cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 46 results. Next

A248236 Egyptian fraction representation of sqrt(6) (A010464) using a greedy function.

Original entry on oeis.org

2, 3, 9, 199, 49572, 30799364495, 1408429952507887000310, 3677260735023142918878205127156519291320765, 102293202370266874495262346614859561910266026424997387777849999466054887759064682698213
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 6]]

A022840 Beatty sequence for sqrt(6).

Original entry on oeis.org

2, 4, 7, 9, 12, 14, 17, 19, 22, 24, 26, 29, 31, 34, 36, 39, 41, 44, 46, 48, 51, 53, 56, 58, 61, 63, 66, 68, 71, 73, 75, 78, 80, 83, 85, 88, 90, 93, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 124, 127, 129, 132, 134, 137, 139, 142, 144, 146
Offset: 1

Views

Author

Keywords

Comments

Complement of A138235; a(n) = A138236(A138235(n)) and A138236(a(n)) = A138235(n). - Reinhard Zumkeller, Mar 07 2008
Numbers k such that A248515(k+1) = A248515(k) + 1 = 1 + least number h such that 1 - h*sin(1/h) < 1/n^2. The difference sequence of A248515 is (0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, ...), so that A138235 = (1, 3, 5, 6, 8, ...) and A022840 = (2, 4, 7, 9, 12, 14, ...). - Clark Kimberling, Jun 16 2015

Crossrefs

Cf. A010464 (sqrt(6)), A138235 (complement), A248515.

Programs

A086180 Decimal expansion of 1 + sqrt(6).

Original entry on oeis.org

3, 4, 4, 9, 4, 8, 9, 7, 4, 2, 7, 8, 3, 1, 7, 8, 0, 9, 8, 1, 9, 7, 2, 8, 4, 0, 7, 4, 7, 0, 5, 8, 9, 1, 3, 9, 1, 9, 6, 5, 9, 4, 7, 4, 8, 0, 6, 5, 6, 6, 7, 0, 1, 2, 8, 4, 3, 2, 6, 9, 2, 5, 6, 7, 2, 5, 0, 9, 6, 0, 3, 7, 7, 4, 5, 7, 3, 1, 5, 0, 2, 6, 5, 3, 9, 8, 5, 9, 4, 3, 3, 1, 0, 4, 6, 4, 0, 2, 3, 4, 8, 1
Offset: 1

Views

Author

Eric W. Weisstein, Jul 11 2003

Keywords

Comments

Onset of 4-cycle in the logistic equation.

Examples

			3.4494897427831780981972840747058913919659474806567...
		

References

  • Gian Italo Bischi, Rosa Carini, Laura Gardini, and Paolo Tenti, Sulle orme del caos: comportamenti complessi in modelli matematici semplici. Bruno Mondadori (Milano), 2004. See pp. 83, 92, 95. (In Italian)
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.9, p. 66.

Crossrefs

Programs

Formula

Equals A010464 plus 1. - R. J. Mathar, Sep 12 2008

A115754 Decimal expansion of sqrt(3/2).

Original entry on oeis.org

1, 2, 2, 4, 7, 4, 4, 8, 7, 1, 3, 9, 1, 5, 8, 9, 0, 4, 9, 0, 9, 8, 6, 4, 2, 0, 3, 7, 3, 5, 2, 9, 4, 5, 6, 9, 5, 9, 8, 2, 9, 7, 3, 7, 4, 0, 3, 2, 8, 3, 3, 5, 0, 6, 4, 2, 1, 6, 3, 4, 6, 2, 8, 3, 6, 2, 5, 4, 8, 0, 1, 8, 8, 7, 2, 8, 6, 5, 7, 5, 1, 3, 2, 6, 9, 9, 2, 9, 7, 1, 6, 5, 5, 2, 3, 2, 0, 1, 1
Offset: 1

Views

Author

Eric Desbiaux, Jul 30 2008

Keywords

Comments

Coordinate of a control point for a degree-5 integration formula for 7 points over the unit circle. [Stroud & Secrest]
Also real and imaginary part of sqrt(-3i). - Alonso del Arte, Dec 11 2012
Area of the quadrilateral obtained when slicing a unit cube with a plane passing through opposite vertices and the middle of opposite edges. See CNRS link. - Michel Marcus, Mar 26 2016
Positive zero of the Hermite polynomial of degree 3. - A.H.M. Smeets, Jun 02 2025

Examples

			1.2247448713915890490986420373529456959829737403283350642163...
		

Crossrefs

Cf. A382713 (continued fraction), A068388 (Engel expansion).
Cf. A010464 (double), A187110 (half), A157697 (reciprocal).

Programs

  • Mathematica
    RealDigits[Sqrt[3/2], 10, 105][[1]] (* Alonso del Arte, Dec 11 2012 *)

Formula

Equals 2*A187110.
Equals Sum_{k>=0} binomial(1/2, k)/2^k. - Bruno Berselli, Sep 11 2015
From Amiram Eldar, Aug 02 2020: (Start)
Equals Product_{k>=0} (1 + (-1)^k/(6*k + 3)).
Equals Sum_{k>=0} binomial(2*k,k)/12^k.
Equals 1 + Sum_{k>=1} (2*k - 1)!!/((2*k)!! * 3^k). (End)
Equals A010464/2. - R. J. Mathar, Feb 23 2021

A131594 Decimal expansion of sqrt(2)/3, the volume of a regular octahedron with edge length 1.

Original entry on oeis.org

4, 7, 1, 4, 0, 4, 5, 2, 0, 7, 9, 1, 0, 3, 1, 6, 8, 2, 9, 3, 3, 8, 9, 6, 2, 4, 1, 4, 0, 3, 2, 3, 2, 6, 9, 2, 8, 5, 6, 5, 5, 7, 2, 9, 1, 7, 9, 2, 3, 1, 6, 0, 2, 4, 3, 9, 2, 2, 2, 6, 5, 7, 9, 3, 3, 0, 2, 4, 4, 1, 5, 9, 4, 8, 7, 3, 6, 9, 0, 1, 2, 9, 5, 0, 1, 2, 9, 1, 7, 8, 1, 0, 9, 2, 1, 3, 8, 5, 7, 5, 7, 8, 3, 3, 7
Offset: 0

Views

Author

Omar E. Pol, Aug 30 2007

Keywords

Comments

Volume of a regular octahedron: V = ((sqrt(2))/3)* a^3, where 'a' is the edge.

Examples

			0.471404520791031682933896...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A020829 (regular tetrahedron volume), A102208 (regular icosahedron volume), A102769 (regular dodecahedron volume).
Cf. A179587.

Programs

Formula

Equals A002193/3 = A010464/A010482. - R. J. Mathar, Dec 11 2009

Extensions

More digits from R. J. Mathar, Dec 11 2009

A010480 Decimal expansion of square root of 24.

Original entry on oeis.org

4, 8, 9, 8, 9, 7, 9, 4, 8, 5, 5, 6, 6, 3, 5, 6, 1, 9, 6, 3, 9, 4, 5, 6, 8, 1, 4, 9, 4, 1, 1, 7, 8, 2, 7, 8, 3, 9, 3, 1, 8, 9, 4, 9, 6, 1, 3, 1, 3, 3, 4, 0, 2, 5, 6, 8, 6, 5, 3, 8, 5, 1, 3, 4, 5, 0, 1, 9, 2, 0, 7, 5, 4, 9, 1, 4, 6, 3, 0, 0, 5, 3, 0, 7, 9, 7, 1, 8, 8, 6, 6, 2, 0, 9, 2, 8, 0, 4, 6, 9, 6, 3, 7, 1, 8
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 4 followed by {1, 8} repeated. - Harry J. Smith, Jun 03 2009
The solution to the Lane-Emden equation for a sphere of polytropic index n = 0. - Arkadiusz Wesolowski, Nov 11 2014
Using Bretschneider's formula this is the maximum area of a quadrilateral with side lengths of 1,2,3 and 4. - Scott R. Shannon, Jan 06 2020

Examples

			4.898979485566356196394568149411782783931894961313340256865385134501920....
		

Crossrefs

Cf. A040019 (continued fraction). - Harry J. Smith, Jun 03 2009

Programs

  • Mathematica
    RealDigits[N[Sqrt[24],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 22 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(24); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010480.txt", n, " ", d));  \\ Harry J. Smith, Jun 03 2009

Formula

Equals 2*A010464. - R. J. Mathar, Jan 14 2021
Equals 4 + Sum_{k>=0} (-1)^k * binomial(2*k,k)/((k+1) * 8^k). - Amiram Eldar, May 06 2022

Extensions

Final digits of sequence corrected using the b-file. - N. J. A. Sloane, Aug 30 2009

A010485 Decimal expansion of square root of 30.

Original entry on oeis.org

5, 4, 7, 7, 2, 2, 5, 5, 7, 5, 0, 5, 1, 6, 6, 1, 1, 3, 4, 5, 6, 9, 6, 9, 7, 8, 2, 8, 0, 0, 8, 0, 2, 1, 3, 3, 9, 5, 2, 7, 4, 4, 6, 9, 4, 9, 9, 7, 9, 8, 3, 2, 5, 4, 2, 2, 6, 8, 9, 4, 4, 4, 9, 7, 3, 2, 4, 9, 3, 2, 7, 7, 1, 2, 2, 7, 2, 2, 7, 3, 3, 8, 0, 0, 8, 5, 8, 4, 3, 6, 1, 6, 3, 8, 7, 0, 6, 2, 5
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 5 followed by {2, 10} repeated. - Harry J. Smith, Jun 04 2009

Examples

			5.477225575051661134569697828008021339527446949979832542268944....
		

Crossrefs

Cf. A040024, continued fraction. - Harry J. Smith, Jun 04 2009

Programs

  • Mathematica
    RealDigits[N[Sqrt[30], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 22 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(30); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010485.txt", n, " ", d));  \\ Harry J. Smith, Jun 04 2009

Formula

Equals A010464*A002163 = 1/A020787. - R. J. Mathar, Dec 17 2024

A020763 Decimal expansion of 1/sqrt(6).

Original entry on oeis.org

4, 0, 8, 2, 4, 8, 2, 9, 0, 4, 6, 3, 8, 6, 3, 0, 1, 6, 3, 6, 6, 2, 1, 4, 0, 1, 2, 4, 5, 0, 9, 8, 1, 8, 9, 8, 6, 6, 0, 9, 9, 1, 2, 4, 6, 7, 7, 6, 1, 1, 1, 6, 8, 8, 0, 7, 2, 1, 1, 5, 4, 2, 7, 8, 7, 5, 1, 6, 0, 0, 6, 2, 9, 0, 9, 5, 5, 2, 5, 0, 4, 4, 2, 3, 3, 0, 9, 9, 0, 5, 5, 1, 7, 4, 4, 0, 0, 3, 9
Offset: 0

Views

Author

Keywords

Comments

Radius of the inscribed sphere (tangent to all faces) in a regular octahedron with unit edge. - Stanislav Sykora, Nov 21 2013

Examples

			0.408248290463863016366214012450981898660991246776111688072115427875...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. Platonic solids in radii: A020781 (tetrahedron), A179294 (icosahedron), A237603 (dodecahedron). - Stanislav Sykora, Feb 25 2014

Programs

Formula

From Michal Paulovic, Dec 09 2022: (Start)
Equals A157697/2 = A010503 * A020760 = 1/A010464.
Equals [0, 2; 2, 4] (periodic continued fraction expansion). (End)

A041007 Denominators of continued fraction convergents to sqrt(6).

Original entry on oeis.org

1, 2, 9, 20, 89, 198, 881, 1960, 8721, 19402, 86329, 192060, 854569, 1901198, 8459361, 18819920, 83739041, 186298002, 828931049, 1844160100, 8205571449, 18255302998, 81226783441, 180708869880
Offset: 0

Views

Author

Keywords

Comments

sqrt(6) = 4/2 + 4/9 + 4/(9*89) + 4/(89*881) + 4/(881*8721), ...; where sqrt(6) = 2.4494897427... and the sum of the first 5 terms of this series = 2.449489737... - Gary W. Adamson, Dec 21 2007
sqrt(6) = 2 + continued fraction [2, 4, 2, 4, 2, 4, ...] = 4/2 + 4/9 + 4/(9*89) + 4/(89*881) + 4/(881*8721) + ... - Gary W. Adamson, Dec 21 2007
Interspersion of 2 sequences, A072256 and 2*A004189. - Gerry Martens, Jun 10 2015
For n > 0, a(n) equals the permanent of the n X n tridiagonal matrix with the main diagonal alternating sequence [2, 4, 2, 4, ...] and 1's along the superdiagonal and the subdiagonal. - Rogério Serôdio, Apr 01 2018

Crossrefs

Programs

Formula

G.f.: (1+2*x-x^2)/(1-10*x^2+x^4). - Colin Barker, Dec 31 2011
From Rogério Serôdio, Apr 01 2018: (Start)
Recurrence formula: a(n) = (3 + (-1)^n)*a(n-1) + a(n-2), a(0) = 1, a(1) = 2.
Some properties:
(1) a(n)^2 - a(n-2)^2 = (3+(-1)^n)*a(2*n-1), for n > 1;
(2) a(2*n+1) = a(n)*(a(n+1) + a(n-1)), for n > 0;
(3) a(2*n) = A142239(2*n), for n >= 0;
(4) a(2*n+1) = A041007(2*n+1)/2, for n >= 0;
(5) a(2*n-1)*A142239(2*n+1) = a(n)^2 - 1, for n > 0;
(6) a(2*n) = a(n)*A142239(n) + a(n-1)*A142239(n-1), for n > 0;
(7) Sum_{k=0..n} a(2*k+1)*(A142239(2*k) + A142239(2*(k+1))) = Sum_{k=0..n} a(3+4*k);
(8) Sum_{k=0..n} (a(2*k-1) + a(2*k+1))*A142239(2*k) = Sum_{k=0..n} A142239(3+4*k). (End)
a(n) = ((2 + sqrt(6))^(n+1) - (2 - sqrt(6))^(n+1))/(sqrt(6) * 2^(ceiling(n/2) + 1)). - Robert FERREOL, Oct 14 2024

A135611 Decimal expansion of sqrt(2) + sqrt(3).

Original entry on oeis.org

3, 1, 4, 6, 2, 6, 4, 3, 6, 9, 9, 4, 1, 9, 7, 2, 3, 4, 2, 3, 2, 9, 1, 3, 5, 0, 6, 5, 7, 1, 5, 5, 7, 0, 4, 4, 5, 5, 1, 2, 4, 7, 7, 1, 2, 9, 1, 8, 7, 3, 2, 8, 7, 0, 1, 2, 3, 2, 4, 8, 6, 7, 1, 7, 4, 4, 2, 6, 6, 5, 4, 9, 5, 3, 7, 0, 9, 0, 7, 0, 7, 5, 9, 3, 1, 5, 3, 3, 7, 2, 1, 0, 8, 4, 8, 9, 0, 1, 4
Offset: 1

Views

Author

N. J. A. Sloane, Mar 03 2008

Keywords

Comments

From Alexander R. Povolotsky, Mar 04 2008: (Start)
The value of sqrt(2) + sqrt(3) ~= 3.146264369941972342329135... is "close" to Pi. [See Borel 1926. - Charles R Greathouse IV, Apr 26 2014] We can get a better approximation by solving the equation: (2-x)^(1/(2+x)) + (3-x)^(1/(2+x)) = Pi.
Olivier Gérard finds that x is 0.00343476569746030039595770020414255107204742044644777... (End)
Another approximation to Pi is (203*sqrt(2)+ 197*sqrt(3))/200 = 3.1414968... - Alexander R. Povolotsky, Mar 22 2008
Shape of a sqrt(8)-extension rectangle; see A188640. - Clark Kimberling, Apr 13 2011
This number is irrational, as instinct would indicate. Niven (1961) gives a proof of irrationality that requires first proving that sqrt(6) is irrational. - Alonso del Arte, Dec 07 2012
An algebraic integer of degree 4: largest root of x^4 - 10*x^2 + 1. - Charles R Greathouse IV, Sep 13 2013
Karl Popper considers whether this approximation to Pi might have been known to Plato, or even conjectured to be exact. - Charles R Greathouse IV, Apr 26 2014

Examples

			3.14626436994197234232913506571557044551247712918732870...
		

References

  • Emile Borel, Space and Time (1926).
  • Ivan Niven, Numbers: Rational and Irrational. New York: Random House for Yale University (1961): 44.
  • Ian Stewart & David Tall, Algebraic Number Theory and Fermat's Last Theorem, 3rd Ed. Natick, Massachusetts: A. K. Peters (2002): 44.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(2) + Sqrt(3); // G. C. Greubel, Nov 20 2018
    
  • Maple
    evalf(add(sqrt(ithprime(i)), i=1..2), 118);  # Alois P. Heinz, Jun 13 2022
  • Mathematica
    r = 8^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]] (* A135611 *)
    ContinuedFraction[t, 120]  (* A089078 *)
    RealDigits[Sqrt[2] + Sqrt[3], 10, 100][[1]] (* G. C. Greubel, Oct 22 2016 *)
  • PARI
    sqrt(2)+sqrt(3) \\ Charles R Greathouse IV, Sep 13 2013
    
  • Sage
    numerical_approx(sqrt(2)+sqrt(3), digits=100) # G. C. Greubel, Nov 20 2018

Formula

Sqrt(2)+sqrt(3) = sqrt(5+2*sqrt(6)). [Landau, p. 85] - N. J. A. Sloane, Aug 27 2018
Equals 1/A340616. - Hugo Pfoertner, May 08 2024
Equals Product_{k>=0} (((4*k + 1)*(12*k + 11))/((4*k + 3)*(12*k + 1)))^(-1)^k. - Antonio Graciá Llorente, May 22 2024
Showing 1-10 of 46 results. Next