cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001113 Decimal expansion of e.

Original entry on oeis.org

2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, 9, 0, 4, 5, 2, 3, 5, 3, 6, 0, 2, 8, 7, 4, 7, 1, 3, 5, 2, 6, 6, 2, 4, 9, 7, 7, 5, 7, 2, 4, 7, 0, 9, 3, 6, 9, 9, 9, 5, 9, 5, 7, 4, 9, 6, 6, 9, 6, 7, 6, 2, 7, 7, 2, 4, 0, 7, 6, 6, 3, 0, 3, 5, 3, 5, 4, 7, 5, 9, 4, 5, 7, 1, 3, 8, 2, 1, 7, 8, 5, 2, 5, 1, 6, 6, 4, 2, 7, 4, 2, 7, 4, 6
Offset: 1

Views

Author

Keywords

Comments

e is sometimes called Euler's number or Napier's constant.
Also, decimal expansion of sinh(1)+cosh(1). - Mohammad K. Azarian, Aug 15 2006
If m and n are any integers with n > 1, then |e - m/n| > 1/(S(n)+1)!, where S(n) = A002034(n) is the smallest number such that n divides S(n)!. - Jonathan Sondow, Sep 04 2006
Limit_{n->infinity} A000166(n)*e - A000142(n) = 0. - Seiichi Kirikami, Oct 12 2011
Euler's constant (also known as Euler-Mascheroni constant) is gamma = 0.57721... and Euler's number is e = 2.71828... . - Mohammad K. Azarian, Dec 29 2011
One of the many continued fraction expressions for e is 2+2/(2+3/(3+4/(4+5/(5+6/(6+ ... from Ramanujan (1887-1920). - Robert G. Wilson v, Jul 16 2012
e maximizes the value of x^(c/x) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. This explains why elements of A000792 are composed primarily of factors of 3, and where needed, some factors of 2. These are the two primes closest to e. - Richard R. Forberg, Oct 19 2014
There are two real solutions x to c^x = x^c when c, x > 0 and c != e, one of which is x = c, and only one real solution when c = e, where the solution is x = e. - Richard R. Forberg, Oct 22 2014
This is the expected value of the number of real numbers that are independently and uniformly chosen at random from the interval (0, 1) until their sum exceeds 1 (Bush, 1961). - Amiram Eldar, Jul 21 2020

Examples

			2.71828182845904523536028747135266249775724709369995957496696762772407663...
		

References

  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 400.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 250-256.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.4 Irrational Numbers, p. 85.
  • E. Maor, e: The Story of a Number, Princeton Univ. Press, 1994.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 52.
  • G. W. Reitwiesner, An ENIAC determination of pi and e to more than 2000 decimal places. Math. Tables and Other Aids to Computation 4, (1950). 11-15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 1 and 2, equations 1:7:4, 2:5:4 at pages 13, 20.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 46.

Crossrefs

Cf. A002034, A003417 (continued fraction), A073229, A122214, A122215, A122216, A122217, A122416, A122417.
Expansion of e in base b: A004593 (b=2), A004594 (b=3), A004595 (b=4), A004596 (b=5), A004597 (b=6), A004598 (b=7), A004599 (b=8), A004600 (b=9), this sequence (b=10), A170873 (b=16). - Jason Kimberley, Dec 05 2012
Powers e^k: A092578 (k = -7), A092577 (k = -6), A092560 (k = -5), A092553 - A092555 (k = -2 to -4), A068985 (k = -1), A072334 (k = 2), A091933 (k = 3), A092426 (k = 4), A092511 - A092513 (k = 5 to 7).

Programs

  • Haskell
    -- See Niemeijer link.
    a001113 n = a001113_list !! (n-1)
    a001113_list = eStream (1, 0, 1)
       [(n, a * d, d) | (n, d, a) <- map (\k -> (1, k, 1)) [1..]] where
       eStream z xs'@(x:xs)
         | lb /= approx z 2 = eStream (mult z x) xs
         | otherwise = lb : eStream (mult (10, -10 * lb, 1) z) xs'
         where lb = approx z 1
               approx (a, b, c) n = div (a * n + b) c
               mult (a, b, c) (d, e, f) = (a * d, a * e + b * f, c * f)
    -- Reinhard Zumkeller, Jun 12 2013
  • Maple
    Digits := 200: it := evalf((exp(1))/10, 200): for i from 1 to 200 do printf(`%d,`,floor(10*it)): it := 10*it-floor(10*it): od: # James Sellers, Feb 13 2001
  • Mathematica
    RealDigits[E, 10, 120][[1]] (* Harvey P. Dale, Nov 14 2011 *)

Formula

e = Sum_{k >= 0} 1/k! = lim_{x -> 0} (1+x)^(1/x).
e is the unique positive root of the equation Integral_{u = 1..x} du/u = 1.
exp(1) = ((16/31)*(1 + Sum_{n>=1} ((1/2)^n*((1/2)*n^3 + (1/2)*n + 1)/n!)))^2. Robert Israel confirmed that the above formula is correct, saying: "In fact, Sum_{n=0..oo} n^j*t^n/n! = P_j(t)*exp(t) where P_0(t) = 1 and for j >= 1, P_j(t) = t (P_(j-1)'(t) + P_(j-1)(t)). Your sum is 1/2*P_3(1/2) + 1/2*P_1(1/2) + P_0(1/2)." - Alexander R. Povolotsky, Jan 04 2009
exp(1) = (1 + Sum_{n>=1} ((1+n+n^3)/n!))/7. - Alexander R. Povolotsky, Sep 14 2011
e = 1 + (2 + (3 + (4 + ...)/4)/3)/2 = 2 + (1 + (1 + (1 + ...)/4)/3)/2. - Rok Cestnik, Jan 19 2017
From Peter Bala, Nov 13 2019: (Start)
The series representation e = Sum_{k >= 0} 1/k! is the case n = 0 of the more general result e = n!*Sum_{k >= 0} 1/(k!*R(n,k)*R(n,k+1)), n = 0,2,3,4,..., where R(n,x) is the n-th row polynomial of A269953.
e = 2 + Sum_{n >= 0} (-1)^n*(n+2)!/(d(n+2)*d(n+3)), where d(n) = A000166(n).
e = Sum_{n >= 0} (x^2 + (n+2)*x + n)/(n!(n + x)*(n + 1 + x)), provided x is not zero or a negative integer. (End)
Equals lim_{n -> oo} (2*3*5*...*prime(n))^(1/prime(n)). - Peter Luschny, May 21 2020
e = 3 - Sum_{n >= 0} 1/((n+1)^2*(n+2)^2*n!). - Peter Bala, Jan 13 2022
e = lim_{n->oo} prime(n)*(1 - 1/n)^prime(n). - Thomas Ordowski, Jan 31 2023
e = 1+(1/1)*(1+(1/2)*(1+(1/3)*(1+(1/4)*(1+(1/5)*(1+(1/6)*(...)))))), equivalent to the first formula. - David Ulgenes, Dec 01 2023
From Michal Paulovic, Dec 12 2023: (Start)
Equals lim_{n->oo} (1 + 1/n)^n.
Equals x^(x^(x^...)) (infinite power tower) where x = e^(1/e) = A073229. (End)
Equals Product_{k>=1} (1 + 1/k) * (1 - 1/(k + 1)^2)^k. - Antonio Graciá Llorente, May 14 2024
Equals lim_{n->oo} Product_{k=1..n} (n^2 + k)/(n^2 - k) (see Finch). - Stefano Spezia, Oct 19 2024
e ~ (1 + 9^((-4)^(7*6)))^(3^(2^85)), correct to more than 18*10^24 digits (Richard Sabey, 2004); see Haran and Grime link. - Paolo Xausa, Dec 21 2024.

A072334 Decimal expansion of e^2.

Original entry on oeis.org

7, 3, 8, 9, 0, 5, 6, 0, 9, 8, 9, 3, 0, 6, 5, 0, 2, 2, 7, 2, 3, 0, 4, 2, 7, 4, 6, 0, 5, 7, 5, 0, 0, 7, 8, 1, 3, 1, 8, 0, 3, 1, 5, 5, 7, 0, 5, 5, 1, 8, 4, 7, 3, 2, 4, 0, 8, 7, 1, 2, 7, 8, 2, 2, 5, 2, 2, 5, 7, 3, 7, 9, 6, 0, 7, 9, 0, 5, 7, 7, 6, 3, 3, 8, 4, 3, 1, 2, 4, 8, 5, 0, 7, 9, 1, 2, 1, 7, 9
Offset: 1

Views

Author

N. J. A. Sloane, Jul 15 2002

Keywords

Comments

Also where x^(1/sqrt(x)) is a maximum. - Robert G. Wilson v, Oct 22 2014

Examples

			7.389056098930650...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.4, pages 2 and 28-29.

Crossrefs

Cf. A001204 (continued fraction).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp(1)^2; // Vincenzo Librandi, Apr 05 2020
  • Mathematica
    RealDigits[E^2, 10, 100][[1]] (* Vincenzo Librandi, Apr 05 2020 *)
  • PARI
    default(realprecision, 20080); x=exp(2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b072334.txt", n, " ", d)); \\ Harry J. Smith, Apr 30 2009
    

Formula

Equals Sum_{n>=0} Sum_{k>=0} 1/(n!*k!). - Fredrik Johansson, Apr 21 2006
Equals Sum_{n>=0} 2^n/n!. - Daniel Hoyt Nov 20 2020
From Peter Bala, Jan 13 2022: (Start)
e^2 = Sum_{n >= 0} 2^n/n!. Faster converging series include
e^2 = 8*Sum_{n >= 0} 2^n/(p(n-1)*p(n)*n!), where p(n) = n^2 - n + 2 and
e^2 = -48*Sum_{n >= 0} 2^n/(q(n-1)*q(n)*n!), where q(n) = n^3 + 5*n - 2.
e^2 = 7 + Sum_{n >= 0} 2^(n+3)/((n+2)^2*(n+3)^2*n!) and
7/e^2 = 1 - Sum_{n >= 0} (-2)^(n+1)*n^2/(n+2)!.
e^2 = 7 + 2/(5 + 1/(7 + 1/(9 + 1/(11 + ...)))) (follows from the fact that A004273 is the continued fraction expansion of tanh(1) = (e^2 - 1)/ (e^2 + 1)). Cf. A001204. (End)
Equals lim_{n->oo} (Sum_{k=1..n} 1/binomial(n,k)^x)^(n^x), for all real x > 1/2 (Furdui, 2013). - Amiram Eldar, Mar 26 2022

A091933 Decimal expansion of e^3.

Original entry on oeis.org

2, 0, 0, 8, 5, 5, 3, 6, 9, 2, 3, 1, 8, 7, 6, 6, 7, 7, 4, 0, 9, 2, 8, 5, 2, 9, 6, 5, 4, 5, 8, 1, 7, 1, 7, 8, 9, 6, 9, 8, 7, 9, 0, 7, 8, 3, 8, 5, 5, 4, 1, 5, 0, 1, 4, 4, 3, 7, 8, 9, 3, 4, 2, 2, 9, 6, 9, 8, 8, 4, 5, 8, 7, 8, 0, 9, 1, 9, 7, 3, 7, 3, 1, 2, 0, 4, 4, 9, 7, 1, 6, 0, 2, 5, 3, 0, 1, 7, 7, 0
Offset: 2

Views

Author

Mohammad K. Azarian, Mar 16 2004

Keywords

Comments

Also where x^(1/x^(1/3)) is a maximum. - Robert G. Wilson v, Oct 22 2014

Examples

			exp(3) = e^3 = 20.0855369231876677409285296545817178969879... - _Harry J. Smith_, Apr 30 2009
		

Crossrefs

Programs

  • Maple
    Digits:=100: evalf(exp(3)); # Wesley Ivan Hurt, Jul 07 2014
  • Mathematica
    RealDigits[E^3, 10, 100][[1]] (* Alonso del Arte, Jul 07 2014 *)
  • PARI
    default(realprecision, 20080); x=exp(3)/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b091933.txt", n, " ", d)); \\ Harry J. Smith, Apr 30 2009

Formula

From Peter Bala, Jan 12 2022: (Start)
e^3 = Sum_{n >= 0} 3^n/n!. Faster converging series include
e^3 = 18*Sum_{n >= 0} 3^n/(p(n-1)*p(n)*n!), where p(n) = n^2 - 3*n + 5 and
e^3 = -162*Sum_{n >= 0} 3^n/(q(n-2)*q(n-1)*n!), where q(n) = n^3 + 8*n - 3.
e^3 = 22 - Sum_{n >= 0} 3^(n+4)/((n+3)^2*(n+4)^2*n!) and
22/e^3 = 1 - 2*Sum_{n >= 0} (-3)^(n+2)*n^2/(n+3)!.
e^3 = lim_{n -> oo} f(n+2)*f(n)/(n^2*f(n+1)^2), where f(n) = n^(n^2). Compare with e = lim_{n -> oo} g(n+1)/(n*g(n)), where g(n) = n^n. (End)

A092042 Decimal expansion of e^(1/4).

Original entry on oeis.org

1, 2, 8, 4, 0, 2, 5, 4, 1, 6, 6, 8, 7, 7, 4, 1, 4, 8, 4, 0, 7, 3, 4, 2, 0, 5, 6, 8, 0, 6, 2, 4, 3, 6, 4, 5, 8, 3, 3, 6, 2, 8, 0, 8, 6, 5, 2, 8, 1, 4, 6, 3, 0, 8, 9, 2, 1, 7, 5, 0, 7, 2, 9, 6, 8, 7, 2, 2, 0, 7, 7, 6, 5, 8, 6, 7, 2, 3, 8, 0, 0, 2, 7, 5, 3, 3, 0, 6, 4, 1, 9, 4, 3, 9, 5, 5, 3, 5, 6, 8
Offset: 1

Views

Author

Mohammad K. Azarian, Mar 27 2004

Keywords

Comments

e^(1/4) is also the integral from 0 to infinity of e^(-x) * I_0(sqrt(x)), where I_0(z) is a modified Bessel function. - Jean-François Alcover, Mar 10 2011
e^(1/4) maximizes the value of x^(c/(x^4)) for any real positive constant c, and minimizes for it for a negative constant, on the range x > 0. - A.H.M. Smeets, Aug 16 2018

Examples

			1.28402541668774148407342056806243645833....
		

Crossrefs

Programs

Formula

e^(1/4) = 1/2*( 1 +(5 +(9 +(13 +...)/12)/8)/4 ) = 1 +(1 +(1 +(1 +...)/12)/8)/4. - Rok Cestnik, Jan 19 2017
Equals lim_{n->oo} ((2*n-1)!!)^(1/(2*n))/A057863(n)^(1/n^2) (Bătinetu-Giurgiu, 2016). - Amiram Eldar, Apr 10 2022
Equals (Integral_{x=1..oo} 1/(x*log(x)^log(log(x))) dx)/sqrt(Pi). - Kritsada Moomuang, Jun 03 2025

A092511 Decimal expansion of e^5.

Original entry on oeis.org

1, 4, 8, 4, 1, 3, 1, 5, 9, 1, 0, 2, 5, 7, 6, 6, 0, 3, 4, 2, 1, 1, 1, 5, 5, 8, 0, 0, 4, 0, 5, 5, 2, 2, 7, 9, 6, 2, 3, 4, 8, 7, 6, 6, 7, 5, 9, 3, 8, 7, 8, 9, 8, 9, 0, 4, 6, 7, 5, 2, 8, 4, 5, 1, 1, 0, 9, 1, 2, 0, 6, 4, 8, 2, 0, 9, 5, 8, 5, 7, 6, 0, 7, 9, 6, 8, 8, 4, 0, 9, 4, 5, 9, 8, 9, 9, 0, 2, 1, 1, 4, 1, 2, 9, 2
Offset: 3

Views

Author

Mohammad K. Azarian, Apr 05 2004

Keywords

Examples

			148.413159102
		

Crossrefs

Programs

Formula

From Peter Bala, Jan 12 2022: (Start)
e^5 = 456 - Sum_{n >= 0} 5^(n+6)/((n+5)^2*(n+6)^2*n!).
456/e^5 = 1 - 4!*Sum_{n >=0} (-5)^(n+4)*n^2/(n+5)!. (End)

A092512 Decimal expansion of e^6.

Original entry on oeis.org

4, 0, 3, 4, 2, 8, 7, 9, 3, 4, 9, 2, 7, 3, 5, 1, 2, 2, 6, 0, 8, 3, 8, 7, 1, 8, 0, 5, 4, 3, 3, 8, 8, 2, 7, 9, 6, 0, 5, 8, 9, 9, 8, 9, 7, 3, 5, 7, 1, 2, 9, 2, 0, 2, 6, 1, 3, 9, 6, 7, 1, 8, 8, 3, 2, 5, 1, 5, 1, 1, 8, 0, 6, 3, 3, 9, 9, 3, 4, 9, 8, 3, 0, 5, 1, 7, 8, 8, 8, 6, 6, 5, 1, 2, 1, 2, 6, 6, 4, 7, 6, 8, 3, 7, 5
Offset: 3

Views

Author

Mohammad K. Azarian, Apr 05 2004

Keywords

Comments

Curiously, e^6 = 403.428793... is very close to Pi^4 + Pi^5 = 403.428775... - Jean-François Alcover, Jul 04 2013

Examples

			403.428793492735122...
		

Crossrefs

Programs

Formula

From Peter Bala, Jan 12 2022: (Start)
e^6 = 115 + (1/4)*Sum_{n >= 0} 6^(n+6)/((n+6)^2*(n+7)^2*n!).
115/e^6 = 1 - 5*Sum_{n >= 0} (-6)^(n+5)*n^2/(n+6)!. (End)

A092513 Decimal expansion of e^7.

Original entry on oeis.org

1, 0, 9, 6, 6, 3, 3, 1, 5, 8, 4, 2, 8, 4, 5, 8, 5, 9, 9, 2, 6, 3, 7, 2, 0, 2, 3, 8, 2, 8, 8, 1, 2, 1, 4, 3, 2, 4, 4, 2, 2, 1, 9, 1, 3, 4, 8, 3, 3, 6, 1, 3, 1, 4, 3, 7, 8, 2, 7, 3, 9, 2, 4, 0, 7, 7, 6, 1, 2, 1, 7, 6, 9, 3, 3, 1, 2, 3, 3, 1, 2, 9, 0, 2, 2, 4, 7, 8, 5, 6, 8, 7, 8, 7, 2, 4, 9, 8, 4, 3, 8, 8, 4, 2, 0
Offset: 4

Views

Author

Mohammad K. Azarian, Apr 05 2004

Keywords

Examples

			1096.6331584284585992...
		

Crossrefs

Programs

Formula

From Peter Bala, Jan 12 2022: (Start)
e^7 = (1/167)*Sum_{n >= 0} 7^(n+8)/((n+7)^2*(n+8)^2*n!) - 19440/167.
19440/e^7 = 7!*Sum_{n >= 0} (-7)^(n+5)*n^2/(n+7)! - 167. (End)

A058283 Continued fraction for e^4.

Original entry on oeis.org

54, 1, 1, 2, 21, 4, 1, 1, 57, 2, 1, 9, 1, 1, 13, 6, 2, 20, 2, 4, 1, 17, 1, 3, 2, 7, 2, 1, 1, 1, 1, 3, 2, 1, 11, 4, 2, 1, 3, 2, 1, 7, 1, 7, 1, 12, 2, 8, 7, 6, 1, 2, 1, 7, 2, 37, 2, 3, 66, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 10, 18, 2, 19, 4, 2, 1, 9, 1, 9, 2, 1, 1, 1, 1, 4
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Examples

			54.598150033144239078110261... = 54 + 1/(1 + 1/(1 + 1/(2 + 1/(21 + ...)))). - _Harry J. Smith_, Jun 22 2009
		

Crossrefs

Cf. A092426 Decimal expansion. - Harry J. Smith, Jun 22 2009

Programs

  • Mathematica
    ContinuedFraction[ E^4, 100]
  • PARI
    default(realprecision,1000); contfrac((exp(1))^4)
    
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(1)^4); for (n=0, 20000, write("b058283.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 22 2009

Extensions

More terms from R. K. Guy, Jun 15 2001

A254528 Number of decimal digits in the integer part of e^n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, 18, 19, 19, 20, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 24, 25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 29, 30, 30, 30, 31, 31, 32, 32, 33, 33
Offset: 0

Views

Author

Robert G. Wilson v, Feb 01 2015

Keywords

Examples

			e^10 = 22026.46579480671..., so a(10) = 5.
		

Crossrefs

Cf. A001113, A072334, A091933, A092426, A092511, A092512, A092513 (see their offsets).

Programs

  • Mathematica
    f[n_] := 1 + Floor@ Log10@ Exp@ n; Array[f, 75, 0]
    Table[Sum[DigitCount[Floor[Exp[1]^k]][[n]], {n, 1, 10}], {k, 0, 150}] (* Benedict W. J. Irwin, Apr 13 2016 *)
    IntegerLength[Floor[E^Range[0,80]]] (* Harvey P. Dale, Aug 28 2017 *)
  • PARI
    a(n) = localprec(n+1); #Str(floor(exp(n))); \\ Michel Marcus, Dec 05 2020

Formula

a(n) = A055642(A000149(n)). - Amiram Eldar, May 25 2024

A309887 Coefficients of 4-adic expansion of exp(4).

Original entry on oeis.org

1, 3, 0, 1, 1, 0, 0, 1, 2, 3, 0, 2, 0, 2, 3, 0, 2, 0, 3, 1, 2, 2, 1, 0, 2, 2, 3, 0, 3, 2, 2, 3, 0, 2, 1, 0, 0, 0, 2, 3, 0, 2, 0, 0, 3, 3, 3, 1, 3, 0, 2, 2, 3, 3, 3, 1, 0, 3, 1, 2, 0, 0, 2, 3, 3, 1, 1, 0, 2, 1, 3, 2, 1, 1, 0, 1, 2, 3, 2, 3, 1, 1, 2, 2, 0, 3, 3, 0, 1, 1, 1, 2, 0, 1, 3, 0, 2, 2, 0, 3
Offset: 0

Views

Author

Seiichi Manyama, Aug 21 2019

Keywords

Crossrefs

k-adic expansion of exp(k): A317675 (k=3), this sequence (k=4), A309888 (k=5).
Cf. A092426.

Programs

  • Maple
    op([1,3],padic:-evalp(exp(4),4,100)); # Robert Israel, Aug 02 2020
  • PARI
    N=100; Vecrev(digits(lift(exp(4+O(2^(2*N)))), 4), N)
Showing 1-10 of 11 results. Next