A046092 4 times triangular numbers: a(n) = 2*n*(n+1).
0, 4, 12, 24, 40, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612, 684, 760, 840, 924, 1012, 1104, 1200, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3280, 3444, 3612, 3784, 3960, 4140, 4324
Offset: 0
Examples
a(7)=112 because 112 = 2*7*(7+1). The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ... The first such partitions, corresponding to a(n)=1,2,3,4, are 2+2, 4+4+2+2, 6+6+4+4+2+2, 8+8+6+6+4+4+2+2. - _Augustine O. Munagi_, Dec 18 2008
References
- George E. Andrews and Bruce C. Berndt, Ramanujan's Lost Notebook, Part I, Springer, 2005.
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
- Albert H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
- Ronald L. Graham, D. E. Knuth and Oren Patashnik, Concrete Mathematics, Reading, Massachusetts: Addison-Wesley, 1994.
- Peter Winkler, Mathematical Mind-Benders, Wellesley, Massachusetts: A K Peters, 2007.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- H. J. Brothers, Pascal's Prism: Supplementary Material.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, preprint, 2016.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, Vol. 13, No. 4 (2017), Article #47.
- Z. Janelidze, F. van Niekerk, and J. Viljoen, What is the maximal connected partial symmetry index of a connected graph of a given size?, arXiv:2502.00704 [math.CO], 2025. See p. 3.
- Milan Janjic, Two Enumerative Functions
- Ron Knott, Pythagorean Triples and Online Calculators
- Tanya Khovanova, A Miracle Equation.
- Augustine O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501. [From _Augustine O. Munagi_, Dec 18 2008]
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Rusliansyah D. Suprijanto, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226.
- Leo Tavares, Illustration: Diamond Rows
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Eric Weisstein's World of Mathematics, Aztec Diamond.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Connected Dominating Set.
- Eric Weisstein's World of Mathematics, Gear Graph.
- Eric Weisstein's World of Mathematics, Hamiltonian Path.
- Eric Weisstein's World of Mathematics, Pythagorean Triple.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Haskell
a046092 = (* 2) . a002378 -- Reinhard Zumkeller, Dec 15 2013
-
Magma
[2*n*(n+1): n in [0..50]]; // Vincenzo Librandi, Oct 04 2011
-
Mathematica
Table[2 n (n + 1), {n, 0, 50}] (* Stefan Steinerberger, Apr 03 2006 *) LinearRecurrence[{3, -3, 1}, {0, 4, 12}, 50] (* Harvey P. Dale, Jul 25 2011 *) 4*Binomial[Range[50], 2] (* Harvey P. Dale, Jul 25 2011 *)
-
Maxima
A046092(n):=2*n*(n+1)$ makelist(A046092(n),n,0,30); /* Martin Ettl, Nov 08 2012 */
-
PARI
a(n)=binomial(n+1,2)<<2 \\ Charles R Greathouse IV, Jun 10 2011
-
Python
def A046092(n): return n*(n+1)<<1 # Chai Wah Wu, Mar 11 2025
Formula
a(n) = A100345(n+1, n-1) for n>0.
a(n) = C(2n, 2) - n = 4*C(n, 2). - Zerinvary Lajos, Feb 15 2005
From Lekraj Beedassy, Jun 04 2006: (Start)
a(n) - a(n-1)=4*n.
Let k=a(n). Then a(n+1) = k + 2*(1 + sqrt(2k + 1)). (End)
O.g.f.:4*x/(1-x)^3; e.g.f.: exp(x)*(2*x^2+4*x). - Geoffrey Critzer, May 17 2009
From Stephen Crowley, Jul 26 2009: (Start)
a(n) = 1/int(-(x*n+x-1)*(step((-1+x*n)/n)-1)*n*step((x*n+x-1)/(n+1)),x=0..1) where step(x)=piecewise(x<0,0,0<=x,1) is the Heaviside step function.
Sum_{n>=1} 1/a(n) = 1/2. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=4, a(2)=12. - Harvey P. Dale, Jul 25 2011
For n > 0, a(n) = 1/(Integral_{x=0..Pi/2} (sin(x))^(2*n-1)*(cos(x))^3). - Francesco Daddi, Aug 02 2011
a(n) = A001844(n) - 1. - Omar E. Pol, Oct 03 2011
(a(n) - A000217(k))^2 = A000217(2n-k)*A000217(2n+1+k) - (A002378(n) - A000217(k)), for all k. See also A001105. - Charlie Marion, May 09 2013
From Ivan N. Ianakiev, Aug 30 2013: (Start)
a(n)*(2m+1)^2 + a(m) = a(n*(2m+1)+m), for any nonnegative integers n and m.
t(k)*a(n) + t(k-1)*a(n+1) = a((n+1)*(t(k)-t(k-1)-1)), where k>=2, n>=1, t(k)=A000217(k). (End)
a(n) = A245300(n,n). - Reinhard Zumkeller, Jul 17 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) - 1/2 = A187832. - Ilya Gutkovskiy, Mar 16 2017
a(n) = lcm(2*n,2*n+2). - Enrique Navarrete, Aug 30 2017
a(n)*a(n+k) + k^2 = m^2 (a perfect square), n >= 1, k >= 0. - Ezhilarasu Velayutham, May 13 2019
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = cosh(Pi/2)/(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = -2*cos(sqrt(3)*Pi/2)/Pi. (End)
Comments