cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A064192 Triangle in which rows are permutations of the rows of A008282.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 2, 5, 4, 16, 5, 16, 10, 14, 61, 16, 61, 32, 56, 46, 272, 61, 272, 122, 256, 178, 224, 1385, 272, 1385, 544, 1324, 800, 1202, 1024, 7936, 1385, 7936, 2770, 7664, 4094, 7120, 5296, 6320, 50521, 7936, 50521, 15872, 49136, 23536, 46366, 30656, 42272, 36976
Offset: 1

Views

Author

N. J. A. Sloane, Sep 21 2001

Keywords

Comments

This triangle appears on p. 24 of the linked reference and is defined by Proposition 5.6.

Examples

			     1;
     1,   1;
     2,   1,    2;
     5,   2,    5,   4;
    16,   5,   16,  10,   14;
    61,  16,   61,  32,   56,  46;
   272,  61,  272, 122,  256, 178,  224;
  1385, 272, 1385, 544, 1324, 800, 1202, 1024;
  ...
		

Crossrefs

First column gives A000111.
Main diagonal gives A005437.
Cf. A008282.

Extensions

More terms from David Wasserman, Jul 16 2002
New offset 1 from Alois P. Heinz, Apr 28 2023

A000111 Euler or up/down numbers: e.g.f. sec(x) + tan(x). Also for n >= 2, half the number of alternating permutations on n letters (A001250).

Original entry on oeis.org

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, 22368256, 199360981, 1903757312, 19391512145, 209865342976, 2404879675441, 29088885112832, 370371188237525, 4951498053124096, 69348874393137901, 1015423886506852352, 15514534163557086905, 246921480190207983616, 4087072509293123892361
Offset: 0

Views

Author

Keywords

Comments

Number of linear extensions of the "zig-zag" poset. See ch. 3, prob. 23 of Stanley. - Mitch Harris, Dec 27 2005
Number of increasing 0-1-2 trees on n vertices. - David Callan, Dec 22 2006
Also the number of refinements of partitions. - Heinz-Richard Halder (halder.bichl(AT)t-online.de), Mar 07 2008
The ratio a(n)/n! is also the probability that n numbers x1,x2,...,xn randomly chosen uniformly and independently in [0,1] satisfy x1 > x2 < x3 > x4 < ... xn. - Pietro Majer, Jul 13 2009
For n >= 2, a(n-2) = number of permutations w of an ordered n-set {x_1 < ... x_n} with the following properties: w(1) = x_n, w(n) = x_{n-1}, w(2) > w(n-1), and neither any subword of w, nor its reversal, has the first three properties. The count is unchanged if the third condition is replaced with w(2) < w(n-1). - Jeremy L. Martin, Mar 26 2010
A partition of zigzag permutations of order n+1 by the smallest or the largest, whichever is behind. This partition has the same recurrent relation as increasing 1-2 trees of order n, by induction the bijection follows. - Wenjin Woan, May 06 2011
As can be seen from the asymptotics given in the FORMULA section, one has lim_{n->oo} 2*n*a(n-1)/a(n) = Pi; see A132049/A132050 for the simplified fractions. - M. F. Hasler, Apr 03 2013
a(n+1) is the sum of row n in triangle A008280. - Reinhard Zumkeller, Nov 05 2013
M. Josuat-Verges, J.-C. Novelli and J.-Y. Thibon (2011) give a far-reaching generalization of the bijection between Euler numbers and alternating permutations. - N. J. A. Sloane, Jul 09 2015
Number of treeshelves avoiding pattern T321. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link, see A278678 for more definitions and examples. - Sergey Kirgizov, Dec 24 2016
Number of sequences (e(1), ..., e(n-1)), 0 <= e(i) < i, such that no three terms are equal. [Theorem 7 of Corteel, Martinez, Savage, and Weselcouch] - Eric M. Schmidt, Jul 17 2017
Number of self-dual edge-labeled trees with n vertices under "mind-body" duality. Also number of self-dual rooted edge-labeled trees with n vertices. See my paper linked below. - Nikos Apostolakis, Aug 01 2018
The ratio a(n)/n! is the volume of the convex polyhedron defined as the set of (x_1,...,x_n) in [0,1]^n such that x_i + x_{i+1} <= 1 for every 1 <= i <= n-1; see the solutions by Macdonald and Nelsen to the Amer. Math. Monthly problem referenced below. - Sanjay Ramassamy, Nov 02 2018
Number of total cyclic orders on {0,1,...,n} such that the triple (i-1,i,i+1) is positively oriented for every 1 <= i <= n-1; see my paper on cyclic orders linked below. - Sanjay Ramassamy, Nov 02 2018
The number of binary, rooted, unlabeled histories with n+1 leaves (following the definition of Rosenberg 2006). Also termed Tajima trees, Tajima genealogies, or binary, rooted, unlabeled ranked trees (Palacios et al. 2015). See Disanto & Wiehe (2013) for a proof. - Noah A Rosenberg, Mar 10 2019
From Gus Wiseman, Dec 31 2019: (Start)
Also the number of non-isomorphic balanced reduced multisystems with n + 1 distinct atoms and maximum depth. A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The labeled version is A006472. For example, non-isomorphic representatives of the a(0) = 1 through a(4) = 5 multisystems are (commas elided):
{1} {12} {{1}{23}} {{{1}}{{2}{34}}} {{{{1}}}{{{2}}{{3}{45}}}}
{{{12}}{{3}{4}}} {{{{1}}}{{{23}}{{4}{5}}}}
{{{{1}{2}}}{{{3}}{{45}}}}
{{{{1}{23}}}{{{4}}{{5}}}}
{{{{12}}}{{{3}}{{4}{5}}}}
Also the number of balanced reduced multisystems with n + 1 equal atoms and maximum depth. This is possibly the meaning of Heinz-Richard Halder's comment (see also A002846, A213427, A265947). The non-maximum-depth version is A318813. For example, the a(0) = 1 through a(4) = 5 multisystems are (commas elided):
{1} {11} {{1}{11}} {{{1}}{{1}{11}}} {{{{1}}}{{{1}}{{1}{11}}}}
{{{11}}{{1}{1}}} {{{{1}}}{{{11}}{{1}{1}}}}
{{{{1}{1}}}{{{1}}{{11}}}}
{{{{1}{11}}}{{{1}}{{1}}}}
{{{{11}}}{{{1}}{{1}{1}}}}
(End)
With s_n denoting the sum of n independent uniformly random numbers chosen from [-1/2,1/2], the probability that the closest integer to s_n is even is exactly 1/2 + a(n)/(2*n!). (See Hambardzumyan et al. 2023, Appendix B.) - Suhail Sherif, Mar 31 2024
The number of permutations of size n+1 that require exactly n passes through a stack (i.e. have reverse-tier n-1) with an algorithm that prioritizes outputting the maximum possible prefix of the identity in a given pass and reverses the remainder of the permutation for prior to the next pass. - Rebecca Smith, Jun 05 2024

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 61*x^6 + 272*x^7 + 1385*x^8 + ...
Sequence starts 1,1,2,5,16,... since possibilities are {}, {A}, {AB}, {ACB, BCA}, {ACBD, ADBC, BCAD, BDAC, CDAB}, {ACBED, ADBEC, ADCEB, AEBDC, AECDB, BCAED, BDAEC, BDCEA, BEADC, BECDA, CDAEB, CDBEA, CEADB, CEBDA, DEACB, DEBCA}, etc. - _Henry Bottomley_, Jan 17 2001
		

References

  • M. D. Atkinson: Partial orders and comparison problems, Sixteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, (Boca Raton, Feb 1985), Congressus Numerantium 47, 77-88.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 34, 932.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 258-260, section #11.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 110.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262.
  • H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 66.
  • O. Heimo and A. Karttunen, Series help-mates in 8, 9 and 10 moves (Problems 2901, 2974-2976), Suomen Tehtavaniekat (Proceedings of the Finnish Chess Problem Society) vol. 60, no. 2/2006, pp. 75, 77.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 238.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 444.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 110.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 184.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1997 and Vol. 2, 1999; see Problem 5.7.

Crossrefs

Cf. A000364 (secant numbers), A000182 (tangent numbers).
Cf. A181937 for n-alternating permutations.
Cf. A109449 for an extension to an exponential Riordan array.
Column k=2 of A250261.
For 0-1-2 trees with n nodes and k leaves, see A301344.
Matula-Goebel numbers of 0-1-2 trees are A292050.
An overview over generalized Euler numbers gives A349264.

Programs

  • Haskell
    a000111 0 = 1
    a000111 n = sum $ a008280_row (n - 1)
    -- Reinhard Zumkeller, Nov 01 2013
    
  • Maple
    A000111 := n-> n!*coeff(series(sec(x)+tan(x),x,n+1), x, n);
    s := series(sec(x)+tan(x), x, 100): A000111 := n-> n!*coeff(s, x, n);
    A000111:=n->piecewise(n mod 2=1,(-1)^((n-1)/2)*2^(n+1)*(2^(n+1)-1)*bernoulli(n+1)/(n+1),(-1)^(n/2)*euler(n)):seq(A000111(n),n=0..30); A000111:=proc(n) local k: k:=floor((n+1)/2): if n mod 2=1 then RETURN((-1)^(k-1)*2^(2*k)*(2^(2*k)-1)*bernoulli(2*k)/(2*k)) else RETURN((-1)^k*euler(2*k)) fi: end:seq(A000111(n),n=0..30); (C. Ronaldo)
    T := n -> 2^n*abs(euler(n,1/2)+euler(n,1)): # Peter Luschny, Jan 25 2009
    S := proc(n,k) option remember; if k=0 then RETURN(`if`(n=0,1,0)) fi; S(n,k-1)+S(n-1,n-k) end:
    A000364 := n -> S(2*n,2*n);
    A000182 := n -> S(2*n+1,2*n+1);
    A000111 := n -> S(n,n); # Peter Luschny, Jul 29 2009
    a := n -> 2^(n+2)*n!*(sum(1/(4*k+1)^(n+1), k = -infinity..infinity))/Pi^(n+1):
    1, seq(a(n), n = 1..22); # Emeric Deutsch, Aug 17 2009
    # alternative Maple program:
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 29 2015
  • Mathematica
    n=22; CoefficientList[Series[(1+Sin[x])/Cos[x], {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011, after Michael Somos *)
    a[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)*(2^(n+1)-1)*BernoulliB[n+1])/(n+1)]]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Oct 09 2012, after C. Ronaldo *)
    ee = Table[ 2^n*EulerE[n, 1] + EulerE[n] - 1, {n, 0, 26}]; Table[ Differences[ee, n] // First // Abs, {n, 0, 26}] (* Jean-François Alcover, Mar 21 2013, after Paul Curtz *)
    a[ n_] := If[ n < 0, 0, (2 I)^n If[ EvenQ[n], EulerE[n, 1/2], EulerE[n, 0] I]]; (* Michael Somos, Aug 15 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], With[{m = n - 1}, m! SeriesCoefficient[ 1 / (1 - Sin[x]), {x, 0, m}]]]; (* Michael Somos, Aug 15 2015 *)
    s[0] = 1; s[] = 0; t[n, 0] := s[n]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0](* Jean-François Alcover, Feb 12 2016 *)
    a[n_] := If[n == 0, 1, 2*Abs[PolyLog[-n, I]]]; (* Jean-François Alcover, Dec 02 2023, after M. F. Hasler *)
    a[0] := 1; a[1] := 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] a[k] a[n - 1 - k], {k, 0, n - 2}]; Map[a, Range[0, 26]] (* Oliver Seipel, May 24 2024 after Peter Bala *)
    a[0] := 1; a[1] := 1; a[n_] := a[n] = 1/(n (n-1)) Sum[a[n-1-k] a[k] k, {k, 1, n-1}]; Map[#! a[#]&, Range[0, 26]] (* Oliver Seipel, May 27 2024 *)
  • Maxima
    a(n):=sum((if evenp(n+k) then (-1)^((n+k)/2)*sum(j!*stirling2(n,j)*2^(1-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n) else 0),k,1,n); /* Vladimir Kruchinin, Aug 19 2010 */
    
  • Maxima
    a(n):=if n<2 then 1 else 2*sum(4^m*(sum((i-(n-1)/2)^(n-1)*binomial(n-2*m-1,i-m)*(-1)^(n-i-1),i,m,(n-1)/2)),m,0,(n-2)/2); /* Vladimir Kruchinin, Aug 09 2011 */
    
  • PARI
    {a(n) = if( n<1, n==0, n--; n! * polcoeff( 1 / (1 - sin(x + x * O(x^n))), n))}; \\ Michael Somos, Feb 03 2004
    
  • PARI
    {a(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ Michael Somos, Feb 03 2004
    
  • PARI
    {a(n) = local(an); if( n<1, n>=0, an = vector(n+1, m, 1); for( m=2, n, an[m+1] = sum( k=0, m-1, binomial(m-1, k) * an[k+1] * an[m-k]) / 2); an[n+1])}; \\ Michael Somos, Feb 03 2004
    
  • PARI
    z='z+O('z^66); egf = (1+sin(z))/cos(z); Vec(serlaplace(egf)) \\ Joerg Arndt, Apr 30 2011
    
  • PARI
    A000111(n)={my(k);sum(m=0,n\2,(-1)^m*sum(j=0,k=n+1-2*m,binomial(k,j)*(-1)^j*(k-2*j)^(n+1))/k>>k)}  \\ M. F. Hasler, May 19 2012
    
  • PARI
    A000111(n)=if(n,2*abs(polylog(-n,I)),1)  \\ M. F. Hasler, May 20 2012
    
  • Python
    # requires python 3.2 or higher
    from itertools import accumulate
    A000111_list, blist = [1,1], [1]
    for n in range(10**2):
        blist = list(reversed(list(accumulate(reversed(blist))))) + [0] if n % 2 else [0]+list(accumulate(blist))
        A000111_list.append(sum(blist)) # Chai Wah Wu, Jan 29 2015
    
  • Python
    from mpmath import *
    mp.dps = 150
    l = chop(taylor(lambda x: sec(x) + tan(x), 0, 26))
    [int(fac(i) * li) for i, li in enumerate(l)]  # Indranil Ghosh, Jul 06 2017
    
  • Python
    from sympy import bernoulli, euler
    def A000111(n): return abs(((1<Chai Wah Wu, Nov 13 2024
  • Sage
    # Algorithm of L. Seidel (1877)
    def A000111_list(n) :
        R = []; A = {-1:0, 0:1}; k = 0; e = 1
        for i in (0..n) :
            Am = 0; A[k + e] = 0; e = -e
            for j in (0..i) : Am += A[k]; A[k] = Am; k += e
            R.append(Am)
        return R
    A000111_list(22) # Peter Luschny, Mar 31 2012 (revised Apr 24 2016)
    

Formula

E.g.f.: (1+sin(x))/cos(x) = tan(x) + sec(x).
E.g.f. for a(n+1) is 1/(cos(x/2) - sin(x/2))^2 = 1/(1-sin(x)) = d/dx(sec(x) + tan(x)).
E.g.f. A(x) = -log(1-sin(x)), for a(n+1). - Vladimir Kruchinin, Aug 09 2010
O.g.f.: A(x) = 1+x/(1-x-x^2/(1-2*x-3*x^2/(1-3*x-6*x^2/(1-4*x-10*x^2/(1-... -n*x-(n*(n+1)/2)*x^2/(1- ...)))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
E.g.f. A(x) = y satisfies 2y' = 1 + y^2. - Michael Somos, Feb 03 2004
a(n) = P_n(0) + Q_n(0) (see A155100 and A104035), defining Q_{-1} = 0. Cf. A156142.
2*a(n+1) = Sum_{k=0..n} binomial(n, k)*a(k)*a(n-k).
Asymptotics: a(n) ~ 2^(n+2)*n!/Pi^(n+1). For a proof, see for example Flajolet and Sedgewick.
a(n) = (n-1)*a(n-1) - Sum_{i=2..n-2} (i-1)*E(n-2, n-1-i), where E are the Entringer numbers A008281. - Jon Perry, Jun 09 2003
a(2*k) = (-1)^k euler(2k) and a(2k-1) = (-1)^(k-1)2^(2k)(2^(2k)-1) Bernoulli(2k)/(2k). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 17 2005
|a(n+1) - 2*a(n)| = A000708(n). - Philippe Deléham, Jan 13 2007
a(n) = 2^n|E(n,1/2) + E(n,1)| where E(n,x) are the Euler polynomials. - Peter Luschny, Jan 25 2009
a(n) = 2^(n+2)*n!*S(n+1)/(Pi)^(n+1), where S(n) = Sum_{k = -inf..inf} 1/(4k+1)^n (see the Elkies reference). - Emeric Deutsch, Aug 17 2009
a(n) = i^(n+1) Sum_{k=1..n+1} Sum_{j=0..k} binomial(k,j)(-1)^j (k-2j)^(n+1) (2i)^(-k) k^{-1}. - Ross Tang (ph.tchaa(AT)gmail.com), Jul 28 2010
a(n) = sum((if evenp(n+k) then (-1)^((n+k)/2)*sum(j!*Stirling2(n,j)*2^(1-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n) else 0),k,1,n), n>0. - Vladimir Kruchinin, Aug 19 2010
If n==1(mod 4) is prime, then a(n)==1(mod n); if n==3(mod 4) is prime, then a(n)==-1(mod n). - Vladimir Shevelev, Aug 31 2010
For m>=0, a(2^m)==1(mod 2^m); If p is prime, then a(2*p)==1(mod 2*p). - Vladimir Shevelev, Sep 03 2010
From Peter Bala, Jan 26 2011: (Start)
a(n) = A(n,i)/(1+i)^(n-1), where i = sqrt(-1) and {A(n,x)}n>=1 = [1,1+x,1+4*x+x^2,1+11*x+11*x^2+x^3,...] denotes the sequence of Eulerian polynomials.
Equivalently, a(n) = i^(n+1)*Sum_{k=1..n} (-1)^k*k!*Stirling2(n,k) * ((1+i)/2)^(k-1) = i^(n+1)*Sum_{k = 1..n} (-1)^k*((1+i)/2)^(k-1)* Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*j^n.
This explicit formula for a(n) can be used to obtain congruence results. For example, for odd prime p, a(p) = (-1)^((p-1)/2) (mod p), as noted by Vladimir Shevelev above.
For the corresponding type B results see A001586. For the corresponding results for plane increasing 0-1-2 trees see A080635.
For generalized Eulerian, Stirling and Bernoulli numbers associated with the zigzag numbers see A145876, A147315 and A185424, respectively. For a recursive triangle to calculate a(n) see A185414.
(End)
a(n) = I^(n+1)*2*Li_{-n}(-I) for n > 0. Li_{s}(z) is the polylogarithm. - Peter Luschny, Jul 29 2011
a(n) = 2*Sum_{m=0..(n-2)/2} 4^m*(Sum_{i=m..(n-1)/2} (i-(n-1)/2)^(n-1)*binomial(n-2*m-1,i-m)*(-1)^(n-i-1)), n > 1, a(0)=1, a(1)=1. - Vladimir Kruchinin, Aug 09 2011
a(n) = D^(n-1)(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1-x^2)*d/dx. Cf. A006154. a(n) equals the alternating sum of the nonzero elements of row n-1 of A196776. This leads to a combinatorial interpretation for a(n); for example, a(4*n+2) gives the number of ordered set partitions of 4*n+1 into k odd-sized blocks, k = 1 (mod 4), minus the number of ordered set partitions of 4*n+1 into k odd-sized blocks, k = 3 (mod 4). Cf A002017. - Peter Bala, Dec 06 2011
From Sergei N. Gladkovskii, Nov 14 2011 - Dec 23 2013: (Start)
Continued fractions:
E.g.f.: tan(x) + sec(x) = 1 + x/U(0); U(k) = 4k+1-x/(2-x/(4k+3+x/(2+x/U(k+1)))).
E.g.f.: for a(n+1) is E(x) = 1/(1-sin(x)) = 1 + x/(1 - x + x^2/G(0)); G(k) = (2*k+2)*(2*k+3)-x^2+(2*k+2)*(2*k+3)*x^2/G(k+1).
E.g.f.: for a(n+1) is E(x) = 1/(1-sin(x)) = 1/(1 - x/(1 + x^2/G(0))) ; G(k) = 8*k+6-x^2/(1 + (2*k+2)*(2*k+3)/G(k+1)).
E.g.f.: for a(n+1) is E(x) = 1/(1 - sin(x)) = 1/(1 - x*G(0)); G(k) = 1 - x^2/(2*(2*k+1)*(4*k+3) - 2*x^2*(2*k+1)*(4*k+3)/(x^2 - 4*(k+1)*(4*k+5)/G(k+1))).
E.g.f.: for a(n+1) is E(x) = 1/(1 - sin(x)) = 1/(1 - x*G(0)) where G(k)= 1 - x^2/( (2*k+1)*(2*k+3) - (2*k+1)*(2*k+3)^2/(2*k+3 - (2*k+2)/G(k+1))).
E.g.f.: tan(x) + sec(x) = 1 + 2*x/(U(0)-x) where U(k) = 4k+2 - x^2/U(k+1).
E.g.f.: tan(x) + sec(x) = 1 + 2*x/(2*U(0)-x) where U(k) = 4*k+1 - x^2/(16*k+12 - x^2/U(k+1)).
E.g.f.: tan(x) + sec(x) = 4/(2-x*G(0))-1 where G(k) = 1 - x^2/(x^2 - 4*(2*k+1)*(2*k+3)/G(k+1)).
G.f.: 1 + x/Q(0), m=+4, u=x/2, where Q(k) = 1 - 2*u*(2*k+1) - m*u^2*(k+1)*(2*k+1)/(1 - 2*u*(2*k+2) - m*u^2*(k+1)*(2*k+3)/Q(k+1)).
G.f.: conjecture: 1 + T(0)*x/(1-x), where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x*(k+1))*(1-x*(k+2))/T(k+1)).
E.g.f.: 1+ 4*x/(T(0) - 2*x), where T(k) = 4*(2*k+1) - 4*x^2/T(k+1):
E.g.f.: T(0)-1, where T(k) = 2 + x/(4*k+1 - x/(2 - x/( 4*k+3 + x/T(k+1)))). (End)
E.g.f.: tan(x/2 + Pi/4). - Vaclav Kotesovec, Nov 08 2013
Asymptotic expansion: 4*(2*n/(Pi*e))^(n+1/2)*exp(1/2+1/(12*n) -1/(360*n^3) + 1/(1260*n^5) - ...). (See the Luschny link.) - Peter Luschny, Jul 14 2015
From Peter Bala, Sep 10 2015: (Start)
The e.g.f. A(x) = tan(x) + sec(x) satisfies A''(x) = A(x)*A'(x), hence the recurrence a(0) = 1, a(1) = 1, else a(n) = Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i).
Note, the same recurrence, but with the initial conditions a(0) = 0 and a(1) = 1, produces the sequence [0,1,0,1,0,4,0,34,0,496,...], an aerated version of A002105. (End)
a(n) = A186365(n)/n for n >= 1. - Anton Zakharov, Aug 23 2016
From Peter Luschny, Oct 27 2017: (Start)
a(n) = abs(2*4^n*(H(((-1)^n - 3)/8, -n) - H(((-1)^n - 7)/8, -n))) where H(z, r) are the generalized harmonic numbers.
a(n) = (-1)^binomial(n + 1, 2)*2^(2*n + 1)*(zeta(-n, 1 + (1/8)*(-7 + (-1)^n)) - zeta(-n, 1 + (1/8)*(-3 + (-1)^n))). (End)
a(n) = i*(i^n*Li_{-n}(-i) - (-i)^n*Li_{-n}(i)), where i is the imaginary unit and Li_{s}(z) is the polylogarithm. - Peter Luschny, Aug 28 2020
Sum_{n>=0} 1/a(n) = A340315. - Amiram Eldar, May 29 2021
a(n) = n!*Re([x^n](1 + I^(n^2 - n)*(2 - 2*I)/(exp(x) + I))). - Peter Luschny, Aug 09 2021

Extensions

Edited by M. F. Hasler, Apr 04 2013
Title corrected by Geoffrey Critzer, May 18 2013

A010094 Triangle of Euler-Bernoulli or Entringer numbers.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 4, 2, 16, 16, 14, 10, 5, 61, 61, 56, 46, 32, 16, 272, 272, 256, 224, 178, 122, 61, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 7936, 7936, 7664, 7120, 6320, 5296, 4094, 2770, 1385, 50521, 50521, 49136, 46366, 42272, 36976, 30656, 23536, 15872, 7936, 353792
Offset: 1

Views

Author

Keywords

Comments

T(n, k) is the number of up-down permutations of n starting with k where 1 <= k <= n. - Michael Somos, Jan 20 2020

Examples

			From _Vincenzo Librandi_, Aug 13 2013: (Start)
Triangle begins:
     1;
     1,    1;
     2,    2,    1;
     5,    5,    4,    2;
    16,   16,   14,   10,    5;
    61,   61,   56,   46,   32,   16;
   272,  272,  256,  224,  178,  122,   61;
  1385, 1385, 1324, 1202, 1024,  800,  544,  272;
  7936, 7936, 7664, 7120, 6320, 5296, 4094, 2770, 1385;
  ... (End)
Up-down permutations for n = 4 are k = 1: 1324, 1423; k = 2: 2314, 2413; k = 3: 3411; k = 4: none. - _Michael Somos_, Jan 20 2020
		

References

  • R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.

Crossrefs

Columns k=1,3-4 give: A000111, A006212, A006213.
Row sums give A000111(n+1).
Cf. A008282.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(o-1+j, u-j), j=1..u))
        end:
    T:= (n, k)-> b(n-k+1, k-1):
    seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Jun 03 2020
  • Mathematica
    e[0, 0] = 1; e[, 0] = 0; e[n, k_] := e[n, k] = e[n, k-1] + e[n-1, n-k]; Join[{1}, Table[e[n, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten] (* Jean-François Alcover, Aug 13 2013 *)
  • PARI
    {T(n, k) = if( n < 1 || k >= n, k == 1 && n == 1, T(n, k+1) + T(n-1, n-k))}; /* Michael Somos, Jan 20 2020 */

Formula

T(1, 1) = 1; T(n, n) = 0 if n > 1; T(n, k) = T(n, k+1) + T(n-1, n-k) if 1 <= k < n. - Michael Somos, Jan 20 2020

Extensions

More terms from Will Root (crosswind(AT)bright.net), Oct 08 2001
Irregular zeroth row deleted by N. J. A. Sloane, Jun 04 2020

A125053 Variant of triangle A008301, read by rows of 2*n+1 terms, such that the first column is the secant numbers (A000364).

Original entry on oeis.org

1, 1, 3, 1, 5, 15, 21, 15, 5, 61, 183, 285, 327, 285, 183, 61, 1385, 4155, 6681, 8475, 9129, 8475, 6681, 4155, 1385, 50521, 151563, 247065, 325947, 378105, 396363, 378105, 325947, 247065, 151563, 50521, 2702765, 8108295, 13311741, 17908935
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2006, Dec 20 2006

Keywords

Comments

Foata and Han refer to this as the triangle of Poupard numbers h_n(k). - N. J. A. Sloane, Feb 17 2014
Central terms (A125054) equal the binomial transform of the tangent numbers (A000182).

Examples

			If we write the triangle like this:
......................... ...1;
................... ...1, ...3, ...1;
............. ...5, ..15, ..21, ..15, ...5;
....... ..61, .183, .285, .327, .285, .183, ..61;
. 1385, 4155, 6681, 8475, 9129, 8475, 6681, 4155, 1385;
then the first nonzero term is the sum of the previous row:
1385 = 61 + 183 + 285 + 327 + 285 + 183 + 61,
the next term is 3 times the first:
4155 = 3*1385,
and the remaining terms in each row are obtained by the rule illustrated by:
6681 = 2*4155 - 1385 - 4*61;
8475 = 2*6681 - 4155 - 4*183;
9129 = 2*8475 - 6681 - 4*285;
8475 = 2*9129 - 8475 - 4*327;
6681 = 2*8475 - 9129 - 4*285;
4155 = 2*6681 - 8475 - 4*183;
1385 = 2*4155 - 6681 - 4*61.
An alternate recurrence is illustrated by:
4155 = 1385 + 2*(61 + 183 + 285 + 327 + 285 + 183 + 61);
6681 = 4155 + 2*(183 + 285 + 327 + 285 + 183);
8475 = 6681 + 2*(285 + 327 + 285);
9129 = 8475 + 2*(327);
and then for k>n, T(n,k) = T(n,2*n-k).
		

Crossrefs

Cf. A008301, A000364 (secant numbers, which are the row sums), A125054 (central terms), A125055, A000182, A008282.
Cf. A210111 (left half).

Programs

  • Haskell
    a125053 n k = a125053_tabf !! n !! k
    a125053_row n = a125053_tabf !! n
    a125053_tabf = iterate f [1] where
    f zs = zs' ++ reverse (init zs') where
    zs' = (sum zs) : g (map (* 2) zs) (sum zs)
    g [x] y = [x + y]
    g xs y = y' : g (tail $ init xs) y' where y' = sum xs + y
    -- Reinhard Zumkeller, Mar 17 2012
  • Maple
    T := proc(n, k) option remember; local j;
      if n = 1 then 1
    elif k = 1 then add(T(n-1, j), j=1..2*n-3)
    elif k = 2 then 3*T(n, 1)
    elif k > n then T(n, 2*n-k)
    else 2*T(n, k-1) - T(n, k-2) - 4*T(n-1, k-2)
      fi end:
    seq(print(seq(T(n,k), k=1..2*n-1)), n=1..5); # Peter Luschny, May 11 2014
  • Mathematica
    t[n_, k_] := t[n, k] = If[2*n < k || k < 0, 0, If[n == 0 && k == 0, 1, If[k == 0, Sum[t[n-1, j], {j, 0, 2*n-2}], If[k <= n, t[n, k-1] + 2*Sum[t[n-1, j], {j, k-1, 2*n-1-k}], t[n, 2*n-k]]]]]; Table[t[n, k], {n, 0, 6}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Dec 06 2012, translated from Pari *)
  • PARI
    T(n,k)=if(2*n
    				

Formula

Sum_{k=0..2n} C(2n,k)*T(n,k) = 4^n * A000182(n), where A000182 are the tangent numbers.
Sum_{k=0..2n} (-1)^n*C(2n,k)*T(n,k) = (-4)^n.

A099959 Triangle read by rows: Each row is constructed by forming the partial sums of the previous row, reading from the right and at every other row repeating the final term.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 6, 8, 8, 14, 17, 17, 17, 34, 48, 56, 56, 104, 138, 155, 155, 155, 310, 448, 552, 608, 608, 1160, 1608, 1918, 2073, 2073, 2073, 4146, 6064, 7672, 8832, 9440, 9440, 18272, 25944, 32008, 36154, 38227, 38227, 38227, 76454, 112608
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2004

Keywords

Comments

...

Examples

			Triangle begins
   1;
   1,
   1,   1;
   1,   2,
   2,   3,   3;
   3,   6,   8,
   8,  14,  17,  17;
  17,  34,  48,  56,
  56, 104, 138, 155, 155;
		

Crossrefs

First column (and row sums) gives A099960.
If an extra term is added to /every/ row we get A008282. Cf. A099961.

Programs

  • Haskell
    a099959 n k = a099959_tabl !! n !! k
    a099959_row n = a099959_tabl !! n
    a099959_tabl = map snd $ iterate f (False,[1]) where
       f (s,xs) = (not s, if s then zs ++ [last zs] else zs)
         where zs = scanl1 (+) (reverse xs)
    -- Reinhard Zumkeller, Dec 28 2011
  • Maple
    with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n,p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j],j=1..i): vector(n,q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j],j=1..i) else sum(a[j],j=1..n) fi end: vector(n+1,q) end: R[0]:=vector(1,1): for n from 1 to 18 do if n mod 2 = 1 then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: for n from 0 to 18 do evalm(R[n]) od; # program yields the successive rows # Emeric Deutsch, Nov 16 2004
  • Mathematica
    row[0] = row[1] = {1}; row[n_?OddQ] := Accumulate[ Reverse[ row[n-1] ] ]; row[n_?EvenQ] := (r = Accumulate[ Reverse[ row[n-1] ] ]; AppendTo[r, Last[r] ]); Flatten[ Table[ row[n], {n, 0, 13}]] (* Jean-François Alcover, Dec 16 2011 *)

Extensions

More terms from Emeric Deutsch, Nov 16 2004

A099961 Triangle read by rows: Each row is constructed by forming the partial sums of the previous row, reading from the right and at every third row repeating the final term.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 5, 10, 13, 13, 23, 28, 28, 51, 64, 64, 64, 128, 179, 207, 207, 386, 514, 578, 578, 1092, 1478, 1685, 1685, 1685, 3370, 4848, 5940, 6518, 6518, 12458, 17306, 20676, 22361, 22361, 43037, 60343, 72801, 79319, 79319, 79319
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2004

Keywords

Comments

...

Examples

			Triangle begins
   1;
   1,
   1,  1;
   1,  2,
   2,  3,
   3,  5,  5;
   5, 10, 13,
  13, 23, 28,
  28, 51, 64, 64;
		

Crossrefs

First column (and row sums) gives A099962. Cf. A099963, A099967.
If an extra term is added to /every/ row we get A008282. Cf. A099959.

Programs

  • Haskell
    a099961 n k = a099961_tabl !! n !! k
    a099961_row n = a099961_tabl !! n
    a099961_tabl = map snd $ iterate f (0,[1]) where
       f (s,xs) = (s+1, if s `mod` 3 == 1 then zs ++ [last zs] else zs)
         where zs = scanl1 (+) (reverse xs)
    -- Reinhard Zumkeller, Dec 28 2011
  • Maple
    with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n,p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j],j=1..i): vector(n,q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j],j=1..i) else sum(a[j],j=1..n) fi end: vector(n+1,q) end: R[0]:=vector(1,1): for n from 1 to 19 do if n mod 3 = 0 or n mod 3 = 1 then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: for n from 0 to 19 do evalm(R[n]) od; # program yields the successive rows # Emeric Deutsch, Nov 16 2004
  • Mathematica
    r[0] = {1}; r[n_] := r[n] = Join[ a = Accumulate[ Reverse[r[n-1]]], If[Mod[n, 3] == 2, {Last[a]}, {}]]; Flatten[ Table[r[n], {n, 0, 15}]](* Jean-François Alcover, Mar 13 2012 *)

Extensions

More terms from Emeric Deutsch, Nov 16 2004

A005437 Column of Kempner tableau.

Original entry on oeis.org

1, 1, 1, 2, 4, 14, 46, 224, 1024, 6320, 36976, 275792, 1965664, 17180144, 144361456, 1446351104, 13997185024, 158116017920, 1731678144256, 21771730437632, 266182076161024, 3686171162253824, 49763143319190016, 752594181757712384, 11118629668610842624
Offset: 0

Views

Author

Keywords

Comments

From Peter Luschny, Jul 09 2012: (Start)
Also the central column of the Seidel-Entringer triangles A008281 and A008282.
a(n) takes alternatingly the values of the central column of the Seidel-Entriger triangles A008281 (1,1,4,46,...) and A008282 (1,2,14,224,..).
In Gelineau, Shin, and Zeng (section 6.1) twelve interpretations of the numbers can be found. (End)
This sequence is the central sequence of numbers in the following table:
A_0 1
B_1 1 0
A_2 0 1 1
B_3 2 2 1 0
A_4 0 2 4 5 5
B_5 16 16 14 10 5 0
A_6 0 16 32 46 56 61 61
B_7 272 272 256 224 178 122 61 0
where row A_k is obtained from row B_(k-1) by the sequence 0, b_1, b_1+b_2, ..., b_1+b_2+....+b_k and row B_k is obtained from the row A_(k-1) by the sequence a_1+a_2+....+a_k, ..., a_(k-1)+a_k, a_k, 0. - Sean A. Irvine, Jun 25 2016
Named after the English-American mathematician Aubrey John Kempner (1880-1973). - Amiram Eldar, Jun 23 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A064192.

Programs

  • Maple
    A005437 := proc(n) local S; S := proc(n, k) option remember; if k=0 then `if`(n=0, 1, 0) else S(n, k-1)+S(n-1, n-k) fi end: S(n, iquo(n+1, 2)) end; seq(A005437(i), i=0..24); # Peter Luschny, Jul 09 2012
  • Mathematica
    a[n_] := Module[{S}, S[m_, k_] := S[m, k] = If[k == 0, If[m == 0, 1, 0], S[m, k-1] + S[m-1, m-k]]; S[n, Quotient[n+1, 2]]];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Nov 12 2018, after Peter Luschny *)

Extensions

More terms from Sean A. Irvine, Jun 25 2016
Offset set to 0 by Peter Luschny, Oct 15 2018

A099964 Triangle read by rows: The n-th row is constructed by forming the partial sums of the previous row, reading from the right and if n is a triangular number repeating the final term.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 3, 6, 8, 8, 14, 17, 17, 31, 39, 39, 39, 78, 109, 126, 126, 235, 313, 352, 352, 665, 900, 1026, 1026, 1926, 2591, 2943, 2943, 2943, 5886, 8477, 10403, 11429, 11429, 21832, 30309, 36195, 39138, 39138, 75333, 105642, 127474, 138903
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2004

Keywords

Comments

...

Examples

			Triangle begins
     1;
     1,    1;
     1,    2,
     2,    3,    3;
     3,    6,    8,
     8,   14,   17,
    17,   31,   39,   39;
    39,   78,  109,  126,
   126,  235,  313,  352,
   352,  665,  900, 1026,
  1026, 1926, 2591, 2943, 2943;
		

Crossrefs

First column (and row sums) gives A099965. Cf. A099966, A099968.
If an extra term is added to /every/ row we get A008282. Cf. A099959, A099961.
Cf. A010054.

Programs

  • Haskell
    a099964 n k = a099964_tabf !! n !! k
    a099964_row n = a099964_tabf !! n
    a099964_tabf = scanl f [1] $ tail a010054_list where
       f row t = if t == 1 then row' ++ [last row'] else row'
               where row' = scanl1 (+) $ reverse row
    -- Reinhard Zumkeller, May 02 2012
  • Maple
    with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n,p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j],j=1..i): vector(n,q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j],j=1..i) else sum(a[j],j=1..n) fi end: vector(n+1,q) end: tr:={seq(n*(n+1)/2,n=1..30)}: R[0]:=vector(1,1): for n from 1 to 15 do if member(n,tr)=false then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: for n from 0 to 15 do evalm(R[n]) od; # Emeric Deutsch, Nov 16 2004
  • Mathematica
    triQ[n_] := Reduce[ n == k(k+1)/2, k, Integers] =!= False; row[0] = {1}; row[1] = {1, 1}; row[n_] := row[n] = (ro = Accumulate[ Reverse[ row[n-1]]]; If[triQ[n], Append[ ro, Last[ro] ], ro]); Flatten[ Table[ row[n], {n, 0, 13}]](* Jean-François Alcover, Nov 24 2011 *)

Extensions

More terms from Emeric Deutsch, Nov 16 2004

A006212 Number of down-up permutations of n+3 starting with n+1.

Original entry on oeis.org

0, 1, 4, 14, 56, 256, 1324, 7664, 49136, 345856, 2652244, 22014464, 196658216, 1881389056, 19192151164, 207961585664, 2385488163296, 28879019769856, 367966308562084, 4922409168011264, 68978503204900376, 1010472388453728256, 15445185289163949004
Offset: 0

Views

Author

Keywords

Comments

Entringer numbers.

Examples

			a(2)=4 because we have 31425, 31524, 32415 and 32514.
		

References

  • R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A010094.

Programs

  • Maple
    f:=sec(x)+tan(x): fser:=series(f,x=0,30): E[0]:=1: for n from 1 to 25 do E[n]:=n!*coeff(fser,x^n) od: a:=n->sum((-1)^i*binomial(n,2*i+1)*E[n+1-2*i],i=0..1+floor((n+1)/2)): seq(a(n),n=0..18);
    # Alternatively after Alois P. Heinz in A000111:
    b := proc(u, o) option remember;
    `if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
    a := n -> b(n, 2): seq(a(n), n = 0..21); # Peter Luschny, Oct 27 2017
  • Mathematica
    t[n_, 0] := If[n == 0, 1, 0]; t[n_ , k_ ] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n + 2, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)

Formula

From Emeric Deutsch, May 15 2004: (Start)
a(n) = Sum_{i=0..1+floor((n+1)/2)} (-1)^i * binomial(n, 2*i+1) * E[n+1-2i], where E[j] = A000111(j) = j!*[x^j](sec(x) + tan(x)) are the up/down or Euler numbers.
a(n) = T(n+2, n), where T is the triangle in A008282. (End)
a(n) = E[n+2] - E[n] where E[n] = A000111(n). - Gerald McGarvey, Oct 09 2006
E.g.f.: (sec(x) + tan(x))^2/cos(x) - (sec(x) + tan(x)). - Sergei N. Gladkovskii, Jun 29 2015
a(n) ~ n! * 2^(n+4) * n^2 / Pi^(n+3). - Vaclav Kotesovec, May 07 2020

Extensions

More terms from Emeric Deutsch, May 24 2004

A241209 a(n) = E(n) - E(n+1), where E(n) are the Euler numbers A122045(n).

Original entry on oeis.org

1, 1, -1, -5, 5, 61, -61, -1385, 1385, 50521, -50521, -2702765, 2702765, 199360981, -199360981, -19391512145, 19391512145, 2404879675441, -2404879675441, -370371188237525, 370371188237525, 69348874393137901, -69348874393137901, -15514534163557086905
Offset: 0

Views

Author

Paul Curtz, Apr 17 2014

Keywords

Comments

A version of the Seidel triangle (1877) for the integer Euler numbers is
1
1 1
2 2 1
2 4 5 5
16 16 14 10 5
16 32 46 56 61 61
etc.
It is not in the OEIS. See A008282.
The first diagonal, Es(n) = 1, 1, 1, 5, 5, 61, 61, 1385, 1385, ..., comes from essentially A000364(n) repeated.
a(n) is Es(n) signed two by two.
Difference table of a(n):
1, 1, -1, -5, 5, 61, -61, -1385, ...
0, -2, -4, 10, 56, -122, -1324, ...
-2, -2, 14, 46, -178, -1202, ...
0, 16, 32, -224, -1024, ...
16, 16, -256, -800, ...
0, -272, -544, ...
-272, -272, ...
0, ...
etc.
Sum of the antidiagonals: 1, 1, -5, -11, 61, 211, -385, ... = A239322(n+1).
Main diagonal interleaved with the first upper diagonal: 1, 1, -2, -4, 14, 46, ... = signed A214267(n+1).
Inverse binomial transform (first column): A155585(n+1).
The Akiyama-Tanigawa transform applied to A046978(n+1)/A016116(n) gives
1, 1, 1/2, 0, -1/4, -1/4, -1/8, 0, ...
0, 1, 3/2, 1, 0, -3/4, -7/8, ...
-1, -1, 3/2, 4, 15/4, 3/4, ...
0, -5, -15/2, 1, 15, ...
5, 5, -51/2, -56, ...
0, 61, 183/2, ...
-61, -61, ...
0, ...
etc.
A122045(n) and A239005(n) are reciprocal sequences by their inverse binomial transform. In their respective difference table, two different signed versions of A214247(n) appear: 1) interleaved main diagonal and first under diagonal (1, -1, -1, 2, 4, -14, ...) and 2) interleaved main diagonal and first upper diagonal (1, 1, -1, -2, 4, 14, ...).

Crossrefs

Programs

  • Magma
    EulerPoly:= func< n,x | (&+[ (&+[ (-1)^j*Binomial(k,j)*(x+j)^n : j in [0..k]])/2^k: k in [0..n]]) >;
    Euler:= func< n | 2^n*EulerPoly(n, 1/2) >; // A122045
    [Euler(n) - Euler(n+1): n in [0..40]]; // G. C. Greubel, Jun 07 2023
    
  • Maple
    A241209 := proc(n) local v, k, h, m; m := `if`(n mod 2 = 0, n, n+1);
    h := k -> `if`(k mod 4 = 0, 0, (-1)^iquo(k,4));
    (-1)^n*add(2^iquo(-k,2)*h(k+1)*add((-1)^v*binomial(k,v)*(v+1)^m, v=0..k)
    ,k=0..m) end: seq(A241209(n),n=0..24); # Peter Luschny, Apr 17 2014
  • Mathematica
    skp[n_, x_]:= Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}];
    a[n_]:= skp[n, x] - skp[n+1, x]/. x->0; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Apr 17 2014, after Peter Luschny *)
    Table[EulerE[n] - EulerE[n+1], {n,0,30}] (* Vincenzo Librandi, Jan 24 2016 *)
    -Differences/@Partition[EulerE[Range[0,30]],2,1]//Flatten (* Harvey P. Dale, Apr 16 2019 *)
  • SageMath
    [euler_number(n) - euler_number(n+1) for n in range(41)] # G. C. Greubel, Jun 07 2023

Formula

a(n) = A119880(n+1) - A119880(n).
a(n) is the second column of the fractional array.
a(n) = (-1)^n*second column of the array in A239005(n).
a(n) = skp(n, 0) - skp(n+1, 0), where skp(n, x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 17 2014
E.g.f.: exp(x)/cosh(x)^2. - Sergei N. Gladkovskii, Jan 23 2016
G.f. T(0)/x-1/x, where T(k) = 1 - x*(k+1)/(x*(k+1)-(1-x)/(1-x*(k+1)/(x*(k+1)+(1-x)/T(k+1)))). - Sergei N. Gladkovskii, Jan 23 2016
Showing 1-10 of 21 results. Next