cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A151821 Powers of 2, omitting 2 itself.

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1

Views

Author

N. J. A. Sloane, Jul 08 2009

Keywords

Comments

Different from A046055.
An elephant sequence, see A175655. For the central square just one A[5] vector, with decimal value 170, leads to this sequence. For the corner squares this vector leads to the companion sequence A095121. - Johannes W. Meijer, Aug 15 2010
This is a subsequence of A055744, numbers n such that n and phi(n) have same prime factors. - Michel Marcus, Mar 20 2015
INVERTi transform of A007483: (1, 5, 17, 61, 217, 773, ...). - Gary W. Adamson, Aug 06 2016
Nonprimes that are also powers of 2. Intersection of A000079 and A018252. - Omar E. Pol, Jan 27 2017
Also the chromatic number of the n-Keller graph. - Eric W. Weisstein, Nov 17 2017

Crossrefs

Partial sums are given by 2*A000225(n)-1, which is not the same as A000918.

Programs

Formula

G.f.: x*(1+2*x)/(1-2*x). - Philippe Deléham, Sep 17 2009
a(1) = 1 and a(n) = 3 + Sum_{k=1..n-1} a(k) for n>=2. - Joerg Arndt, Aug 15 2012
E.g.f.: exp(2*x) - x - 1. - Stefano Spezia, Jan 31 2023

A010709 Constant sequence: the all 4's sequence.

Original entry on oeis.org

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Keywords

Comments

From Klaus Brockhaus, May 25 2010: (Start)
Continued fraction expansion of 2+sqrt(5).
Decimal expansion of 4/9.
Inverse binomial transform of A020707. (End)

Crossrefs

From Klaus Brockhaus, May 25 2010: (Start)
Equals 4*A000012, 2*A007395, A010731/2, A010855/4, A010871/8.
Cf. A098317 (decimal expansion of 2+sqrt(5)), A020707 (2^(n+2)). (End)

Programs

Formula

From Klaus Brockhaus, May 25 2010: (Start)
a(n) = 4.
G.f.: 4/(1-x). (End)
E.g.f.: 4*e^x. - Vincenzo Librandi, Jan 29 2012

A300454 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2.

Original entry on oeis.org

0, 1, 2, 1, 0, 3, 4, 1, 0, 5, 8, 3, 0, 7, 14, 9, 2, 0, 9, 22, 21, 10, 2, 0, 11, 32, 41, 30, 12, 2, 0, 13, 44, 71, 70, 42, 14, 2, 0, 15, 58, 113, 140, 112, 56, 16, 2, 0, 17, 74, 169, 252, 252, 168, 72, 18, 2, 0, 19, 92, 241, 420, 504, 420, 240, 90, 20, 2, 0
Offset: 0

Views

Author

Keywords

Comments

Row sums of column 1,2 and 3 yields {4, 8, 16, 30, 52, ...}, in A046127.
Almost twice Pascal's triangle A028326 (up to horizontal shift), except column 0 to 3.
The polynomial P(n;x) = 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2 is a simplified version of the bracket polynomial associated with a twist knot of n half twists that is only concerned with the enumeration of the state diagrams. The simplification arises when the twist knot is thought of as a planar diagram with no crossing information at each double point. In this case, P(n;x) = x*(A,B,x), where (A,B,d) denotes the bracket polynomial for the n-twist knot (see links for the definition of the bracket polynomial). For example, the bracket polynomial for the trefoil (n = 2) is A^3*d^1 + 3*BA^2*d^0 + 3*AB^2*d^1 + B^3*d^2, where A and B are the "splitting variables". Then setting A = B = 1 and d = x, we obtain 3 + 4*x + x^2 (also see A299989, row 1).

Examples

			The triangle T(n,k) begins
n\k  0   1    2    3     4     5     6     7     8     9    10   11   12  13 14
0:   0   1    2    1
1:   0   3    4    1
2:   0   5    8    3
3:   0   7   14    9     2
4:   0   9   22   21    10     2
5:   0  11   32   41    30    12     2
6:   0  13   44   71    70    42    14     2
7:   0  15   58  113   140   112    56    16     2
8:   0  17   74  169   252   252   168    72    18     2
9:   0  19   92  241   420   504   420   240    90    20     2
10:  0  21  112  331   660   924   924   660   330   110    22    2
11:  0  23  134  441   990  1584  1848  1584   990   440   132   24    2
12:  0  25  158  573  1430  2574  3432  3432  2574  1430   572  156   26   2
13:  0  27  184  729  2002  4004  6006  6864  6006  4004  2002  728  182  28  2
		

References

  • Inga Johnson and Allison K. Henrich, An Interactive Introduction to Knot Theory, Dover Publications, Inc., 2017.

Crossrefs

Row sums: A020707(Pisot sequences).
Triangles related to the regular projection of some knots: A299989 (connected summed trefoils); A300184 (chain links); A300453 ((2,n)-torus knot).

Programs

  • Maxima
    P(n, x) := 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2$
    T : []$
    for i:0 thru 20 do
      T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(3, i + 1)))$
    T;
    
  • PARI
    row(n) = Vecrev(2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2);
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018

Formula

T(n,1) = A005408(n).
T(n,2) = A014206(n).
T(n,3) = A064999(n+1).
T(n,1) + T(n,2) = A002061(n+2).
T(n,1) + T(n,3) = A046127(n+1).
T(n,2) + T(n,3) = A155753(n+1).
T(n,1) + T(n,2) + T(n,3) = A046127(n+2).
T(n,k) = A028326(n,k-1), k >= 4 and n >= k - 1.
T(n,k) = A300454(n,k-1) + 2*A300454(n,k) + A007318(n,k-1), with T(n,0) = 0.
G.f: (2*x + 2)/(1 - y*(x + 1)) + (x^3 + 2*x^2 - x - 2)/(1 - y).

A051916 The Greek sequence: 2^a * 3^b * 5^c where a = 0,1,2,3,..., b,c in {0,1}, excluding the terms 1,2; that is: (a,b,c) != (0,0,0), (1,0,0).

Original entry on oeis.org

3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 128, 160, 192, 240, 256, 320, 384, 480, 512, 640, 768, 960, 1024, 1280, 1536, 1920, 2048, 2560, 3072, 3840, 4096, 5120, 6144, 7680, 8192, 10240, 12288, 15360, 16384, 20480
Offset: 1

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Dec 17 1999

Keywords

Comments

From Reinhard Zumkeller, Mar 19 2010: (Start)
Union of A007283, A020707, A020714, and A110286.
Intersection of A051037 and A003401 apart from terms 1 and 2. (End)

References

  • George E. Martin, Geometric Constructions, New York: Springer, 1997, p. 140.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x(3x^7+2x^6+2x^5+2x^4+6x^3+5x^2+4x+3)/(1-2x^4),{x,0,60}],x] (* Harvey P. Dale, Dec 23 2012 *)
  • PARI
    Vec(x*(3*x^7+2*x^6+2*x^5+2*x^4+6*x^3+5*x^2+4*x+3)/(1-2*x^4)+O(x^99)) \\ Charles R Greathouse IV, Oct 12 2012
    
  • Python
    def A051916(n): return n+2 if n<5 else (15,1,5,3)[m:=n&3]<<(n>>2)+(-2,2,0,1)[m] # Chai Wah Wu, Apr 02 2025

Formula

G.f.: x*(3*x^7 + 2*x^6 + 2*x^5 + 2*x^4 + 6*x^3 + 5*x^2 + 4*x + 3)/(1 - 2*x^4).
a(n+4) = 2*a(n) for n > 8. - Reinhard Zumkeller, Mar 19 2010
Sum_{n>=1} 1/a(n) = 17/10. - Amiram Eldar, Jan 18 2023

Extensions

More terms from James Sellers, Dec 18 1999
Offset corrected by Reinhard Zumkeller, Mar 10 2010

A198633 Total number of round trips, each of length 2*n on the graph P_3 (o-o-o).

Original entry on oeis.org

3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
Offset: 0

Views

Author

Wolfdieter Lang, Nov 02 2011

Keywords

Comments

See the array and triangle A198632 for the general case for the graph P_N (there N is n and the length is l=2*k).

Examples

			With the graph P_3 as 1-2-3:
n=0: 3, from the length 0 walks starting at 1, 2 and 3.
n=2: 8, from the walks of length 4, namely 12121, 12321, 21212, 23232, 21232, 23212, 32323 and 32123.
		

Crossrefs

Essentially the same as A000079, A020707, A077552 etc.

Programs

  • Mathematica
    Join[{3},NestList[2#&,4,30]] (* Harvey P. Dale, Nov 07 2020 *)
  • PARI
    a(n)=if(n,2<Charles R Greathouse IV, Jan 02 2012

Formula

a(n) = w(3,2*n), n>=0, with w(3,l) the total number of closed walks on the graph P_3 (the simple path with 3 points (vertices) and 2 lines (or edges)).
O.g.f. for w(3,l) (with zeros for odd l): y*(d/dy)S(3,y)/S(3,y) with y=1/x and Chebyshev S-polynomials (coefficients A049310). See A198632, also for a rewritten form.
Empirical g.f.: (3-2*x)/(1-2*x). - Colin Barker, Jan 02 2012
This g.f. follows from the Chebyshev o.g.f. given above with x -> sqrt(x). Therefore a(0) = 3 and a(n) = 2^(n+1), n >= 1. - Wolfdieter Lang, Feb 18 2013.

A166956 a(n) = 2^n +(-1)^n - 2.

Original entry on oeis.org

0, -1, 3, 5, 15, 29, 63, 125, 255, 509, 1023, 2045, 4095, 8189, 16383, 32765, 65535, 131069, 262143, 524285, 1048575, 2097149, 4194303, 8388605, 16777215, 33554429, 67108863, 134217725, 268435455, 536870909, 1073741823, 2147483645, 4294967295, 8589934589
Offset: 0

Views

Author

Paul Curtz, Oct 25 2009

Keywords

Comments

The inverse binomial transform yields 0,-1,5,-7,17,-31,..., a sign alternating variant of A014551.
In a table of a(n) and higher-order differences in successive rows, the main diagonal contains 0, 4, 8, 16, ... (zero followed by A020707).
Similar to the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero, which begins with 1,3,5,15,29,63,125. - Robert Price, Aug 08 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Magma
    [2^n-2+(-1)^n: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
  • Mathematica
    LinearRecurrence[{2,1,-2},{0,-1,3},20] (* G. C. Greubel, May 29 2016 *)

Formula

a(n) = A000079(n) - A010684(n).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
G.f.: x*(5*x -1)/((1-x)*(1-2*x)*(1+x)).
E.g.f.: exp(2*x) - 2*exp(x) + exp(-x). - G. C. Greubel, May 29 2016

Extensions

Edited and extended by R. J. Mathar, Mar 02 2010

A176040 Periodic sequence: Repeat 3, 1.

Original entry on oeis.org

3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3
Offset: 0

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Interleaving of A010701 and A000012.
Also continued fraction expansion of (3+sqrt(21))/2.
Also decimal expansion of 31/99.
Essentially first differences of A014601.
Inverse binomial transform of 3 followed by A020707.
Second inverse binomial transform of A052919 without initial term 2.
Third inverse binomial transform of A007582 without initial term 1.
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + ... is the o.g.f. for A008619. - Peter Bala, Mar 13 2015

Crossrefs

Cf. A153284, A010701 (all 3's sequence), A000012 (all 1's sequence), A090458 (decimal expansion of (3+sqrt(21))/2), A010684 (repeat 1, 3), A014601 (congruent to 0 or 3 mod 4), A020707 (2^(n+2)), A052919, A007582 (2^(n-1)*(1+2^n)), A008619.

Programs

  • Magma
    &cat[ [3, 1]: n in [0..52] ];
    [ 2+(-1)^n: n in [0..104] ];
  • Mathematica
    PadRight[{},120,{3,1}] (* or *) LinearRecurrence[{0,1},{3,1},120] (* Harvey P. Dale, Mar 11 2015 *)

Formula

a(n) = 2+(-1)^n.
a(n) = a(n-2) for n > 1; a(0) = 3, a(1) = 1.
a(n) = -a(n-1)+4 for n > 0; a(0) = 3.
a(n) = 3*((n+1) mod 2)+(n mod 2).
a(n) = A010684(n+1).
G.f.: (3+x)/((1-x)*(1+x)).
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 3, and a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(1+2^(1-s)). (End)

A293228 a(n) is the sum of proper divisors of n that are squarefree.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 3, 4, 8, 1, 12, 1, 10, 9, 3, 1, 12, 1, 18, 11, 14, 1, 12, 6, 16, 4, 24, 1, 42, 1, 3, 15, 20, 13, 12, 1, 22, 17, 18, 1, 54, 1, 36, 24, 26, 1, 12, 8, 18, 21, 42, 1, 12, 17, 24, 23, 32, 1, 72, 1, 34, 32, 3, 19, 78, 1, 54, 27, 74, 1, 12, 1, 40, 24, 60, 19, 90, 1, 18, 4, 44, 1, 96, 23, 46, 33, 36, 1, 72, 21, 72, 35, 50, 25, 12, 1, 24
Offset: 1

Views

Author

Antti Karttunen, Oct 08 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): seq(coeff(series(add(mobius(k)^2*k*x^(2*k)/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 120); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    a[n_] := Times @@ (1 + (f = FactorInteger[n])[[;; , 1]]) - If[AllTrue[f[[;;, 2]], # == 1 &], n, 0]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Oct 09 2022 *)
    Table[Total[Select[Most[Divisors[n]],SquareFreeQ]],{n,100}] (* Harvey P. Dale, Apr 20 2025 *)
  • PARI
    A293228(n) = sumdiv(n, d, (d
    				

Formula

a(n) = Sum_{d|n, dA008966(d)*d.
a(n) = A048250(n) - (A008966(n)*n).
G.f.: Sum_{k>=1} mu(k)^2*k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Oct 28 2018
From Amiram Eldar, Oct 09 2022: (Start)
a(n) = 1 iff n is a prime.
a(n) = 3 iff n is a power of 2 greater than 2 (A020707).
Sum_{k=1..n} a(k) ~ (1/2 - 3/Pi^2) * n^2. (End)

A018921 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(4,8).

Original entry on oeis.org

4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, 2031, 3736, 6872, 12640, 23249, 42762, 78652, 144664, 266079, 489396, 900140, 1655616, 3045153, 5600910, 10301680, 18947744, 34850335, 64099760, 117897840, 216847936, 398845537, 733591314, 1349284788, 2481721640
Offset: 0

Views

Author

Keywords

Comments

Not to be confused with the Pisot T(4,8) sequence, which is A020707. - R. J. Mathar, Feb 13 2016

Crossrefs

Cf. A008937.

Programs

  • Magma
    Tiv:=[4,8]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..40]]; // Bruno Berselli, Feb 17 2016
  • Mathematica
    RecurrenceTable[{a[1] == 4, a[2] == 8, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 40}] (* Bruno Berselli, Feb 17 2016 *)
    LinearRecurrence[{2,0,0,-1},{4,8,15,28},40] (* Harvey P. Dale, Mar 05 2019 *)
  • PARI
    Vec((4-x^2-2*x^3)/((1-x)*(1-x-x^2-x^3)) + O(x^40)) \\ Colin Barker, Feb 13 2016
    
  • PARI
    T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
    T(4, 8, 30) \\ Colin Barker, Feb 14 2016
    

Formula

a(n) = 2*a(n-1) - a(n-4).
G.f.: (4-x^2-2*x^3) / ((1-x)*(1-x-x^2-x^3)). - Colin Barker, Feb 08 2012
a(n) = A008937(n+3) = A027084(n+3)+1. [first index correct by R. J. Mathar, Jun 24 2020]
a(n) = 2*a(n-1) - A008937(n). - Vincenzo Librandi, Feb 12 2016

Extensions

Comments moved to formula, and typo in data fixed by Colin Barker, Feb 13 2016

A146541 Binomial transform of A010688.

Original entry on oeis.org

1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Philippe Deléham, Oct 31 2008

Keywords

Comments

Hankel transform is := 1,-48,0,0,0,0,0,0,0,...

Crossrefs

Programs

  • Mathematica
    Join[{1},2^Range[3,40]] (* Harvey P. Dale, Feb 28 2016 *)
  • PARI
    Vec((1+6*x)/(1-2*x) + O(x^50)) \\ Colin Barker, Mar 17 2016

Formula

a(0)=1, a(n) = 2^(n+2) for n>0.
a(n) = Sum_{k, 0..n} A109466(n,k)*A146534(k).
a(n) = A132479(n), n>1. - R. J. Mathar, Nov 02 2008
G.f.: (1+6*x) / (1-2*x). - Colin Barker, Mar 17 2016

Extensions

Corrected and extended by Harvey P. Dale, Feb 28 2016
Showing 1-10 of 12 results. Next