cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 142 results. Next

A209271 Primes p such that A066272(p)*p+1 is also prime, where A066272 is the number of anti-divisors.

Original entry on oeis.org

5, 13, 181, 613, 761, 1201, 8581, 9661, 21013, 26681, 34061, 59513, 68821, 101701, 156241, 584281, 637321, 718801, 782501, 787513, 1078981, 1193513, 1336613, 1470613, 1529501, 1639861, 1757813, 2103301, 2257813, 2287661, 2601481, 3540461, 4307113
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2013

Keywords

Comments

Could be called "Sophie Germain anti-primes" or "anti-Sophie Germain primes". Inspired by the Gerasimov link.
Sophie Germain primes are such that 2p+1 is also prime, where 2 is the number of divisors of p. Here this is replaced with the number of anti-divisors.
There are only 47 such primes below 10^7.

Crossrefs

Cf. A066272.

Programs

  • PARI
    {forprime(n=1,default(primelimit),isprime(A066272(n)*n+1) & print1(n","))}

A073638 Number of anti-divisors of n (A066272) sets a record.

Original entry on oeis.org

1, 3, 5, 7, 13, 17, 32, 38, 67, 137, 203, 247, 472, 578, 682, 787, 1463, 2047, 2363, 3465, 5197, 5198, 8662, 13513, 15593, 22522, 22523, 29452, 60638, 67567, 67568, 98753, 112612, 157658, 202702, 337837, 337838, 427927, 713212, 788287, 788288, 1013512
Offset: 1

Views

Author

Jason Earls, Sep 01 2002

Keywords

Comments

antid(n) > antid(k) for all k < n.
Note that several of these come in pairs, i.e., 5197 & 5198, 22522 & 22523, 67567 & 67568, 337837 & 337838, 788287 & 788288, 1013512 & 1013513 and 1914412 & 1914413 to name a few. See A093071 for more. - Robert G. Wilson v, Mar 17 2004
See A066272 for definition of anti-divisor.

Programs

  • Mathematica
    antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 &], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n &]; a = 0; Do[b = Length[ antid[ n]]; If[b > a, Print[n]; a = b], {n, 1, 1013513}] (* Robert G. Wilson v, Mar 17 2004 *)

Extensions

More terms from Robert G. Wilson v, Mar 17 2004

A066980 Numbers k such that antid(k) > antid(k+1) and santid(k) > santid(k+1), where antid(k) = A066272 and santid(k) = A066417.

Original entry on oeis.org

5, 7, 13, 15, 18, 23, 25, 28, 32, 33, 35, 38, 43, 45, 47, 50, 53, 55, 60, 63, 67, 68, 73, 77, 78, 83, 85, 88, 95, 98, 105, 108, 110, 113, 115, 117, 123, 127, 128, 130, 133, 137, 138, 140, 143, 145, 150, 153, 155, 158, 162, 163, 165, 168, 172, 173, 175, 176, 178, 182
Offset: 1

Views

Author

Jason Earls, Sep 09 2002

Keywords

Crossrefs

A073547 Numbers k such that antid(k) = antid(k+1), where antid(k) = A066272(k).

Original entry on oeis.org

1, 3, 8, 10, 14, 19, 20, 22, 27, 29, 40, 42, 46, 49, 52, 58, 65, 70, 74, 75, 82, 87, 90, 91, 94, 102, 103, 112, 116, 118, 122, 124, 131, 135, 148, 149, 151, 154, 157, 159, 171, 180, 183, 187, 188, 198, 204, 205, 208, 212, 213, 214, 217, 220, 222, 227, 231, 232
Offset: 1

Views

Author

Jason Earls, Aug 31 2002

Keywords

Crossrefs

Cf. A066272.

Programs

  • Maple
    N:= 1000: # to get all terms <= N-1
    V:= Vector(N):
    for k from 1 to floor(N/3) do
      R1:= [seq(i, i=3*k .. N, 2*k)];
      V[R1]:= map(`+`,V[R1],1);
      R2:= [seq(i, i=3*k+1 .. N, 2*k+1)];
      V[R2]:= map(`+`,V[R2],1);
      R3:= [seq(i,i=3*k+2 .. N, 2*k+1)];
      V[R3]:= map(`+`,V[R3],1);
    od:
    select(t -> V[t]=V[t+1], [$1..N-1]); # Robert Israel, Sep 26 2016
  • Mathematica
    at[n_] := Count[Flatten[Quotient[#, Rest[Select[Divisors[#], OddQ]]] & /@ (2 n + Range[-1, 1])], Except[1]]; Select[Range[232], at[#] == at[# + 1] &] (* Jayanta Basu, Jul 01 2013 *)

A093071 Lesser of a pair of records in A066272.

Original entry on oeis.org

5197, 22522, 67567, 337837, 788287, 1013512, 1914412, 17229712, 50923372, 65472907, 132094462, 254616862, 327364537, 2291551762, 5856187837, 12548973937, 72784048837, 158117071612, 218352146512, 363920244187
Offset: 1

Views

Author

Robert G. Wilson v and Jon Perry, Mar 17 2004

Keywords

Comments

Or the lesser of a pair in A073638.
See A066272 for definition of anti-divisor.

A073569 Numbers k such that A002034(k) = A066272(k).

Original entry on oeis.org

63, 72, 126, 140, 180, 189, 210, 225, 252, 275, 325, 378, 405, 500, 504, 560, 585, 715, 756, 810, 819, 875, 891, 900, 1001, 1080, 1134, 1152, 1232, 1292, 1530, 1600, 1650, 1680, 1785, 1872, 2093, 2128, 2250, 2295, 2340, 2376, 2464, 2565, 2574
Offset: 1

Views

Author

Jason Earls, Aug 31 2002

Keywords

Examples

			a(1) = 63 since A002034(63) = 7 and 63 has A066272(63) = 7 anti-divisors: {2, 5, 6, 14, 18, 25, 42}.
		

Crossrefs

Extensions

More terms from Max Alekseyev, Jan 31 2012
1 removed by Sean A. Irvine, Dec 09 2024

A032766 Numbers that are congruent to 0 or 1 (mod 3).

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 79, 81, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 102, 103
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Omitting the initial 0, a(n) is the number of 1's in the n-th row of the triangle in A118111. - Hans Havermann, May 26 2002
Binomial transform is A053220. - Michael Somos, Jul 10 2003
Smallest number of different people in a set of n-1 photographs that satisfies the following conditions: In each photograph there are 3 women, the woman in the middle is the mother of the person on her left and is a sister of the person on her right and the women in the middle of the photographs are all different. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Sep 22 2006
Partial sums of A000034. - Richard Choulet, Jan 28 2010
Starting with 1 = row sums of triangle A171370. - Gary W. Adamson, Feb 15 2010
a(n) is the set of values for m in which 6k + m can be a perfect square (quadratic residues of 6 including trivial case of 0). - Gary Detlefs, Mar 19 2010
For n >= 2, a(n) is the smallest number with n as an anti-divisor. - Franklin T. Adams-Watters, Oct 28 2011
Sequence is also the maximum number of floors with 3 elevators and n stops in a "Convenient Building". See A196592 and Erich Friedman link below. - Robert Price, May 30 2013
a(n) is also the total number of coins left after packing 4-curves patterns (4c2) into a fountain of coins base n. The total number of 4c2 is A002620 and voids left is A000982. See illustration in links. - Kival Ngaokrajang, Oct 26 2013
Number of partitions of 6n into two even parts. - Wesley Ivan Hurt, Nov 15 2014
Number of partitions of 3n into exactly 2 parts. - Colin Barker, Mar 23 2015
Nonnegative m such that floor(2*m/3) = 2*floor(m/3). - Bruno Berselli, Dec 09 2015
For n >= 3, also the independence number of the n-web graph. - Eric W. Weisstein, Dec 31 2015
Equivalently, nonnegative numbers m for which m*(m+2)/3 and m*(m+5)/6 are integers. - Bruno Berselli, Jul 18 2016
Also the clique covering number of the n-Andrásfai graph for n > 0. - Eric W. Weisstein, Mar 26 2018
Maximum sum of degeneracies over all decompositions of the complete graph of order n+1 into three factors. The extremal decompositions are characterized in the Bickle link below. - Allan Bickle, Dec 21 2021
Also the Hadwiger number of the n-cocktail party graph. - Eric W. Weisstein, Apr 30 2022
The number of integer rectangles with a side of length n+1 and the property: the bisectors of the angles form a square within its limits. - Alexander M. Domashenko, Oct 17 2024
The maximum possible number of 5-cycles in an outerplanar graph on n+4 vertices. - Stephen Bartell, Jul 10 2025

Crossrefs

Cf. A006578 (partial sums), A000034 (first differences), A016789 (complement).
Essentially the same: A049624.
Column 1 (the second leftmost) of triangular table A026374.
Column 1 (the leftmost) of square array A191450.
Row 1 of A254051.
Row sums of A171370.
Cf. A066272 for anti-divisors.
Cf. A253888 and A254049 (permutations of this sequence without the initial zero).
Cf. A254103 and A254104 (pair of permutations based on this sequence and its complement).

Programs

  • Haskell
    a032766 n = div n 2 + n  -- Reinhard Zumkeller, Dec 13 2014
    (MIT/GNU Scheme) (define (A032766 n) (+ n (floor->exact (/ n 2)))) ;; Antti Karttunen, Jan 24 2015
    
  • Magma
    &cat[ [n, n+1]: n in [0..100 by 3] ]; // Vincenzo Librandi, Nov 16 2014
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+3 od: seq(a[n], n=0..69); # Zerinvary Lajos, Mar 16 2008
    seq(floor(n/2)+n, n=0..69); # Gary Detlefs, Mar 19 2010
    select(n->member(n mod 3,{0,1}), [$0..103]); # Peter Luschny, Apr 06 2014
  • Mathematica
    a[n_] := a[n] = 2a[n - 1] - 2a[n - 3] + a[n - 4]; a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 4; Array[a, 60, 0] (* Robert G. Wilson v, Mar 28 2011 *)
    Select[Range[0, 200], MemberQ[{0, 1}, Mod[#, 3]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
    Flatten[{#,#+1}&/@(3Range[0,40])] (* or *) LinearRecurrence[{1,1,-1}, {0,1,3}, 100] (* or *) With[{nn=110}, Complement[Range[0,nn], Range[2,nn,3]]] (* Harvey P. Dale, Mar 10 2013 *)
    CoefficientList[Series[x (1 + 2 x) / ((1 - x) (1 - x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Nov 16 2014 *)
    Floor[3 Range[0, 69]/2] (* L. Edson Jeffery, Jan 14 2017 *)
    Drop[Range[0,110],{3,-1,3}] (* Harvey P. Dale, Sep 02 2023 *)
  • PARI
    {a(n) = n + n\2}
    
  • PARI
    concat(0, Vec(x*(1+2*x)/((1-x)*(1-x^2)) + O(x^100))) \\ Altug Alkan, Dec 09 2015
    
  • SageMath
    [int(3*n//2) for n in range(101)] # G. C. Greubel, Jun 23 2024

Formula

G.f.: x*(1+2*x)/((1-x)*(1-x^2)).
a(-n) = -A007494(n).
a(n) = A049615(n, 2), for n > 2.
From Paul Barry, Sep 04 2003: (Start)
a(n) = (6n - 1 + (-1)^n)/4.
a(n) = floor((3n + 2)/2) - 1 = A001651(n) - 1.
a(n) = sqrt(2) * sqrt( (6n-1) (-1)^n + 18n^2 - 6n + 1 )/4.
a(n) = Sum_{k=0..n} 3/2 - 2*0^k + (-1)^k/2. (End)
a(n) = 3*floor(n/2) + (n mod 2) = A007494(n) - A000035(n). - Reinhard Zumkeller, Apr 04 2005
a(n) = 2 * A004526(n) + A004526(n+1). - Philippe Deléham, Aug 07 2006
a(n) = 1 + ceiling(3*(n-1)/2). - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Sep 22 2006
Row sums of triangle A133083. - Gary W. Adamson, Sep 08 2007
a(n) = (cos(Pi*n) - 1)/4 + 3*n/2. - Bart Snapp (snapp(AT)coastal.edu), Sep 18 2008
A004396(a(n)) = n. - Reinhard Zumkeller, Oct 30 2009
a(n) = floor(n/2) + n. - Gary Detlefs, Mar 19 2010
a(n) = 3n - a(n-1) - 2, for n>0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
a(n) = n + (n-1) - (n-2) + (n-3) - ... 1 = A052928(n) + A008619(n-1). - Jaroslav Krizek, Mar 22 2011
a(n) = a(n-1) + a(n-2) - a(n-3). - Robert G. Wilson v, Mar 28 2011
a(n) = Sum_{k>=0} A030308(n,k) * A003945(k). - Philippe Deléham, Oct 17 2011
a(n) = 2n - ceiling(n/2). - Wesley Ivan Hurt, Oct 25 2013
a(n) = A000217(n) - 2 * A002620(n-1). - Kival Ngaokrajang, Oct 26 2013
a(n) = Sum_{i=1..n} gcd(i, 2). - Wesley Ivan Hurt, Jan 23 2014
a(n) = 2n + floor((-n - (n mod 2))/2). - Wesley Ivan Hurt, Mar 31 2014
A092942(a(n)) = n for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = floor(3*n/2). - L. Edson Jeffery, Jan 18 2015
a(n) = A254049(A249745(n)) = (1+A007310(n)) / 2 for n >= 1. - Antti Karttunen, Jan 24 2015
E.g.f.: (3*x*exp(x) - sinh(x))/2. - Ilya Gutkovskiy, Jul 18 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) + log(3)/2. - Amiram Eldar, Dec 04 2021

Extensions

Better description from N. J. A. Sloane, Aug 01 1998

A066417 Sum of anti-divisors of n.

Original entry on oeis.org

0, 0, 2, 3, 5, 4, 10, 8, 8, 14, 12, 13, 19, 16, 18, 14, 28, 28, 18, 24, 22, 36, 34, 23, 39, 24, 42, 46, 24, 36, 42, 58, 48, 30, 52, 32, 50, 70, 52, 55, 41, 66, 56, 40, 86, 58, 60, 56, 72, 80, 42, 94, 88, 52, 74, 56, 74, 96, 90, 107, 57, 78, 112, 46, 84, 86, 132, 112, 54, 102
Offset: 1

Views

Author

Jon Perry, Dec 28 2001

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			For n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the anti-divisors of 12 are 4, 5, 7, 12. Therefore a(18) = 28.
		

Crossrefs

Programs

  • Maple
    # Uses antidivisors() implemented in A066272.
    A066417 := proc(n) add(d,d=antidivisors(n)) ; end proc: # R. J. Mathar, Jul 04 2011
    # faster alternative with Alekseyev formula
    A066417 := proc(n)
        k := A007814(n) ;
        numtheory[sigma](2*n-1)+numtheory[sigma](2*n+1) +numtheory[sigma(n/2^k)*2^(k+1) -6*n-2 ;
    end proc: # R. J. Mathar, Nov 11 2014
  • Mathematica
    antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 & ], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n &]; Table[ Plus @@ antid[n], {n, 70}] (* Robert G. Wilson v, Mar 15 2004 *)
    a066417[n_Integer] := Total[Cases[Range[2, n - 1], ?(Abs[Mod[n, #] - #/2] < 1 &)]]; Array[a066417, 120] (* _Michael De Vlieger, Aug 08 2014, after Harvey P. Dale at A066272 *)
  • PARI
    al(n)=Vec(sum(k=1,n,2*k*(x^(3*k)+x*O(x^n))/(1-x^(2*k))+(2*k+1)*(x^(3*k+1)+x^(3*k+2)+x*O(x^n))/(1-x^(2*k+1)))) \\ Franklin T. Adams-Watters, Sep 11 2009
    
  • PARI
    { a(n) = my(k); if(n>1, k=valuation(n,2); sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2, 0); } \\ Max Alekseyev, Apr 27 2010
    
  • Python
    from sympy import divisors
    A066417 = [sum([2*d for d in divisors(n) if n > 2*d and n%(2*d)] + [d for d in divisors(2*n-1) if n > d >=2 and n%d] + [d for d in divisors(2*n+1) if n > d >=2 and n%d]) for n in range(1,10**6)] # Chai Wah Wu, Aug 12 2014

Formula

G.f.: Sum_{k>0} (2k x^(3k) / (1 - x^(2k)) + (2k+1)(x^(3k+1) + x^(3k+2)) / (1 - x^(2k+1))). - Franklin T. Adams-Watters, Sep 11 2009
For n>1, a(n) = A000203(2*n-1) + A000203(2*n+1) + A000203(n/2^k)*2^(k+1) - 6*n - 2, where k=A007814(n). - Max Alekseyev, Apr 27 2010
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*Pi^2/8 - 3 = 0.70110165... . - Amiram Eldar, Jan 19 2024

A130799 Triangle read by rows in which row n (n>=3) list the anti-divisors of n.

Original entry on oeis.org

2, 3, 2, 3, 4, 2, 3, 5, 3, 5, 2, 6, 3, 4, 7, 2, 3, 7, 5, 8, 2, 3, 5, 9, 3, 4, 9, 2, 6, 10, 3, 11, 2, 3, 5, 7, 11, 4, 5, 7, 12, 2, 3, 13, 3, 8, 13, 2, 6, 14, 3, 4, 5, 9, 15, 2, 3, 5, 9, 15, 7, 16, 2, 3, 7, 10, 17, 3, 4, 17, 2, 5, 6, 11, 18, 3, 5, 8, 11, 19, 2, 3, 19, 4, 12, 20, 2, 3, 7
Offset: 3

Views

Author

Diana L. Mecum, Jul 17 2007

Keywords

Comments

A066272 gives the number of terms in each row.
See A066272 for definition of anti-divisor.
2n-1 and 2n+1 are twin primes (that is, n is in A040040) iff n has no odd anti-divisors. For example, because n=15 has no odd anti-divisors, 29 and 31 are twin primes. - Jon Perry, Sep 12 2012
Row n is all the numbers which are: (a) 2n divided by its odd divisors (except 1), and (b) the divisors of 2n-1 and 2n+1 (except 1, 2n+1 and 2n-1). For example, n=18: odd divisors of 36 are {3,9} and 36/{3,9} = {4,12}; divisors of 35 are {5,7} and divisors of 37 are null (37 is prime). Therefore row 18 is 4,5,7 and 12. See A066542 for further explanation. - Bob Selcoe, Feb 24 2014

Examples

			Anti-divisors of 3 through 20:
3: 2
4: 3
5: 2, 3
6: 4
7: 2, 3, 5
8: 3, 5
9: 2, 6
10: 3, 4, 7
11: 2, 3, 7
12: 5, 8
13: 2, 3, 5, 9
14: 3, 4, 9
15: 2, 6, 10
16: 3, 11
17: 2, 3, 5, 7, 11
18: 4, 5, 7, 12
19: 2, 3, 13
20: 3, 8, 13
		

Programs

  • Mathematica
    f[n_] := Complement[ Sort@ Join[ Select[ Union@ Flatten@ Divisors[{2 n - 1, 2 n + 1}], OddQ@ # && # < n &], Select[ Divisors[2 n], EvenQ@ # && # < n &]], Divisors@ n]; Flatten@ Table[ f@n, {n, 3, 32}] (* Robert G. Wilson v, Jul 17 2007 *)
    Table[Select[Range[2, n - 1], Abs[Mod[n, #] - #/2] < 1 &], {n, 3, 31}] // Flatten (* Michael De Vlieger, Jun 14 2016, after Harvey P. Dale at A066272 *)

A073930 Numbers that are equal to the sum of their anti-divisors.

Original entry on oeis.org

5, 8, 41, 56, 946, 5186, 6874, 8104, 17386, 27024, 84026, 167786, 2667584, 4921776, 27914146, 505235234, 3238952914, 73600829714, 455879783074, 528080296234, 673223621664, 4054397778846, 4437083907194, 4869434608274, 6904301600914, 7738291969456
Offset: 1

Views

Author

Jason Earls, Sep 03 2002

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			For k=5186, the anti-divisor sum: 3+4+11+23+41+253+451+943+3457 = 5186.
		

Crossrefs

Programs

  • PARI
    sad(n) = vecsum(select(t->n%t && tA066417
    isok(n) = sad(n) == n; \\ Michel Marcus, Oct 12 2019
  • Python
    from sympy import divisors
    A073930 = [n for n in range(1,10**5) if sum([2*d for d in divisors(n) if n > 2*d and n % (2*d)] + [d for d in divisors(2*n-1) if n > d >=2 and n % d] + [d for d in divisors(2*n+1) if n > d >=2 and n % d]) == n] # Chai Wah Wu, Aug 14 2014
    

Extensions

a(16)-a(17) from Lior Manor, Mar 03 2004
a(18) from Donovan Johnson, Jun 19 2010
a(19)-a(21) by Jud McCranie, Aug 31 2019
a(22)-a(26) by Jud McCranie, Oct 10 2019
Showing 1-10 of 142 results. Next