A005009 a(n) = 7*2^n.
7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168, 14336, 28672, 57344, 114688, 229376, 458752, 917504, 1835008, 3670016, 7340032, 14680064, 29360128, 58720256, 117440512, 234881024, 469762048, 939524096, 1879048192, 3758096384
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2).
Crossrefs
Programs
-
Haskell
a005009 = (* 7) . (2 ^) -- Reinhard Zumkeller, May 03 2012
-
Magma
[7*2^n:n in [0..50]]; // Vincenzo Librandi, Sep 20 2011
-
Mathematica
7*2^Range[0,50] (* Vladimir Joseph Stephan Orlovsky, Mar 14 2011 *) NestList[2#&,7,30] (* Harvey P. Dale, Aug 10 2024 *)
-
PARI
a(n)=7<
Charles R Greathouse IV, Dec 22 2011 -
SageMath
[7*2^n for n in range(51)] # G. C. Greubel, Jan 05 2023
Formula
G.f.: 7/(1-2*x).
a(n) = A118416(n+1,4) for n > 3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 2*a(n-1), for n > 0, with a(0)=7 . - Philippe Deléham, Nov 23 2008
a(n) = 7 * A000079(n). - Omar E. Pol, Dec 16 2008
a(n) = A173787(n+3,n). - Reinhard Zumkeller, Feb 28 2010
Intersection of A014311 and A212191: all terms and their squares are the sum of exactly three distinct powers of 2, A000120(a(n)) = A000120(a(n)^2) = 3. - Reinhard Zumkeller, May 03 2012
G.f.: 2/x/G(0) - 1/x + 9, where G(k)= 1 + 1/(1 - x*(7*k+2)/(x*(7*k+9) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
E.g.f.: 7*exp(2*x). - Stefano Spezia, May 15 2021
Comments