cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A004191 Expansion of 1/(1 - 12*x + x^2).

Original entry on oeis.org

1, 12, 143, 1704, 20305, 241956, 2883167, 34356048, 409389409, 4878316860, 58130412911, 692686638072, 8254109243953, 98356624289364, 1172025382228415, 13965947962451616, 166419350167190977, 1983066254043840108, 23630375698358890319, 281581442126262843720
Offset: 0

Views

Author

Keywords

Comments

Chebyshev's polynomials U(n,x) evaluated at x=6.
a(n) give all (nontrivial, integer) solutions of Pell equation b(n)^2 - 35*a(n)^2 = +1 with b(n)=A023038(n+1), n>=0.
For positive n, a(n) equals the permanent of the tridiagonal matrix of order n with 12's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,11}. - Milan Janjic, Jan 26 2015
a(n) = -a(-2-n) for all n in Z. - Michael Somos, Jun 29 2019

Examples

			G.f. = 1 + 12*x + 143*x^2 + 1704*x^3 + 20305*x^4 + 241956*x^5 + ...
		

Crossrefs

Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), this sequence (m=6), A007655 (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.

Programs

  • GAP
    m:=8;; a:=[1,2*m];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    I:=[1, 12]; [n le 2 select I[n] else 12*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jun 13 2012
    
  • Maple
    seq( simplify(ChebyshevU(n, 6)), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Table[GegenbauerC[n, 1, 6], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    CoefficientList[Series[1/(1-12*x+x^2), {x,0,30}], x] (* T. D. Noe, Aug 01 2011 *)
    LinearRecurrence[{12,-1},{1,12},30] (* Harvey P. Dale, Feb 17 2016 *)
    a[n_]:= ChebyshevU[n, 6]; (* Michael Somos, Jun 29 2019 *)
  • PARI
    Vec(1/(1-12*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    {a(n) = polchebyshev(n, 2, 6)}; \\ Michael Somos, Jun 29 2019
    
  • Sage
    [lucas_number1(n,12,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
    
  • Sage
    [chebyshev_U(n, 6) for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = S(n, 12) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310.
a(n) = ((6+sqrt(35))^(n+1) - (6-sqrt(35))^(n+1))/(2*sqrt(35)).
a(n) = sqrt((A023038(n)^2 - 1)/35).
[A077417(n), a(n)] = the 2 X 2 matrix [1,10; 1,11]^(n+1) * [1,0]. - Gary W. Adamson, Mar 19 2008
a(n) = 12*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=12. - Philippe Deléham, Nov 17 2008
a(n) = b such that (-1)^(n+1)*Integral_{x=0..Pi/2} (sin((n+1)*x))/(6+cos(x)) dx = c + b*(log(2)+log(3)-log(7)). - Francesco Daddi, Aug 01 2011
a(n) = Sum_{k=0..n} A101950(n,k)*11^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012 (Start):
Product_{n>=0} (1 + 1/a(n)) = 1/5*(5 + sqrt(35)).
Product_{n>=1} (1 - 1/a(n)) = 1/12*(5 + sqrt(35)). (End)
E.g.f.: exp(6*x)*(35*cosh(sqrt(35)*x) + 6*sqrt(35)*sinh(sqrt(35)*x))/35. - Stefano Spezia, Dec 14 2022

Extensions

Chebyshev comments and a(n) formulas from Wolfdieter Lang, Nov 08 2002

A008310 Triangle of coefficients of Chebyshev polynomials T_n(x).

Original entry on oeis.org

1, 1, -1, 2, -3, 4, 1, -8, 8, 5, -20, 16, -1, 18, -48, 32, -7, 56, -112, 64, 1, -32, 160, -256, 128, 9, -120, 432, -576, 256, -1, 50, -400, 1120, -1280, 512, -11, 220, -1232, 2816, -2816, 1024, 1, -72, 840, -3584, 6912, -6144, 2048, 13, -364, 2912, -9984, 16640, -13312, 4096
Offset: 0

Views

Author

Keywords

Comments

The row length sequence of this irregular array is A008619(n), n >= 0. Even or odd powers appear in increasing order starting with 1 or x for even or odd row numbers n, respectively. This is the standard triangle A053120 with 0 deleted. - Wolfdieter Lang, Aug 02 2014
Let T* denote the triangle obtained by replacing each number in this triangle by its absolute value. Then T* gives the coefficients for cos(nx) as a polynomial in cos x. - Clark Kimberling, Aug 04 2024

Examples

			Rows are: (1), (1), (-1,2), (-3,4), (1,-8,8), (5,-20,16) etc., since if c = cos(x): cos(0x) = 1, cos(1x) = 1c; cos(2x) = -1+2c^2; cos(3x) = -3c+4c^3, cos(4x) = 1-8c^2+8c^4, cos(5x) = 5c-20c^3+16c^5, etc.
From _Wolfdieter Lang_, Aug 02 2014: (Start)
This irregular triangle a(n,k) begins:
  n\k   0    1     2      3      4      5      6      7 ...
  0:    1
  1:    1
  2:   -1    2
  3:   -3    4
  4:    1   -8     8
  5:    5  -20    16
  6:   -1   18   -48     32
  7:   -7   56  -112     64
  8:    1  -32   160   -256    128
  9:    9 -120   432   -576    256
 10:   -1   50  -400   1120  -1280    512
 11:  -11  220 -1232   2816  -2816   1024
 12:    1  -72   840  -3584   6912  -6144   2048
 13:   13 -364  2912  -9984  16640 -13312   4096
 14:   -1   98 -1568   9408 -26880  39424 -28672   8192
 15:  -15  560 -6048  28800 -70400  92160 -61440  16384
  ...
T(4,x) = 1 - 8*x^2 + 8*x^4, T(5,x) = 5*x - 20*x^3 +16*x^5.
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • E. A. Guilleman, Synthesis of Passive Networks, Wiley, 1957, p. 593.
  • Yaroslav Zolotaryuk, J. Chris Eilbeck, "Analytical approach to the Davydov-Scott theory with on-site potential", Physical Review B 63, p543402, Jan. 2001. The authors write, "Since the algebra of these is 'hyperbolic', contrary to the usual Chebyshev polynomials defined on the interval 0 <= x <= 1, we call the set of functions (21) the hyperbolic Chebyshev polynomials." (This refers to the triangle T* described in Comments.)

Crossrefs

A039991 is a row reversed version, but has zeros which enable the triangle to be seen. Columns/diagonals are A011782, A001792, A001793, A001794, A006974, A006975, A006976 etc.
Reflection of A028297. Cf. A008312, A053112.
Row sums are one. Polynomial evaluations include A001075 (x=2), A001541 (x=3), A001091, A001079, A023038, A011943, A001081, A023039, A001085, A077422, A077424, A097308, A097310, A068203.
Cf. A053120.

Programs

  • Maple
    A008310 := proc(n,m) local x ; coeftayl(simplify(ChebyshevT(n,x),'ChebyshevT'),x=0,m) ; end: i := 0 : for n from 0 to 100 do for m from n mod 2 to n by 2 do printf("%d %d ",i,A008310(n,m)) ; i := i+1 ; od ; od ; # R. J. Mathar, Apr 20 2007
    # second Maple program:
    b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
    T:= n-> (p-> (d-> seq(coeff(p, x, d-i), i=0..d))(degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    Flatten[{1, Table[CoefficientList[ChebyshevT[n, x], x], {n, 1, 13}]}]//DeleteCases[#, 0, Infinity]& (* or *) Flatten[{1, Table[Table[((-1)^k*2^(n-2 k-1)*n*Binomial[n-k, k])/(n-k), {k, Floor[n/2], 0, -1}], {n, 1, 13}]}] (* Eugeniy Sokol, Sep 04 2019 *)

Formula

a(n,m) = 2^(m-1) * n * (-1)^((n-m)/2) * ((n+m)/2-1)! / (((n-m)/2)! * m!) if n>0. - R. J. Mathar, Apr 20 2007
From Paul Weisenhorn, Oct 02 2019: (Start)
T_n(x) = 2*x*T_(n-1)(x) - T_(n-2)(x), T_0(x) = 1, T_1(x) = x.
T_n(x) = ((x+sqrt(x^2-1))^n + (x-sqrt(x^2-1))^n)/2. (End)
From Peter Bala, Aug 15 2022: (Start)
T(n,x) = [z^n] ( z*x + sqrt(1 + z^2*(x^2 - 1)) )^n.
Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x).
exp( Sum_{n >= 1} T(n,x)*t^n/n ) = Sum_{n >= 0} P(n,x)*t^n, where P(n,x) denotes the n-th Legendre polynomial. (End)

Extensions

Additional comments and more terms from Henry Bottomley, Dec 13 2000
Edited: Corrected Cf. A039991 statement. Cf. A053120 added. - Wolfdieter Lang, Aug 06 2014

A056771 a(n) = a(-n) = 34*a(n-1) - a(n-2), and a(0)=1, a(1)=17.

Original entry on oeis.org

1, 17, 577, 19601, 665857, 22619537, 768398401, 26102926097, 886731088897, 30122754096401, 1023286908188737, 34761632124320657, 1180872205318713601, 40114893348711941777, 1362725501650887306817, 46292552162781456490001
Offset: 0

Views

Author

Henry Bottomley, Aug 16 2000

Keywords

Comments

The sequence satisfies the Pell equation a(n)^2 - 18 * A202299(n+1)^2 = 1. - Vincenzo Librandi, Dec 19 2011
Also numbers n such that n - 1 and 2*n + 2 are squares. - Arkadiusz Wesolowski, Mar 15 2015
And they, n - 1 and 2*n + 2, are the squares of A005319 and A003499. - Michel Marcus, Mar 15 2015
This sequence {a(n)} gives all the nonnegative integer solutions of the Pell equation a(n)^2 - 32*(3*A091761(n))^2 = +1. - Wolfdieter Lang, Mar 09 2019

Examples

			G.f. = 1 + 17*x + 577*x^2 + 19601*x^3 + 665857*x^4 + 22619537*x^5 + ...
		

Crossrefs

Cf. A001075, A001541, A001091, A001079, A023038, A011943, A001081, A023039, A001085 and note relationship with square triangular number sequences A001110 and A001109. A091761.
Row 3 of array A188644.

Programs

  • Magma
    I:=[1, 17]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 18 2011
    
  • Mathematica
    LinearRecurrence[{34,-1},{1,17},30] (* Vincenzo Librandi, Dec 18 2011 *)
    a[ n_] := ChebyshevT[ 2 n, 3]; (* Michael Somos, May 28 2014 *)
  • Maxima
    makelist(expand(((17+sqrt(288))^n+(17-sqrt(288))^n))/2, n, 0, 15); /* Vincenzo Librandi, Dec 18 2011 */
    
  • PARI
    {a(n) = polchebyshev( n, 1, 17)}; /* Michael Somos, Apr 05 2019 */
  • Sage
    [lucas_number2(n,34,1)/2 for n in range(0,15)] # Zerinvary Lajos, Jun 27 2008
    

Formula

a(n) = (r^n + 1/r^n)/2 with r = 17 + sqrt(17^2-1).
a(n) = 16*A001110(n) + 1 = A001541(2n) = (4*A001109(n))^2 + 1 = 3*A001109(2n-1) - A001109(2n-2) = A001109(2n) - 3*A001109(2n-1).
a(n) = T(n, 17) = T(2*n, 3) with T(n, x) Chebyshev's polynomials of the first kind. See A053120. T(n, 3)= A001541(n).
G.f.: (1-17*x)/(1-34*x+x^2).
G.f.: (1 - 17*x / (1 - 288*x / (17 - x))). - Michael Somos, Apr 05 2019
a(n) = cosh(2n*arcsinh(sqrt(8))). - Herbert Kociemba, Apr 24 2008
a(n) = (a^n + b^n)/2 where a = 17 + 12*sqrt(2) and b = 17 - 12*sqrt(2); sqrt(a(n)-1)/4 = A001109(n). - James R. Buddenhagen, Dec 09 2011
a(-n) = a(n). - Michael Somos, May 28 2014
a(n) = sqrt(1 + 32*9*A091761(n)^2), n >= 0. See one of the Pell comments above. - Wolfdieter Lang, Mar 09 2019

Extensions

More terms from James Sellers, Sep 07 2000
Chebyshev comments from Wolfdieter Lang, Nov 29 2002

A322836 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{n}(x), evaluated at x=k.

Original entry on oeis.org

1, 1, 0, 1, 1, -1, 1, 2, 1, 0, 1, 3, 7, 1, 1, 1, 4, 17, 26, 1, 0, 1, 5, 31, 99, 97, 1, -1, 1, 6, 49, 244, 577, 362, 1, 0, 1, 7, 71, 485, 1921, 3363, 1351, 1, 1, 1, 8, 97, 846, 4801, 15124, 19601, 5042, 1, 0, 1, 9, 127, 1351, 10081, 47525, 119071, 114243, 18817, 1, -1
Offset: 0

Views

Author

Seiichi Manyama, Dec 28 2018

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,      1,      1,       1, ...
   0, 1,    2,     3,      4,      5,       6, ...
  -1, 1,    7,    17,     31,     49,      71, ...
   0, 1,   26,    99,    244,    485,     846, ...
   1, 1,   97,   577,   1921,   4801,   10081, ...
   0, 1,  362,  3363,  15124,  47525,  120126, ...
  -1, 1, 1351, 19601, 119071, 470449, 1431431, ...
		

Crossrefs

Mirror of A101124.
Main diagonal gives A115066.
Cf. A323182 (Chebyshev polynomial of the second kind).

Programs

  • Mathematica
    Table[ChebyshevT[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 28 2018 *)
  • PARI
    T(n,k) = polchebyshev(n,1,k);
    matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Dec 28 2018
    
  • PARI
    T(n, k) = round(cos(n*acos(k)));\\ Seiichi Manyama, Mar 05 2021
    
  • PARI
    T(n, k) = if(n==0, 1, n*sum(j=0, n, (2*k-2)^j*binomial(n+j, 2*j)/(n+j))); \\ Seiichi Manyama, Mar 05 2021

Formula

A(0,k) = 1, A(1,k) = k and A(n,k) = 2 * k * A(n-1,k) - A(n-2,k) for n > 1.
A(n,k) = cos(n*arccos(k)). - Seiichi Manyama, Mar 05 2021
A(n,k) = n * Sum_{j=0..n} (2*k-2)^j * binomial(n+j,2*j)/(n+j) for n > 0. - Seiichi Manyama, Mar 05 2021

A101124 Number triangle associated to Chebyshev polynomials of first kind.

Original entry on oeis.org

1, 0, 1, -1, 1, 1, 0, 1, 2, 1, 1, 1, 7, 3, 1, 0, 1, 26, 17, 4, 1, -1, 1, 97, 99, 31, 5, 1, 0, 1, 362, 577, 244, 49, 6, 1, 1, 1, 1351, 3363, 1921, 485, 71, 7, 1, 0, 1, 5042, 19601, 15124, 4801, 846, 97, 8, 1, -1, 1, 18817, 114243, 119071, 47525, 10081, 1351, 127, 9, 1, 0, 1, 70226, 665857, 937444, 470449, 120126, 18817, 2024, 161
Offset: 0

Views

Author

Paul Barry, Dec 02 2004

Keywords

Examples

			As a number triangle, rows begin:
  {1},
  {0,1},
  {-1,1,1},
  {0,1,2,1},
  ...
As a square array, rows begin
   1, 1,  1,   1,    1, ...
   0, 1,  2,   3,    4, ...
  -1, 1,  7,  17,   31, ...
   0, 1, 26,  99,  244, ...
   1, 1, 97, 577, 1921, ...
		

Crossrefs

Row sums are A101125.
Diagonal sums are A101126.
Main diagonal gives A115066.
Mirror of A322836.
Cf. A053120.

Programs

  • Mathematica
    T[n_, k_] := SeriesCoefficient[x^k (1 - k x)/(1 - 2 k x + x^2), {x, 0, n}];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 12 2017 *)

Formula

Number triangle S(n, k)=T(n-k, k), k
Columns have g.f. x^k(1-kx)/(1-2kx+x^2).
Also, square array if(n=0, 1, T(n, k)) read by antidiagonals.

A080875 a(n)*a(n+3) - a(n+1)*a(n+2) = 5, given a(0)=a(1)=1, a(2)=6.

Original entry on oeis.org

1, 1, 6, 11, 71, 131, 846, 1561, 10081, 18601, 120126, 221651, 1431431, 2641211, 17057046, 31472881, 203253121, 375033361, 2421980406, 4468927451, 28860511751, 53252096051, 343904160606, 634556225161, 4097989415521
Offset: 0

Author

Paul D. Hanna, Feb 22 2003

Keywords

Crossrefs

Bisections are A023038 and A077417.

Programs

  • Mathematica
    LinearRecurrence[{0,12,0,-1},{1,1,6,11},30] (* Harvey P. Dale, Jul 14 2024 *)

Formula

G.f.: (-x^3 - 6*x^2 + x + 1)/(x^4 - 12*x^2 + 1).
a(n+4) = 12*a(n+2)-a(n). [Richard Choulet, Dec 04 2008]
a(n) = (1/4 + ((sqrt(6 + sqrt(35)) - sqrt(6 - sqrt(35)))/(4*sqrt(35))))*(sqrt(6 + sqrt(35)))^n + (1/4 + ((sqrt(6 + sqrt(35)) - sqrt(6 - sqrt(35)))/(4*sqrt(35))))*(sqrt(6 - sqrt(35)))^n + (1/4 - ((sqrt(6 + sqrt(35)) - sqrt(6 - sqrt(35)))/(4*sqrt(35))))*( - sqrt(6 + sqrt(35)))^n + (1/4 - ((sqrt(6 + sqrt(35)) - sqrt(6 - sqrt(35)))/(4*sqrt(35))))*( - (sqrt(6 - sqrt(35))))^n. [Richard Choulet, Dec 06 2008]

A087800 a(n) = 12*a(n-1) - a(n-2), with a(0) = 2 and a(1) = 12.

Original entry on oeis.org

2, 12, 142, 1692, 20162, 240252, 2862862, 34114092, 406506242, 4843960812, 57721023502, 687808321212, 8195978831042, 97663937651292, 1163771272984462, 13867591338162252, 165247324784962562, 1969100306081388492
Offset: 0

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 11 2003

Keywords

Comments

a(n+1)/a(n) converges to (6+sqrt(35)) = 11.9160797... a(0)/a(1)=2/12; a(1)/a(2)=12/142; a(2)/a(3)=142/1692; a(3)/a(4)=1692/20162; ... etc. Lim_{n->infinity} a(n)/a(n+1) = 0.0839202... = 1/(6+sqrt(35)) = (6-sqrt(35)).
Except for the first term, positive values of x (or y) satisfying x^2 - 12xy + y^2 + 140 = 0. - Colin Barker, Feb 25 2014

Examples

			a(4) = 20162 = 12a(3) - a(2) = 12*1692 - 142 = (6+sqrt(35))^4 + (6-sqrt(35))^4 = 20161.9999504 + 0.00004959 = 20162.
G.f. = 2 + 12*x + 142*x^2 + 1692*x^3 + 20162*x^4 + 240252*x^5 + ...
		

Crossrefs

Programs

  • Magma
    I:=[2,12]; [n le 2 select I[n] else 12*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 07 2018
  • Mathematica
    a[0] = 2; a[1] = 12; a[n_] := 12a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)
    CoefficientList[Series[(2 - 12 x)/(1 - 12 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 28 2014 *)
    a[ n_] := 2 ChebyshevT[ n, 6]; (* Michael Somos, May 28 2014 *)
    LinearRecurrence[{12,-1},{2,12},20] (* Harvey P. Dale, Jan 29 2019 *)
  • PARI
    Vec((2-12*x)/(1-12*x+x^2) + O(x^100)) \\ Colin Barker, Feb 25 2014
    
  • PARI
    {a(n) = 2 * polchebyshev( n, 1, 6)}; /* Michael Somos, May 28 2014 */
    
  • Sage
    [lucas_number2(n,12,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = (6+sqrt(35))^n + (6-sqrt(35))^n.
a(n) = 2*A023038(n).
G.f.: (2-12*x)/(1-12*x+x^2). - Philippe Deléham, Nov 17 2008
a(-n) = a(n). - Michael Somos, May 28 2014

A098299 Member r=14 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 14, 169, 2016, 24025, 286286, 3411409, 40650624, 484396081, 5772102350, 68780832121, 819597883104, 9766393765129, 116377127298446, 1386759133816225, 16524732478496256, 196910030608138849
Offset: 0

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Programs

  • Mathematica
    LinearRecurrence[{13, -13, 1}, {0, 1, 14}, 18] (* Michael De Vlieger, Feb 23 2021 *)

Formula

a(n) = (T(n, 6)-1)/5 with Chebyshev's polynomials of the first kind evaluated at x=6: T(n, 6)=A023038(n)= ((6+sqrt(35))^n + (6-sqrt(35))^n)/2.
a(n) = 12*a(n-1) - a(n-2) + 2, n>=2, a(0)=0, a(1)=1.
a(n) = 13*a(n-1) - 13*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=14.
G.f.: x*(1+x)/((1-x)*(1-12*x+x^2)) = x*(1+x)/(1-13*x+13*x^2-x^3) (from the Stephan link, see A092184).

A098309 Unsigned member r = -10 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 10, 121, 1440, 17161, 204490, 2436721, 29036160, 345997201, 4122930250, 49129165801, 585427059360, 6975995546521, 83126519498890, 990542238440161, 11803380341783040, 140650021862956321, 1675996882013692810, 19971312562301357401, 237979753865602596000
Offset: 0

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

((-1)^(n+1))*a(n) = S_{-10}(n), n>=0, defined in A092184.

Programs

  • Mathematica
    LinearRecurrence[{11,11,-1},{0,1,10},30] (* Harvey P. Dale, Oct 28 2019 *)
  • PARI
    concat(0, Vec(x*(1-x)/(1-11*x-11*x^2+x^3) + O(x^30))) \\ Colin Barker, Jan 31 2017

Formula

a(n) = (T(n, 6)-(-1)^n)/7, with Chebyshev's polynomials of the first kind evaluated at x=6: T(n, 6)=A023038(n)=((6+sqrt(35))^n + (6-sqrt(35))^n)/2.
a(n) = 12*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1.
a(n) = 11*a(n-1) + 11*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=10.
G.f.: x*(1-x)/((1+x)*(1-12*x+x^2)) = x*(1-x)/(1-11*x-11*x^2+x^3) (from the Stephan link, see A092184).
a(n) = (-2*(-1)^n + (6-sqrt(35))^n + (6+sqrt(35))^n) / 14. - Colin Barker, Jan 31 2017

A118894 Numbers m such that the Pell equation x^2-m*y^2=1 has fundamental solution with x even.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 27, 31, 35, 43, 47, 51, 59, 63, 67, 71, 75, 79, 83, 87, 91, 99, 103, 107, 115, 119, 123, 127, 131, 135, 139, 143, 151, 159, 163, 167, 171, 175, 179, 187, 191, 195, 199, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 263, 267
Offset: 1

Author

T. D. Noe, May 04 2006

Keywords

Comments

Numbers m such that A002350(m) is even. These m can be used to generate consecutive odd powerful numbers, as in A076445. As shown by Lang, the solution of Pell's equation is greatly simplified by Chebyshev polynomials of the first kind T(n,x), which is illustrated in A001075 for the case m=3. In that case, the solutions are x=T(n,2), for integer n>0. For any m in this sequence, let E(k)=T(m+2mk,A002350(m)). Then E(k)-1 and E(k)+1 are consecutive odd powerful numbers for k=0,1,2,...

Crossrefs

Cf. A001075, A001091, A023038, A001081, A001085, A077424, A097310 (x solutions for m=3, 15, 35, 63, 99, 143, 195).
Showing 1-10 of 11 results. Next