cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A073002 Decimal expansion of -zeta'(2) (the first derivative of the zeta function at 2).

Original entry on oeis.org

9, 3, 7, 5, 4, 8, 2, 5, 4, 3, 1, 5, 8, 4, 3, 7, 5, 3, 7, 0, 2, 5, 7, 4, 0, 9, 4, 5, 6, 7, 8, 6, 4, 9, 7, 7, 8, 9, 7, 8, 6, 0, 2, 8, 8, 6, 1, 4, 8, 2, 9, 9, 2, 5, 8, 8, 5, 4, 3, 3, 4, 8, 0, 3, 6, 0, 4, 4, 3, 8, 1, 1, 3, 1, 2, 7, 0, 7, 5, 2, 2, 7, 9, 3, 6, 8, 9, 4, 1, 5, 1, 4, 1, 1, 5, 1, 5, 1, 7, 4, 9, 3, 1, 1, 3
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Successive derivatives of the zeta function evaluated at x=2 round to (-1)^n * n!, for the n-th derivative, and converge with increasing n. For example, in Mathematica, Derivative[5][Zeta][2] = -120.000824333. A direct formula for the n-th derivative of Zeta at x=2 is: (-1)^n*Sum_{k>=1} log(k)^n/k^2. See also A201994 and A201995. The values of successive derivatives of Zeta(x) as x->1 are given by A252898, and are also related to the factorials. - Richard R. Forberg, Dec 30 2014

Examples

			Zeta'(2) = -0.93754825431584375370257409456786497789786028861482...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.18, p. 157.
  • C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 359.

Crossrefs

Cf. A201994 (2nd derivative), A201995 (3rd derivative), A252898.

Programs

  • Maple
    Zeta(1,2); evalf(%, 120); # R. J. Mathar, Oct 10 2011
  • Mathematica
    (* first do *) Needs["NumericalMath`NLimit`"], (* then *) RealDigits[ N[ ND[ Zeta[z], z, 2, WorkingPrecision -> 200, Scale -> 10^-20, Terms -> 20], 111]][[1]] (* Eric W. Weisstein, May 20 2004 *)
    (* from version 6 on *) RealDigits[-Zeta'[2], 10, 105] // First (* or *) RealDigits[-Pi^2/6*(EulerGamma - 12*Log[Glaisher] + Log[2*Pi]), 10, 105] // First (* Jean-François Alcover, Apr 11 2013 *)
  • PARI
    -zeta'(2) \\ Charles R Greathouse IV, Mar 28 2012

Formula

Sum_{n >= 1} log(n) / n^2. - N. J. A. Sloane, Feb 19 2011
Pi^2(gamma + log(2Pi) - 12 log(A))/6, where A is the Glaisher-Kinkelin constant. - Charles R Greathouse IV, May 06 2013

Extensions

Definition corrected by N. J. A. Sloane, Feb 19 2011

A018892 Number of ways to write 1/n as a sum of exactly 2 unit fractions.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 14, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 14, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 23, 2, 5, 8, 7, 5, 14, 2, 8, 5, 14, 2, 18, 2, 5, 8, 8, 5, 14, 2, 14, 5, 5, 2, 23, 5, 5, 5, 11, 2, 23, 5, 8, 5, 5, 5, 17, 2, 8, 8
Offset: 1

Views

Author

Keywords

Comments

Number of elements in the set {(x,y): x|n, y|n, x<=y, gcd(x,y)=1}. Number of divisors of n^2 less than or equal to n. - Vladeta Jovovic, May 03 2002
Equivalently, number of pairs (x,y) such that lcm(x,y)=n. - Benoit Cloitre, May 16 2002
Also, number of right triangles with an integer hypotenuse and height n. - Reinhard Zumkeller, Jul 10 2002
The triangles are to be considered as resting on their hypotenuse, with the height measured to the right angle. - Franklin T. Adams-Watters, Feb 19 2015
a(n) >= 2 for n>=2 because of the identities 1/n = 1/(2*n) + 1/(2*n) = 1/(n+1) + 1/(n*(n+1)). - Lekraj Beedassy, May 04 2004
a(n) is the number of divisors of n^2 that are <= n; e.g., a(12) counts these 8 divisors of 12: 1,2,3,4,6,8,9,12. - Clark Kimberling, Apr 21 2019

Examples

			n=1: 1/1 = 1/2 + 1/2.
n=2: 1/2 = 1/4 + 1/4 = 1/3 + 1/6.
n=3: 1/3 = 1/6 + 1/6 = 1/4 + 1/12.
		

References

  • K. S. Brown, Posting to netnews group sci.math, Aug 17 1996.
  • L. E. Dickson, History of The Theory of Numbers, Vol. 2 p. 690, Chelsea NY 1923.
  • A. M. and I. M. Yaglom, Challenging Mathematical Problems With Elementary Solutions, Vol. 1, Dover, N.Y., 1987, pp. 8 and 60, Problem 19.

Crossrefs

Programs

  • Haskell
    a018892 n = length [d | d <- [1..n], n^2 `mod` d == 0]
    -- Reinhard Zumkeller, Jan 08 2012
    
  • Mathematica
    f[j_, n_] := (Times @@ (j(Last /@ FactorInteger[n]) + 1) + j - 1)/j; Table[f[2, n], {n, 96}] (* Robert G. Wilson v, Aug 03 2005 *)
    a[n_] := (DivisorSigma[0, n^2] + 1)/2; Table[a[n], {n, 1, 99}](* Jean-François Alcover, Dec 19 2011, after Vladeta Jovovic *)
  • PARI
    A018892(n)=(numdiv(n^2)+1)/2 \\ M. F. Hasler, Dec 30 2007
    
  • PARI
    A018892s(n)=local(t=divisors(n^2));vector((#t+1)/2,i,[n+t[i],n+n^2/t[i]]) /* show solutions */ \\ M. F. Hasler, Dec 30 2007
    
  • PARI
    a(n)=sumdiv(n,d,sum(i=1,d,lcm(d,i)==n)) \\ Charles R Greathouse IV, Apr 08 2012
    
  • Python
    from math import prod
    from sympy import factorint
    def A018892(n): return prod((a<<1)+1 for a in factorint(n).values())+1>>1 # Chai Wah Wu, Aug 20 2023

Formula

If n = (p1^a1)(p2^a2)...(pt^at), a(n) = ((2*a1 + 1)(2*a2 + 1) ... (2*at + 1) + 1)/2.
a(n) = (tau(n^2)+1)/2. - Vladeta Jovovic, May 03 2002
a(n) = A063647(n)+1 = A046079(2*n)+1. - Lekraj Beedassy, Dec 01 2003
a(n) = Sum_{d|n} phi(2^omega(d)), where phi is A000010 and omega is A001221. - Enrique Pérez Herrero, Apr 13 2012
a(n) = A000005(n) + A089233(n). - James Spahlinger, Feb 16 2016
a(n) = n + Sum_{i=1..n} sign(n^2 mod -i). - Wesley Ivan Hurt, Apr 07 2021
a(n) = Sum_{d|n} mu(n/d)*A184389(d). - Ridouane Oudra, Feb 22 2022
Sum_{k=1..n} a(k) ~ (n/(2*zeta(2)))*(log(n)^2/2 + log(n)*(3*gamma - 1) + 1 - 3*gamma + 3*gamma^2 - 3*gamma_1 + zeta(2) + (2 - 6*gamma - 2*log(n))*zeta'(2)/zeta(2) + (2*zeta'(2)/zeta(2))^2 - 2*zeta''(2)/zeta(2)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Oct 03 2024

Extensions

More terms from David W. Wilson, Sep 15 1996
First example corrected by Jason Orendorff (jason.orendorff(AT)gmail.com), Jan 02 2009
Incorrect Mathematica program deleted by N. J. A. Sloane, Jul 08 2009

A063647 Number of ways to write 1/n as a difference of exactly 2 unit fractions.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 3, 2, 4, 1, 7, 1, 4, 4, 4, 1, 7, 1, 7, 4, 4, 1, 10, 2, 4, 3, 7, 1, 13, 1, 5, 4, 4, 4, 12, 1, 4, 4, 10, 1, 13, 1, 7, 7, 4, 1, 13, 2, 7, 4, 7, 1, 10, 4, 10, 4, 4, 1, 22, 1, 4, 7, 6, 4, 13, 1, 7, 4, 13, 1, 17, 1, 4, 7, 7, 4, 13, 1, 13, 4, 4, 1, 22, 4, 4, 4, 10, 1, 22, 4, 7, 4, 4, 4
Offset: 1

Views

Author

Henry Bottomley, Jul 23 2001

Keywords

Comments

Also number of ways to write 1/n as sum of exactly two distinct unit fractions. - Thomas L. York, Jan 11 2014
Also number of positive integers m such that 1/n + 1/m is a unit fraction. - Jon E. Schoenfield, Apr 17 2018
If 1/n = 1/b - 1/c then n = bc/(c-b) and 1/n = 1/(2n-b) + 1/(c+2n) (though it is also the case that 1/n = 1/(2n) + 1/(2n) equivalent to b = c = 0).
Also number of divisors of n^2 less than n. - Vladeta Jovovic, Aug 13 2001
Number of elements in the set {(x,y): x|n, y|n, xVladeta Jovovic, May 03 2002
Also number of positive integers of the form k*n/(k+n). - Benoit Cloitre, Jan 04 2002
This is similar to A062799, having the same first 29 terms. But they are different sequences.
If A001221(n) = omega(n) <= 2, then a(n) = A062799(n); if A001221(n) > 2, then a(n) > A062799(n). - Matthew Vandermast, Aug 25 2004
Number of r X s integer-sided rectangles such that r + s = 4n, r < s and (s - r) | (s * r). - Wesley Ivan Hurt, Apr 24 2020
Also number of integer-sided right triangles with 2n as a leg. Equivalent to the even indices of A046079. - Nathaniel C Beckman, May 14 2020; Jun 26 2020
a(n) is the number of positive integers k such that k+n divides k*n. - Thomas Ordowski, Dec 02 2024

Examples

			a(10) = 4 since 1/10 = 1/5 - 1/10 = 1/6 - 1/15 = 1/8 - 1/40 = 1/9 - 1/90.
a(12) = 7: the divisors of 12 are 1, 2, 3, 4, 6 and 12 and the decompositions are (1, 2), (1, 3), (1, 4), (1, 6), (1, 12), (2, 3), (3, 4).
		

Crossrefs

First twenty-nine terms identical to those of A062799.

Programs

  • Magma
    [(NumberOfDivisors(n^2)-1)/2 : n in [1..100]]; // Vincenzo Librandi, Apr 18 2018
  • Mathematica
    Table[(Length[Divisors[n^2]] - 1)/2, {n, 1, 100}]
    (DivisorSigma[0,Range[100]^2]-1)/2 (* Harvey P. Dale, Apr 15 2013 *)
  • PARI
    for(n=1,100,print1(sum(i=1,n^2,if((n*i)%(i+n),0,1)),","))
    
  • PARI
    a(n)=numdiv(n^2)\2 \\ Charles R Greathouse IV, Oct 03 2016
    

Formula

a(n) = (tau(n^2)-1)/2.
a(n) = A018892(n)-1. If n = (p1^a1)(p2^a2)...(pt^at), a(n) = ((2*a1+1)(2*a2+1)...(2*at+1)-1)/2.
If n is prime a(n)=1. Conjecture: (1/n)*Sum_{i=1..n} a(i) = C*log(n)*log(log(n)) + o(log(n)) with C=0.7... [The conjecture is false. See the plot and the asymptotic formula below. - Amiram Eldar, Oct 03 2024]
Bisection of A046079. - Lekraj Beedassy, Jul 09 2004
a(n) = Sum_{i=1..2*n-1} (1 - ceiling(i*(4*n-i)/(4*n-2*i)) + floor(i*(4*n-i)/(4*n-2*i))). - Wesley Ivan Hurt, Apr 24 2020
Sum_{k=1..n} a(k) ~ (n/(2*zeta(2)))*(log(n)^2/2 + log(n)*(3*gamma - 1) + 1 - 3*gamma + 3*gamma^2 - 3*gamma_1 - zeta(2) + (2 - 6*gamma - 2*log(n))*zeta'(2)/zeta(2) + (2*zeta'(2)/zeta(2))^2 - 2*zeta''(2)/zeta(2)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Oct 03 2024

A061502 a(n) = Sum_{k<=n} tau(k)^2, where tau = number of divisors function A000005.

Original entry on oeis.org

1, 5, 9, 18, 22, 38, 42, 58, 67, 83, 87, 123, 127, 143, 159, 184, 188, 224, 228, 264, 280, 296, 300, 364, 373, 389, 405, 441, 445, 509, 513, 549, 565, 581, 597, 678, 682, 698, 714, 778, 782, 846, 850, 886, 922, 938, 942, 1042, 1051, 1087
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2001

Keywords

References

  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter II, Problem 56.

Crossrefs

Programs

  • Magma
    [&+[NumberOfDivisors(k^2)*Floor(n/k): k in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Sep 10 2016
  • Mathematica
    Table[Sum[DivisorSigma[0, k^2]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Aug 30 2018 *)
    Accumulate[Table[DivisorSigma[0, n]^2, {n, 1, 50}]] (* Vaclav Kotesovec, Sep 10 2018 *)
  • PARI
    for (n=1, 1024, write("b061502.txt", n, " ", sum(k=1, n, numdiv(k)^2)) ) \\ Harry J. Smith, Jul 23 2009
    
  • PARI
    vector(60, n, sum(k=1, n, numdiv(k)^2)) \\ Michel Marcus, Jul 23 2015
    
  • PARI
    first(n)=my(v=vector(n),s); forfactored(k=1,n, v[k[1]] = s += numdiv(k)^2); v; \\ Charles R Greathouse IV, Nov 28 2018
    

Formula

a(n) = Sum_{k=1..n} tau(k^2)*floor(n/k).
Asymptotic to A*n*log(n)^3 + B*n*log(n)^2 + C*n*log(n) + D*n + O(n^(1/2+eps)) where A = 1/Pi^2 and B = (12*gamma-3)/Pi^2 - 36*zeta'(2)/Pi^4. [corrected by Vaclav Kotesovec, Aug 30 2018]
C = 36*gamma^2/Pi^2 - (288*z1/Pi^4 + 24/Pi^2)*gamma + (864*z1^2/Pi^6 + 72*z1/Pi^4 - 72/Pi^4*z2 + 6/Pi^2) - 24*g1/Pi^2 and D = 24*gamma^3/Pi^2 - (432*z1 /Pi^4+ 36/Pi^2)*gamma^2 + (3456*z1^2/Pi^6 + 288*(z1-z2)/Pi^4 + 24/Pi^2 - 72*g1/Pi^2)*gamma + g1*(288*z1/Pi^4 + 24/Pi^2)-10368*z1^3/Pi^8 - 864*z1^2/Pi^6 + 1728*z2*z1/Pi^6 + 72*(z2-z1)/Pi^4- 48*z3/Pi^4 + (12*g2-6)/Pi^2, where gamma is the Euler-Mascheroni constant A001620, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994, z3 = Zeta'''(2) = A201995 and g1, g2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Sep 10 2018
See Cully-Hugill & Trudgian, Theorem 2, for an explicit version of the asymptotic given above. - Charles R Greathouse IV, Nov 19 2019

Extensions

Definition corrected by N. J. A. Sloane, May 25 2008

A055155 a(n) = Sum_{d|n} gcd(d, n/d).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 5, 4, 2, 8, 2, 4, 4, 10, 2, 10, 2, 8, 4, 4, 2, 12, 7, 4, 8, 8, 2, 8, 2, 14, 4, 4, 4, 20, 2, 4, 4, 12, 2, 8, 2, 8, 10, 4, 2, 20, 9, 14, 4, 8, 2, 16, 4, 12, 4, 4, 2, 16, 2, 4, 10, 22, 4, 8, 2, 8, 4, 8, 2, 30, 2, 4, 14, 8, 4, 8, 2, 20, 17, 4, 2, 16, 4, 4, 4, 12, 2, 20, 4, 8, 4, 4
Offset: 1

Views

Author

Leroy Quet, Jul 02 2000

Keywords

Comments

a(n) is odd iff n is odd square. - Vladeta Jovovic, Aug 27 2002
From Robert Israel, Dec 26 2015: (Start)
a(n) >= A000005(n), with equality iff n is squarefree (i.e., is in A005117).
a(n) = 2 iff n is prime. (End)

Examples

			a(9) = gcd(1,9) + gcd(3,3) + gcd(9,1) = 5, since 1, 3, 9 are the positive divisors of 9.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    V:= Vector(N):
    for k from 1 to N do
       for j from 1 to floor(N/k) do
         V[k*j]:= V[k*j]+igcd(k,j)
       od
    od:
    convert(V,list); # Robert Israel, Dec 26 2015
  • Mathematica
    Table[DivisorSum[n, GCD[#, n/#] &], {n, 94}] (* Michael De Vlieger, Sep 23 2017 *)
    f[p_, e_] := If[EvenQ[e], (p^(e/2)*(p+1)-2)/(p-1), 2*(p^((e+1)/2)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 30 2020 *)
  • PARI
    a(n) = sumdiv(n, d, gcd(d, n/d)); \\ Michel Marcus, Aug 03 2016
    
  • Python
    from sympy import divisors, gcd
    def A055155(n): return sum(gcd(d,n//d) for d in divisors(n,generator=True)) # Chai Wah Wu, Aug 19 2021

Formula

Multiplicative with a(p^e) = (p^(e/2)*(p+1)-2)/(p-1) for even e and a(p^e) = 2*(p^((e+1)/2)-1)/(p-1) for odd e. - Vladeta Jovovic, Nov 01 2001
Dirichlet g.f.: (zeta(s))^2*zeta(2s-1)/zeta(2s); inverse Mobius transform of A000188. - R. J. Mathar, Feb 16 2011
Dirichlet convolution of A069290 and A008966. - R. J. Mathar, Oct 31 2011
Sum_{k=1..n} a(k) ~ 3*n / (2*Pi^6) * (Pi^4 * log(n)^2 + ((8*g - 2)*Pi^4 - 24 * Pi^2 * z1) * log(n) + 2*Pi^4 * (1 - 4*g + 5*g^2 - 6*sg1) + 288 * z1^2 - 24 * Pi^2 * (-z1 + 4*g*z1 + z2)), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Feb 01 2019
a(n) = (1/n)*Sum_{i=1..n} sigma(gcd(n,i^2)). - Ridouane Oudra, Dec 30 2020
a(n) = Sum_{k=1..n} gcd(gcd(n,k),n/gcd(n,k))/phi(n/gcd(n,k)), where phi = A000010. - Richard L. Ollerton, May 09 2021

A055205 Number of nonsquare divisors of n^2.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 3, 2, 5, 1, 9, 1, 5, 5, 4, 1, 9, 1, 9, 5, 5, 1, 13, 2, 5, 3, 9, 1, 19, 1, 5, 5, 5, 5, 16, 1, 5, 5, 13, 1, 19, 1, 9, 9, 5, 1, 17, 2, 9, 5, 9, 1, 13, 5, 13, 5, 5, 1, 33, 1, 5, 9, 6, 5, 19, 1, 9, 5, 19, 1, 23, 1, 5, 9, 9, 5, 19, 1, 17, 4, 5, 1, 33, 5, 5, 5, 13, 1, 33, 5, 9, 5, 5, 5
Offset: 1

Views

Author

Labos Elemer, Jun 19 2000

Keywords

Comments

Seems to be equal to the number of unordered pairs of coprime divisors of n. (Checked up to 2*10^14.) - Charles R Greathouse IV, May 03 2013
Outline of a proof for this observation, R. J. Mathar, May 05 2013: (Start)
i) To construct the divisors of n, write n=product_i p_i^e_i as the standard prime power decomposition, take any subset of the primes p_i (including the empty set representing the 1) and run with the associated list exponents from 0 up to their individual e_i.
To construct the *nonsquare* divisors of n, ensure that one or more of the associated exponents is/are odd. (The empty set is interpreted as 1^0 with even exponent.) To construct the nonsquare divisors of n^2, the principle remains the same, although the exponents may individually range from 0 up to 2*e_i.
The nonsquare divisor is therefore a nonempty product of prime powers (at least one) with odd exponents times a (potentially empty) product of prime powers (of different primes) with even exponents.
The nonsquare divisors of n^2 have exponents from 0 up to 2*e_i, but the subset of exponents in the "even/square" factor has e_i candidates (range 2, 4, .., 2*e_i) and in the "odd/nonsquare" factor also only e_i candidates (range 1,3,5,2*e_i-1).
ii) To construct the pairs of coprime divisors of n, take any two non-intersecting subsets of the set of p_i (possibly the empty subset which represents the factor 1), and let the exponents run from 1 up to their individual e_i in each of the two products.
iii) The bijection between the sets constructed in i) and ii) is given by mapping the two non-intersection prime sets onto each other, and observing that the numbers of compositions of exponents have the same orders in both cases.
(End)

Examples

			n = 8, d(64) = 7 and from the 7 divisors {1,4,16,64} are square and the remaining 3 = a(8).
n = 12, d(144) = 15, from which 6 divisors are squares {1,4,9,16,36,144} so a(12) = d(144)-d(12) = 9
a(60) = (number of terms of finite A171425) = 33. [_Reinhard Zumkeller_, Dec 08 2009]
		

Crossrefs

Programs

  • Haskell
    a055205 n = length [d | d <- [1..n^2], n^2 `mod` d == 0, a010052 d == 0]
    -- Reinhard Zumkeller, Aug 15 2011
    
  • Mathematica
    Table[Count[Divisors[n^2], d_ /;  ! IntegerQ[Sqrt[d]]], {n, 1, 95}] (* Jean-François Alcover, Mar 22 2011 *)
    Table[DivisorSigma[0,n^2]-DivisorSigma[0,n],{n,100}] (* Harvey P. Dale, Sep 02 2017 *)
  • PARI
    a(n)=my(f=factor(n)[,2]);prod(i=1,#f,2*f[i]+1)-prod(i=1,#f,f[i]+1) \\ Charles R Greathouse IV, May 02 2013

Formula

a(n) = A000005(n^2)-A000005(n) because the number of square divisors of n^2 equals the number of divisors of n.
a(n) = A056595(A000290(n)).
a(n) = A048691(n) - A000005(n). - Reinhard Zumkeller, Dec 08 2009
Sum_{k=1..n} a(k) ~ (n/zeta(2)) * (log(n)^2/2 + c_1 * log(n) + c_2), where c_1 = 3*gamma - 2*zeta'(2)/zeta(2) - zeta(2) - 1 = 0.226634..., c_2 = 3*gamma^2 - (2*gamma - 1)*zeta(2) - 3*gamma_1 + (1 - 3*gamma)*(2*zeta'(2)/zeta(2) + 1) + (2*zeta'(2)/zeta(2))^2 - 2*zeta''(2)/zeta(2) = -0.0529271..., gamma is Euler's constant (A001620), and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Dec 01 2023

A201995 Decimal expansion of the absolute value of zeta'''(2), the third derivative of the Riemann zeta function at 2.

Original entry on oeis.org

6, 0, 0, 0, 1, 4, 5, 8, 0, 2, 8, 4, 3, 0, 4, 4, 8, 6, 5, 6, 4, 3, 9, 4, 1, 2, 1, 7, 5, 3, 7, 8, 4, 8, 3, 8, 3, 7, 4, 0, 5, 8, 8, 6, 1, 5, 9, 4, 4, 5, 6, 8, 5, 8, 5, 0, 3, 5, 1, 0, 7, 9, 5, 0, 0, 8, 5, 9, 7, 4, 1, 6, 7, 4, 7, 5, 1, 0, 0, 3, 5, 9, 2, 4, 1, 5, 0, 3, 4, 2, 5, 6, 0
Offset: 1

Views

Author

R. J. Mathar, Dec 07 2011

Keywords

Examples

			zeta'''(2) = -6.00014580284304486564394121753784..
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(3,2));
  • Mathematica
    RealDigits[ Zeta'''[2], 10, 93] // First (* Jean-François Alcover, Feb 20 2013 *)

Formula

zeta'''(2)= -Sum_{k>=1} log^3(k)/k^2.
Equals 3! + Sum_{k>=0} (-1)^k*gamma(3+k)/k!, where gamma(.) are the Stieltjes constants A001620, A082633, A086279 etc. [Choudhury, Thm. 4]

A061503 a(n) = Sum_{k=1..n} tau(k^2), where tau is the number of divisors function A000005.

Original entry on oeis.org

1, 4, 7, 12, 15, 24, 27, 34, 39, 48, 51, 66, 69, 78, 87, 96, 99, 114, 117, 132, 141, 150, 153, 174, 179, 188, 195, 210, 213, 240, 243, 254, 263, 272, 281, 306, 309, 318, 327, 348, 351, 378, 381, 396, 411, 420, 423, 450, 455, 470, 479, 494, 497
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2001

Keywords

Comments

a(n) is the number of pairs of positive integers <= n with their LCM <= n. - Andrew Howroyd, Sep 01 2019

References

  • Mentioned by Steven Finch in a posting to the Number Theory List (NMBRTHRY(AT)LISTSERV.NODAK.EDU), Jun 13 2001.

Crossrefs

Cf. A000005, A061502. Partial sums of A048691.

Programs

  • GAP
    List([1..60],n->Sum([1..n],k->Tau(k^2))); # Muniru A Asiru, Mar 09 2019
    
  • Maple
    with(numtheory): a:=n->add(tau(k^2),k=1..n): seq(a(n),n=1..60); # Muniru A Asiru, Mar 09 2019
  • Mathematica
    DivisorSigma[0, Range[60]^2] // Accumulate (* Jean-François Alcover, Nov 25 2013 *)
  • PARI
    for (n=1, 1024, write("b061503.txt", n, " ", sum(k=1, n, numdiv(k^2)))) \\ Harry J. Smith, Jul 23 2009
    
  • PARI
    t=0;v=vector(60,n,t+=numdiv(n^2)) \\ Charles R Greathouse IV, Nov 08 2012
    
  • Python
    from math import prod
    from sympy import factorint
    def A061503(n): return sum(prod(2*e+1 for e in factorint(k).values()) for k in range(1,n+1)) # Chai Wah Wu, May 10 2022
  • Sage
    def A061503(n) :
        tau = sloane.A000005
        return add(tau(k^2) for k in (1..n))
    [ A061503(i) for i in (1..19)] # Peter Luschny, Sep 15 2012
    

Formula

a(n) = Sum_{j=1..n^2} floor(n/A019554(j)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 20 2002
a(n) = Sum_{i=1..n} 2^omega(i) * floor(n/i). - Enrique Pérez Herrero, Sep 15 2012
a(n) ~ 3/Pi^2 * n log^2 n. - Charles R Greathouse IV, Nov 08 2012
a(n) ~ 3*n/Pi^2 * (log(n)^2 + log(n)*(-2 + 6*g - 24*z/Pi^2) + 2 - 6*g + 6*g^2 - 6*sg1 + 288*z^2/Pi^4 - 24*(-z + 3*g*z + z2)/ Pi^2), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant (see A082633), z = Zeta'(2) (see A073002), z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Jan 30 2019
a(n) = Sum_{k=1..n} A064608(floor(n/k)). - Daniel Suteu, Mar 09 2019

Extensions

Name corrected by Peter Luschny, Sep 15 2012

A078644 a(n) = tau(2*n^2)/2.

Original entry on oeis.org

1, 2, 3, 3, 3, 6, 3, 4, 5, 6, 3, 9, 3, 6, 9, 5, 3, 10, 3, 9, 9, 6, 3, 12, 5, 6, 7, 9, 3, 18, 3, 6, 9, 6, 9, 15, 3, 6, 9, 12, 3, 18, 3, 9, 15, 6, 3, 15, 5, 10, 9, 9, 3, 14, 9, 12, 9, 6, 3, 27, 3, 6, 15, 7, 9, 18, 3, 9, 9, 18, 3, 20, 3, 6, 15, 9, 9, 18, 3, 15, 9, 6, 3, 27, 9, 6, 9, 12, 3, 30, 9, 9, 9, 6, 9
Offset: 1

Views

Author

Vladeta Jovovic, Dec 13 2002

Keywords

Comments

Inverse Moebius transform of A068068. Number of elements in the set {(x,y): x is odd, x|n, y|n, gcd(x,y)=1}.
The number of Pythagorean points (x,y), 0 < x < y, located on the hyperbola y = 2n(x-n)/(x-2n) and having "excess" x+y-z = 2n. - Seppo Mustonen, Jun 07 2005
a(n) is the number of Pythagorean triangles with radius of the inscribed circle equal to n. For number of primitive Pythagorean triangles having inradius n, see A068068(n). - Ant King, Mar 06 2006
Dirichlet convolution of A048691 and A154269. - R. J. Mathar, Jun 01 2011
Number of distinct L-shapes of thickness n where the L area equals the rectangular area that it "contains". Visually can be thought as those areas of A156688 (surrounded by equal border of thickness n: 2xy = (x+2n)(y+2n), x and y positive integers) where both x and y are even, so they can be split into L-shapes. So L-shapes have formula: 2xy = (x+n)(y+n). - Juhani Heino, Jul 23 2012

Crossrefs

Programs

  • Magma
    [NumberOfDivisors(2*n^2)/2 : n in [1..100]]; // Vincenzo Librandi, Aug 14 2018
  • Maple
    with(numtheory): seq(add(mobius(2*d)^2*tau(n/d), d in divisors(n)), n=1..100); # Ridouane Oudra, Nov 17 2019
  • Mathematica
    Table[DivisorSigma[0, 2 n^2] / 2, {n, 100}] (* Vincenzo Librandi, Aug 14 2018 *)
  • PARI
    a(n) = numdiv(2*n^2)/2; \\ Michel Marcus, Oct 04 2013
    
  • Sage
    [sigma(2*n^2,0)/2 for n in range(1,100)] # Joerg Arndt, May 12 2014
    

Formula

Multiplicative with a(2^e) = e+1, a(p^e) = 2*e+1, p > 2. a(n) = tau(n^2) if n is odd, a(n) = tau(n^2) - a(n/2) if n is even.
Dirichlet g.f.: zeta^3(s)/(zeta(2s)*(1+1/2^s)). - R. J. Mathar, Jun 01 2011
Sum_{k=1..n} a(k) ~ 2*n / (9*Pi^2) * (9*log(n)^2 + 6*log(n) * (-3 + 9*g + log(2) - 36*Pi^(-2)*z1) + 18 + 54*g^2 + 18*g * (log(2) - 3) - 6*log(2) - log(2)^2 - 54*sg1 + 2592*z1^2/Pi^4 - 72*Pi^-2*(9*g*z1 + (log(2) - 3)*z1 + 3*z2)), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Feb 02 2019
a(n) = Sum_{d|n} mu(2d)^2*tau(n/d), Dirichlet convolution of A323239 and A000005. - Ridouane Oudra, Nov 17 2019
a(n) = A361689(n)/2. - R. J. Mathar, Mar 21 2023

A307000 Number of unitary rings with additive group (Z/nZ)^2. Equivalently, number of unitary commutative rings with additive group (Z/nZ)^2.

Original entry on oeis.org

1, 3, 3, 6, 3, 9, 3, 10, 5, 9, 3, 18, 3, 9, 9, 14, 3, 15, 3, 18, 9, 9, 3, 30, 5, 9, 7, 18, 3, 27, 3, 18, 9, 9, 9, 30, 3, 9, 9, 30, 3, 27, 3, 18, 15, 9, 3, 42, 5, 15, 9, 18, 3, 21, 9, 30, 9, 9, 3, 54, 3, 9, 15, 22, 9, 27, 3, 18, 9, 27, 3, 50, 3, 9, 15, 18, 9, 27
Offset: 1

Views

Author

Jianing Song, Mar 24 2019

Keywords

Comments

Equivalently, a(n) is the number of nonisomorphic unitary rings whose rank is 2 when viewed as a free module over the ring (Z_n, +, *). - Jianing Song, Feb 23 2021
Every unitary ring with additive group (Z/nZ)^2 must be commutative, and is of the form Z_n[x]/(x^2 + b*x + c) for some b, c in Z_n, where (x^2 + b*x + c) stands for the ideal of Z_n[x] generated by x^2 + b*x + c. Proof: Let R be a unitary commutative ring with additive group (Z/nZ)^2. Suppose e is the identity element of R, x is an element such that {e, x} is a basis for R as a free module over Z_n (such a basis must exist, see my note in the link section), then every element can be written as the form u*x + v*e for 0 <= u, v <= n-1. If x^2 = -p*x - q*e, it turns out that R is isomorphic to Z_n[x]/(x^2 + [p]*x + [q]). - Jianing Song, Apr 23 2021
Equivalently, a(n) is the number of nonisomorphic rings of the form Z[x]/(n, x^2 + p*x + q), where (n, x^2 + p*x + q) is the ideal of Z[x] generated by n and x^2 + p*x + q. - Jianing Song, Feb 15 2021
Theorem. R_1 = Z_n[x]/(x^2 + b*x + c) and R_2 = Z_n[y]/(y^2 + b'*y + c') are isomorphic if and only if there exists some k in Z, t in Z_n such that gcd(k, n) = 1 and that b' == b*k + 2*t (mod n), c' == t^2 + b*k*t + c*k^2 (mod n).
Proof: "<=": Note that y^2 + (b*k + 2*t)*y + (t^2 + b*k*t + c*k^2) = (y + t)^2 + b*k*(y + t) + c*k^2, so a mapping from R_1 to R_2 is given by f(x) = (y + t)/k and f(r*x + s) = r*f(x) + s. Since gcd(k, n) = 1, f is an isomorphic mapping.
"=>": If R_1 and R_2 are isomorphic, there exists some isomorphic mapping from R_2 to R_1 such that f(y) = k*x - t. If gcd(k, n) > 1, since f(r*y + s) = r*f(y) + s = r*(k*x - t), there is no element in R_2 such that f(y) = x, a contradiction. So this isomorphic mapping sends x in R_1 to (y + t)/k, then (y + t)^2 + b*k*(y + t) + c*k^2 = 0. The corresponding coefficients must be equal modulo n, so b' == b*k + 2*t (mod n), c' == t^2 + b*k*t + c*k^2 (mod n).
Now note that without loss of generality we can suppose that b = 0 or -1, because we can always find some t such that b*k + 2*t == 0 or -1 (mod n). Furthermore, if n is an odd number, we can suppose that b = 0.
Case (i): n is an odd number, then a unitary ring with additive group (Z/nZ)^2 is of the form Z_n[x]/(x^2 - c). From the theorem above we can see that R_1 = Z_n[x]/(x^2 - c) and R_2 = Z_n[y]/(y^2 - c') are isomorphic if and only if there exists some k such that gcd(k, n) = 1 and that c*k^2 == c' (mod n). So the number of such rings is A092089(n).
Case (ii): n is an even number, then a unitary ring with additive group (Z/nZ)^2 is of the form Z_n[x]/(x^2 - c) or Z_n[x]/(x^2 - x - (c - 1)/4), c in Z_{4n}, c == 1 (mod 4). From the theorem above we can see that R_1 = Z_n[x]/(x^2 - c) and R_2 = Z_n[y]/(y^2 - c') are isomorphic if and only if there exists some k such that gcd(k, n) = 1 and that c*k^2 == c' (mod n) or c*k^2 + n^2/4 == c' (mod n) (with t = 0 and t = n/2 respectively); R_3 = Z_n[x]/(x^2 - x - (c - 1)/4)) and R_4 = Z_n[y]/(y^2 - y - (c' - 1)/4)) are isomorphic if and only if there exists some k such that gcd(k, 4*n) = 1 and that c*k^2 == c' (mod 4*n) or c*k^2 - n^2 + 2*n == c' (mod 4*n) (with t = (k - 1)/2 and t = (n + k - 1)/2 respectively).
(a) if n == 2 (mod 4), then the number of rings of the form is Z_n[x]/(x^2 - c) is A092089(n/2), and the number of rings of the form Z_n[x]/(x^2 - x - (c - 1)/4) is equal to the number of inequivalent residue classes modulo 4*n that are congruent to 1 modulo 4 where the equivalence relation is defined as [a] ~ [b] (mod 4*n) if and only if there exists some k such that gcd(k, 4*n) = 1 and that a*k^2 == b (mod 4*n). The number of the even inequivalent residue classes modulo 4*n is equal to the number of inequivalent residue classes modulo 2*n, and the number of inequivalent residue classes modulo 4*n that are congruent to 1 modulo 4 is equal to the number of those that are congruent to 3 modulo 4. So the total number if A092089(n/2) + (A092089(4*n) - A092089(2*n))/2.
(b) if n == 0 (mod 4). Similarly, the number of rings of the form is Z_n[x]/(x^2 - c) is A092089(n), and the number of rings of the form Z_n[x]/(x^2 - x - (c - 1)/4) is (A092089(2*n) - A092089(n))/2.

Examples

			The nonisomorphic unitary rings with additive group (Z/nZ)^2 (rings of the form Z_n[x]/(x^2 + b*x + c)) are given by Z_n[x]/(f(x)), where f(x) =
n = 1: x^2 (total number = 1);
n = 2: x^2, x^2 - x, x^2 - x - 1 (total number = 3);
n = 3: x^2, x^2 - 1, x^2 - 2 (total number = 3);
n = 4: x^2, x^2 - 1, x^2 - 2, x^2 - 3, x^2 - x, x^2 - x - 1 (total number = 6);
n = 5: x^2, x^2 - 1, x^2 - 2 (total number = 3);
n = 6: x^2, x^2 - 1, x^2 - 2, x^2 - x, x^2 - x - 1, x^2 - x - 2, x^2 - x - 3, x^2 - x - 4, x^2 - x - 5 (total number = 9);
n = 7: x^2, x^2 - 1, x^2 - 3 (total number = 3);
n = 8: x^2, x^2 - 1, x^2 - 2, x^2 - 3, x^2 - 4, x^2 - 5, x^2 - 6, x^2 - 7, x^2 - x, x^2 - x - 1 (total number = 10);
n = 9: x^2, x^2 - 1, x^2 - 2, x^2 - 3, x^2 - 6 (total number = 5);
n = 10: x^2, x^2 - 1, x^2 - 2, x^2 - x, x^2 - x - 1, x^2 - x - 3, x^2 - x - 4, x^2 - x - 5, x^2 - x - 6 (total number = 9).
See the link for rings of the form Z_n[x]/(x^2 + b*x + c) for n <= 100.
		

Crossrefs

Programs

  • Mathematica
    f[2, e_] := If[e == 1, 3, 4*e - 2]; f[p_, e_] := 2*e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p>=3, r*=(2*e+1));
            if(p==2&&e==1, r*=3);
            if(p==2&&e>=2, r*=4*e-2);
        );
        return(r);
    }

Formula

a(n) = A092089(n) if n is odd; (A092089(n) + A092089(2*n))/2 if n is even.
Multiplicative with a(p^e) = 2*e + 1, a(2) = 3 and a(2^e) = 4*e - 2 for e >= 2.
Dirichlet g.f.: zeta(s)^3/zeta(2s)*(1/(1+2^(-s))).
Sum_{k=1..n} a(k) ~ (2*n/Pi^2) * (log(n)^2 + c_1 * log(n) + c_2), where c_1 = 6 * gamma - 2 + 2*log(2)/3 - 4*zeta'(2)/zeta(2) = 4.2052360821..., gamma is Euler's constant (A001620), c_2 = 2 - 6*gamma + 6*gamma^2 - 2*log(2)/3 + 2*gamma*log(2) - log(2)^2/9 - 6*gamma_1 + 4*(1 - 3*gamma - log(2)/3)*zeta'(2)/zeta(2) + 8*(zeta'(2)/zeta(2))^2 - 4*zeta''(2)/zeta(2) = 1.2136692558..., and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Dec 22 2023

Extensions

New name from Jianing Song, Feb 15 2021
New name from Jianing Song, Apr 23 2021
Showing 1-10 of 26 results. Next