_tabl !! n
    a093645_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [10, 1]
    -- Reinhard Zumkeller, Aug 31 2014
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := Binomial[n, k] + 9*Binomial[n-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Philippe Deléham *)

Formula

a(n, m) = F(10;n-m, m) for 0 <= m <= n, else 0, with F(10;0, 0)=1, F(10;n, 0)=10 if n >= 1 and F(10;n, m):=(10*n+m)*binomial(n+m-1, m-1)/m if m >= 1.
Recursion: a(n, m)=0 if m > n, a(0, 0)=1; a(n, 0)=10 if n >= 1; a(n, m) = a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (1+9*x)/(1-x)^(m+1), m >= 0.
T(n, k) = C(n, k) + 9*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(10 + 21*x + 12*x^2/2! + x^3/3!) = 10 + 31*x + 64*x^2/2! + 110*x^3/3! + 170*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014

A110286 a(n) = 15*2^n.

Original entry on oeis.org

15, 30, 60, 120, 240, 480, 960, 1920, 3840, 7680, 15360, 30720, 61440, 122880, 245760, 491520, 983040, 1966080, 3932160, 7864320, 15728640, 31457280, 62914560, 125829120, 251658240, 503316480, 1006632960, 2013265920, 4026531840, 8053063680, 16106127360
Offset: 0

Views

Author

Alexandre Wajnberg, Sep 07 2005

Keywords

Comments

The first differences are the sequence itself. Doubling the terms gives the same sequence (beginning one step further).

Crossrefs

Programs

Formula

G.f.: 15/(1-2x). - Philippe Deléham, Nov 23 2008
a(n) = A000079(n)*15 = A007283(n)*5 = A020714(n)*3. - Omar E. Pol, Dec 17 2008
a(n) = A173787(n+4,n). - Reinhard Zumkeller, Feb 28 2010
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
a(n) = 2*a(n-1) (with a(0)=15). - Vincenzo Librandi, Dec 26 2010
E.g.f.: 15*exp(2*x). - Stefano Spezia, May 15 2021

Extensions

Edited by Omar E. Pol, Dec 16 2008

A030067 The "Semi-Fibonacci sequence": a(1) = 1; a(n) = a(n/2) (n even); a(n) = a(n-1) + a(n-2) (n odd).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 6, 3, 9, 2, 11, 5, 16, 1, 17, 6, 23, 3, 26, 9, 35, 2, 37, 11, 48, 5, 53, 16, 69, 1, 70, 17, 87, 6, 93, 23, 116, 3, 119, 26, 145, 9, 154, 35, 189, 2, 191, 37, 228, 11, 239, 48, 287, 5, 292, 53, 345, 16, 361, 69, 430, 1, 431, 70, 501, 17, 518, 87, 605, 6, 611, 93
Offset: 1

Views

Author

Keywords

Comments

This is the "semi-Fibonacci sequence". The distinct numbers that appear are called "semi-Fibonacci numbers", and are given in A030068.
a(2n+1) >= a(2n-1) + 1 is monotonically increasing. a(2n)/n can be arbitrarily small, as a(2^n) = 1. There are probably an infinite number of primes in the sequence. - Jonathan Vos Post, Mar 28 2006
From Robert G. Wilson v, Jan 17 2014: (Start)
Positions where k occurs:
k: sequence
-:-----------------------------
1: A000079;
2: 3*A000079 = A007283;
3: 5*A000079 = A020714;
4: none in the first 10^6 terms;
5: 7*A000079 = A005009;
6: 9*A000079 = A005010;
7: none in the first 10^6 terms;
8: none in the first 10^6 terms;
9: 11*A000079 = A005015;
10: none in the first 10^6 terms;
11: 13*A000079 = A005029;
12: none in the first 10^6 terms;
(End)
Any integer N which occurs in this sequence first occurs as an odd-indexed term a(2k-1) = A030068(k-1), and thereafter at indices (2k-1)*2^j, j=1,2,3,... (Both of these statements follow immediately from the definition of even-indexed terms.) No N can occur a second time as an odd-indexed term: This follows from the definition of these terms, a(2n+1) = a(2n) + a(2n-1) = a(2n-1) + a(n), which shows that the subsequence of odd-indexed terms (A030068) is strictly increasing, and therefore equal to the range (or: set) of the semi-Fibonacci numbers. - M. F. Hasler, Mar 24 2017
The lines in the logarithmic scatterplot of the sequence corresponds to sets of indices with the same 2-adic valuation. - Rémy Sigrist, Nov 27 2017
Define the partition subsum polynomial of an integer partition m of n where m = (m_1, m_2, ...m_k) by ps(m,x) = Product_{i=1..k} (1+x^m_i). Expanding ps(m,x) gives 1+a_1 x+a_2 x^2+...+a_n x^n, where a_j is the number of ways to form the subsum j from the parts of m. Then the number of partitions m of n for which ps(m,x) has no repeated root is a(n). - George Beck, Nov 07 2018

Examples

			a(1) = 1 by definition.
a(2) = a(1) = 1.
a(3) = 1 + 1 = 2.
a(4) = a(2) = 1.
a(5) = 2 + 1 = 3.
a(6) = a(3) = 2.
a(7) = 3 + 2 = 5.
a(8) = a(4) = 1.
a(9) = 5 + 1 = 6.
a(10) = a(5) = 3.
		

Crossrefs

See A109671 for a variant.

Programs

  • Haskell
    import Data.List (transpose)
    a030067 n = a030067_list !! (n-1)
    a030067_list = concat $ transpose [scanl (+) 1 a030067_list, a030067_list]
    -- Reinhard Zumkeller, Jul 21 2013, Jul 07 2013
    
  • Maple
    f:=proc(n) option remember; if n=1 then RETURN(1) elif n mod 2 = 0 then RETURN(f(n/2)) else RETURN(f(n-1)+f(n-2)); fi; end;
  • Mathematica
    semiFibo[1] = 1; semiFibo[n_?EvenQ] := semiFibo[n] = semiFibo[n/2]; semiFibo[n_?OddQ] := semiFibo[n] = semiFibo[n - 1] + semiFibo[n - 2]; Table[semiFibo[n], {n, 80}] (* Jean-François Alcover, Aug 19 2013 *)
  • PARI
    a(n) = if(n==1, 1, if(n%2 == 0, a(n/2), a(n-1) + a(n-2)));
    vector(100, n, a(n)) \\ Altug Alkan, Oct 12 2015
    
  • Python
    a=[1]; [a.append(a[-2]+a[-1] if n%2 else a[n//2-1]) for n in range(2, 75)]
    print(a) # Michael S. Branicky, Jul 07 2022

Formula

Theorem: a(2n+1) - a(2n-1) = a(n). Proof: a(2n+1) - a(2n-1) = a(2n) + a(2n-1) - a(2n-2) - a(2n-3) = a(n) - a(n-1) + a(n-1) (induction) = a(n). - N. J. A. Sloane, May 02 2010
a(2^n - 1) = A129092(n) for n >= 1, where A129092 forms the row sums and column 0 of triangle A129100, which is defined by the nice property that column 0 of matrix power A129100^(2^k) = column k of A129100 for k > 0. - Paul D. Hanna, Dec 03 2008
G.f. g(x) satisfies (1-x^2) g(x) = (1+x-x^2) g(x^2) + x. - Robert Israel, Mar 23 2017

A091629 Product of digits associated with A091628(n). Essentially the same as A007283.

Original entry on oeis.org

6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 1

Views

Author

Enoch Haga, Jan 24 2004

Keywords

Comments

Sequence arising in Farideh Firoozbakht's solution to Prime Puzzle 251 - 23 is the only pointer prime (A089823) not containing digit "1".
The monotonic increasing value of successive product of digits strongly suggests that in successive n the digit 1 must be present.

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).

Programs

Formula

a(n) = 3 * 2^n = product of digits of A091628(n).
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 6*2^(n-1).
a(n) = 2*a(n-1), with a(1) = 6.
G.f.: 6*x/(1-2*x). (End)
E.g.f.: 3*(exp(2*x) - 1). - G. C. Greubel, Jan 05 2023

Extensions

Edited and extended by Ray Chandler, Feb 07 2004

A336101 Numbers divisible by exactly one odd prime.

Original entry on oeis.org

3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 58, 59, 61, 62, 67, 68, 71, 72, 73, 74, 76, 79, 80, 81, 82, 83, 86, 88, 89, 92, 94, 96, 97, 98, 100, 101, 103, 104
Offset: 1

Views

Author

Peter Munn, Jul 08 2020

Keywords

Comments

Numbers k for which A001221(A000265(k)) = 1. - Antti Karttunen, Jul 08 2020
Numbers whose odd part is a prime power (A246655). - Amiram Eldar, Jul 08 2020
Numbers of the form 2^r * p^q with p an odd prime (A065091), r >= 0, q >= 1. - Bernard Schott, Dec 14 2020

Crossrefs

Cf. A000265, A001221, A246655, A340373 (characteristic function).
Positions of ones in A005087.
Subsequence of A267895.
Subsequences: A007283 (3*2^n), A020714 (5*2^n), A005009 (7*2^n), A005015 (11*2^n), A005029 (13*2^n), A038550 (p*2^n, p odd prime), A065091 (odd primes), A061345 \ {1} (odd prime powers).

Programs

  • Mathematica
    Select[Range[104], PrimePowerQ[#/2^IntegerExponent[#, 2]] &] (* Amiram Eldar, Jul 08 2020 *)
  • PARI
    isA336101(n) = (1==omega(n>>valuation(n,2))); \\ Antti Karttunen, Jul 08 2020

A002089 a(n) = 11*4^n.

Original entry on oeis.org

11, 44, 176, 704, 2816, 11264, 45056, 180224, 720896, 2883584, 11534336, 46137344, 184549376, 738197504, 2952790016, 11811160064, 47244640256, 188978561024, 755914244096, 3023656976384, 12094627905536, 48378511622144, 193514046488576, 774056185954304, 3096224743817216
Offset: 0

Views

Author

Keywords

Comments

Subsequence of A000069, the odious numbers. - Reinhard Zumkeller, Aug 26 2007

Crossrefs

Bisection of A005015. Half the first differences of A072261.

Programs

Formula

From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 4*a(n-1); a(0)=11.
G.f.: 11/(1-4*x). (End)
a(n) = 11*A000302(n). - Michel Marcus, Nov 13 2013
From Elmo R. Oliveira, Apr 02 2025: (Start)
E.g.f.: 11*exp(4*x).
a(n) = A005015(2*n). (End)

A110287 a(n) = 17*2^n.

Original entry on oeis.org

17, 34, 68, 136, 272, 544, 1088, 2176, 4352, 8704, 17408, 34816, 69632, 139264, 278528, 557056, 1114112, 2228224, 4456448, 8912896, 17825792, 35651584, 71303168, 142606336, 285212672, 570425344, 1140850688, 2281701376, 4563402752, 9126805504, 18253611008
Offset: 0

Views

Author

Alexandre Wajnberg, Sep 07 2005

Keywords

Comments

The first differences are the sequence itself. Doubling the terms gives the same sequence (beginning one step further).
17 times powers of 2. - Omar E. Pol, Dec 17 2008

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A003945 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), this sequence (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).
Cf. A007283.

Programs

Formula

G.f.: 17/(1-2*x). - Philippe Deléham, Nov 23 2008
a(n) = 17*A000079(n). - Omar E. Pol, Dec 17 2008
a(n) = 2*a(n-1) (with a(0)=17). - Vincenzo Librandi, Dec 26 2010
a(n) = A173786(n+4, n) for n>3. - Reinhard Zumkeller, Feb 28 2010
E.g.f.: 17*exp(2*x). - G. C. Greubel, Jan 05 2023

Extensions

Edited by Omar E. Pol, Dec 16 2008

A086225 a(n) = 11*2^n - 1.

Original entry on oeis.org

10, 21, 43, 87, 175, 351, 703, 1407, 2815, 5631, 11263, 22527, 45055, 90111, 180223, 360447, 720895, 1441791, 2883583, 5767167, 11534335, 23068671, 46137343, 92274687, 184549375, 369098751, 738197503, 1476395007, 2952790015
Offset: 0

Views

Author

Marco Matosic, Jul 29 2003

Keywords

Comments

(a(n-1))^2 + a(n) is a square. - Vincenzo Librandi, Aug 08 2010

Crossrefs

Programs

  • Mathematica
    NestList[2#+1&,10,30] (* or *) LinearRecurrence[{3,-2},{10,21},30] (* Harvey P. Dale, Nov 25 2013 *)
  • PARI
    a(n) = 11*2^n - 1 \\ Michel Marcus, Jul 15 2013

Formula

a(n) = 2*a(n-1) + 1.
G.f.: (10 - 9*x)/((2*x - 1)*(x - 1)). - R. J. Mathar, Oct 22 2011
E.g.f.: exp(x)*(11*exp(x) - 1). - Stefano Spezia, May 05 2025

A110288 a(n) = 19*2^n.

Original entry on oeis.org

19, 38, 76, 152, 304, 608, 1216, 2432, 4864, 9728, 19456, 38912, 77824, 155648, 311296, 622592, 1245184, 2490368, 4980736, 9961472, 19922944, 39845888, 79691776, 159383552, 318767104, 637534208, 1275068416, 2550136832, 5100273664, 10200547328, 20401094656
Offset: 0

Views

Author

Alexandre Wajnberg, Sep 07 2005

Keywords

Comments

The first differences are the sequence itself. Doubling the terms gives the same sequence (beginning one step further).
19 times powers of 2. - Omar E. Pol, Dec 17 2008

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), this sequence (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).

Programs

Formula

G.f.: 19/(1-2*x). - Philippe Deléham, Nov 23 2008
a(n) = A000079(n)*19. - Omar E. Pol, Dec 17 2008
E.g.f.: 19*exp(2*x). - G. C. Greubel, Jan 04 2023

Extensions

Edited by Omar E. Pol, Dec 16 2008
Showing 1-10 of 14 results. Next