cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A002145 Primes of the form 4*k + 3.

Original entry on oeis.org

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 563, 571
Offset: 1

Views

Author

Keywords

Comments

Or, odd primes p such that -1 is not a square mod p, i.e., the Legendre symbol (-1/p) = -1. [LeVeque I, p. 66]. - N. J. A. Sloane, Jun 28 2008
Primes which are not the sum of two squares, see the comment in A022544. - Artur Jasinski, Nov 15 2006
Natural primes which are also Gaussian primes. (It is a common error to refer to this sequence as "the Gaussian primes".)
Inert rational primes in the field Q(sqrt(-1)). - N. J. A. Sloane, Dec 25 2017
Numbers n such that the product of coefficients of (2n)-th cyclotomic polynomial equals -1. - Benoit Cloitre, Oct 22 2002
For p and q both belonging to the sequence, exactly one of the congruences x^2 = p (mod q), x^2 = q (mod p) is solvable, according to Gauss reciprocity law. - Lekraj Beedassy, Jul 17 2003
Also primes p that divide L((p-1)/2) or L((p+1)/2), where L(n) = A000032(n), the Lucas numbers. Union of A122869 and A122870. - Alexander Adamchuk, Sep 16 2006
Also odd primes p that divide ((p-1)!! + 1) or ((p-2)!! + 1). - Alexander Adamchuk, Nov 30 2006
Also odd primes p that divide ((p-1)!! - 1) or ((p-2)!! - 1). - Alexander Adamchuk, Apr 18 2007
This sequence is a proper subset of the set of the absolute values of negative fundamental discriminants (A003657). - Paul Muljadi, Mar 29 2008
Bernard Frénicle de Bessy discovered that such primes cannot be the hypotenuse of a Pythagorean triangle in opposition to primes of the form 4*n+1 (see A002144). - after Paul Curtz, Sep 10 2008
A079261(a(n)) = 1; complement of A145395. - Reinhard Zumkeller, Oct 12 2008
Subsequence of A007970. - Reinhard Zumkeller, Jun 18 2011
A151763(a(n)) = -1.
Primes p such that p XOR 2 = p - 2. Brad Clardy, Oct 25 2011 (Misleading in the sense that this is a formula for the super-sequence A004767. - R. J. Mathar, Jul 28 2014)
It appears that each term of A004767 is the mean of two terms of this subsequence of primes therein; cf. A245203. - M. F. Hasler, Jul 13 2014
Numbers n > 2 such that ((n-2)!!)^2 == 1 (mod n). - Thomas Ordowski, Jul 24 2016
Odd numbers n > 1 such that ((n-1)!!)^2 == 1 (mod n). - Thomas Ordowski, Jul 25 2016
Primes p such that (p-2)!! == (p-3)!! (mod p). - Thomas Ordowski, Jul 28 2016
See Granville and Martin for a discussion of the relative numbers of primes of the form 4k+1 and 4k+3. - Editors, May 01 2017
Sometimes referred to as Blum primes for their connection to A016105 and the Blum Blum Shub generator. - Charles R Greathouse IV, Jun 14 2018
Conjecture: a(n) for n > 4 can be written as a sum of 3 primes of the form 4k+1, which would imply that primes of the form 4k+3 >= 23 can be decomposed into a sum of 6 nonzero squares. - Thomas Scheuerle, Feb 09 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 146-147.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 252.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 66.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 90.

Crossrefs

Apart from initial term, same as A045326.
Cf. A016105.
Cf. A004614 (multiplicative closure).

Programs

  • Haskell
    a002145 n = a002145_list !! (n-1)
    a002145_list = filter ((== 1) . a010051) [3, 7 ..]
    -- Reinhard Zumkeller, Aug 02 2015, Sep 23 2011
    
  • Magma
    [4*n+3 : n in [0..142] | IsPrime(4*n+3)]; // Arkadiusz Wesolowski, Nov 15 2013
    
  • Maple
    A002145 := proc(n)
        option remember;
        if n = 1 then
            3;
        else
            a := nextprime(procname(n-1)) ;
            while a mod 4 <>  3 do
                a := nextprime(a) ;
            end do;
            return a;
        end if;
    end proc:
    seq(A002145(n),n=1..20) ; # R. J. Mathar, Dec 08 2011
  • Mathematica
    Select[4Range[150] - 1, PrimeQ] (* Alonso del Arte, Dec 19 2013 *)
    Select[ Prime@ Range[2, 110], Length@ PowersRepresentations[#^2, 2, 2] == 1 &] (* or *)
    Select[ Prime@ Range[2, 110], JacobiSymbol[-1, #] == -1 &] (* Robert G. Wilson v, May 11 2014 *)
  • PARI
    forprime(p=2,1e3,if(p%4==3,print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • Sage
    def A002145_list(n): return [p for p in prime_range(1, n + 1) if p % 4 == 3]  # Peter Luschny, Jul 29 2014

Formula

Remove from A000040 terms that are in A002313.
Intersection of A000040 and A004767. - Alonso del Arte, Apr 22 2014
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A243379.
Product_{k>=1} (1 + 1/a(k)^2) = A243381.
Product_{k>=1} (1 - 1/a(k)^3) = A334427.
Product_{k>=1} (1 + 1/a(k)^3) = A334426.
Product_{k>=1} (1 - 1/a(k)^4) = A334448.
Product_{k>=1} (1 + 1/a(k)^4) = A334447.
Product_{k>=1} (1 - 1/a(k)^5) = A334452.
Product_{k>=1} (1 + 1/a(k)^5) = A334451. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/a(k)) / (1 + 1/A002144(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/a(k)) / (1 - 1/A002144(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log(2 * (2^(n*s) - 1) * (n*s - 1)! * zeta(n*s) / (Pi^(n*s) * abs(EulerE(n*s - 1))))/n, s >= 3 odd number. - Dimitris Valianatos, May 20 2020

Extensions

More terms from James Sellers, Apr 21 2000

A050469 a(n) = Sum_{ d divides n, n/d=1 mod 4} d - Sum_{ d divides n, n/d=3 mod 4} d.

Original entry on oeis.org

1, 2, 2, 4, 6, 4, 6, 8, 7, 12, 10, 8, 14, 12, 12, 16, 18, 14, 18, 24, 12, 20, 22, 16, 31, 28, 20, 24, 30, 24, 30, 32, 20, 36, 36, 28, 38, 36, 28, 48, 42, 24, 42, 40, 42, 44, 46, 32, 43, 62, 36, 56, 54, 40, 60, 48, 36, 60, 58, 48, 62, 60, 42, 64, 84, 40
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Comments

Multiplicative with a(p^e)=p^e if p=2, (p^(e+1)-1)/(p-1) if p==1 (mod 4), else (p^(e+1)+(-1)^e)/(p+1). - Michael Somos, May 02 2005
Multiplicative because it is the Dirichlet convolution of A000027 = n and A101455 = [1 0 -1 0 1 0 -1 ...], which are both multiplicative. - Christian G. Bower, May 17 2005

Crossrefs

Programs

  • Mathematica
    max = 70; s = Sum[n*x^(n-1)/(1+x^(2*n)), {n, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 02 2015 *)
    f[p_, e_] := Which[p == 2, p^e, Mod[p, 4] == 1, (p^(e + 1) - 1)/(p - 1), Mod[p, 4] == 3, (p^(e + 1) + (-1)^e)/(p + 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 06 2022 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d*((n/d%4==1)-(n/d%4==3))))
    
  • PARI
    {a(n)=local(A,p,e); if(n<2, n==1, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==2, p^e, if(p%4==1, (p^(e+1)-1)/(p-1), (p^(e+1)+(-1)^e)/(p+1)))))) } /* Michael Somos, May 02 2005 */
    
  • PARI
    a(n)=if(n<1,0,polcoeff(sum(k=1,n,k*x^k/(1+x^(2*k)),x*O(x^n)),n))

Formula

G.f.: Sum_{n>=1} n*x^n/(1+x^(2*n)). - Vladeta Jovovic, Oct 16 2002
L.g.f.: Sum_{k>=1} arctan(x^k). - Ilya Gutkovskiy, Dec 16 2019
O.g.f.: Sum_{n >= 1} (-1)^(n+1) * x^(2*n-1)/(1 - x^(2*n-1))^2. - Peter Bala, Jan 04 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{primes p == 1 (mod 4)} 1/(1-1/p^2) * Product_{primes p == 3 (mod 4)} 1/(1+1/p^2) = (1/2) * A175647 / A243381 = A006752/2 = 0.4579827970... . - Amiram Eldar, Nov 06 2022, Nov 05 2023
a(n) = Sum_{d|n} (n/d)*sin(d*Pi/2). - Ridouane Oudra, Sep 26 2024

A243379 Decimal expansion of 1/(2*K^2) = Product_(p prime congruent to 3 modulo 4) (1 - 1/p^2), where K is the Landau-Ramanujan constant.

Original entry on oeis.org

8, 5, 6, 1, 0, 8, 9, 8, 1, 7, 2, 1, 8, 9, 3, 4, 7, 6, 9, 0, 6, 0, 3, 3, 0, 0, 6, 1, 4, 8, 0, 6, 1, 1, 7, 3, 4, 8, 1, 0, 7, 8, 4, 2, 7, 3, 8, 8, 1, 7, 3, 4, 9, 0, 8, 6, 0, 5, 1, 8, 4, 0, 0, 5, 8, 3, 4, 3, 0, 7, 9, 6, 1, 1, 1, 8, 6, 3, 6, 5, 8, 9, 6, 2, 3, 3, 8, 1, 2, 9, 4, 5, 1, 7, 7, 7, 7, 0, 9, 7, 6
Offset: 0

Views

Author

Jean-François Alcover, Jun 04 2014

Keywords

Comments

Equals 1/1.168075586.., where 1.168.. is zeta_(m=4,n=3)(s=2) in the table of Section 3.3 of arxiv:1008.2547. - R. J. Mathar, Nov 14 2014

Examples

			0.856108981721893476906033006148061173481...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 101.

Crossrefs

Programs

  • Mathematica
    digits = 101; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 1/(2*LandauRamanujanK^2) // RealDigits[#, 10, digits] & // First (* updated Mar 18 2018 *)

Formula

1/(2*K^2), where K is the Landau-Ramanujan constant (A064533).
A088539 * A243379 = 8 / Pi^2. - Vaclav Kotesovec, Apr 30 2020

A243380 Decimal expansion of 192*K^2*G/Pi^4 = Product_{p prime congruent to 1 modulo 4} (1 + 1/p^2), where K is the Landau-Ramanujan constant and G Catalan's constant.

Original entry on oeis.org

1, 0, 5, 4, 4, 3, 9, 9, 4, 4, 7, 9, 9, 9, 4, 8, 4, 8, 9, 6, 4, 8, 8, 1, 9, 4, 6, 4, 8, 2, 6, 7, 1, 7, 9, 4, 8, 3, 1, 7, 3, 4, 3, 6, 5, 0, 6, 9, 7, 0, 6, 0, 4, 8, 8, 0, 7, 8, 4, 8, 9, 7, 2, 7, 6, 1, 8, 5, 7, 7, 4, 6, 8, 0, 4, 2, 1, 5, 8, 2, 9, 3, 8, 7, 1, 6, 4, 3, 3, 6, 0, 3, 3, 7, 6, 6, 8, 5, 7, 0, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 04 2014

Keywords

Examples

			1.0544399447999484896488194648267179483...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 101.

Crossrefs

Programs

  • Mathematica
    digits = 101; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 192*LandauRamanujanK^2*Catalan/Pi^4 // RealDigits[#, 10, digits] & // First (* updated Mar 14 2018 *)

Formula

Equals 192*K^2*G/Pi^4, where K is the Landau-Ramanujan constant (A064533) and G Catalan's constant (A006752).
A243380 * A243381 = 12/Pi^2. - Vaclav Kotesovec, Apr 30 2020
Equals A175647 / 1.001652229636651... both constants from p 26 of arXiv:1008.2537v2. - R. J. Mathar, Aug 21 2022

A334426 Decimal expansion of Product_{k>=1} (1 + 1/A002145(k)^3).

Original entry on oeis.org

1, 0, 4, 1, 1, 5, 8, 0, 7, 2, 8, 2, 3, 4, 4, 4, 5, 8, 0, 3, 3, 8, 3, 6, 0, 5, 6, 9, 9, 2, 5, 6, 1, 5, 6, 6, 9, 3, 7, 6, 0, 7, 1, 3, 5, 1, 1, 3, 4, 9, 3, 5, 4, 1, 7, 3, 9, 4, 9, 8, 8, 6, 6, 6, 1, 7, 8, 5, 4, 1, 3, 5, 5, 8, 5, 6, 1, 3, 5, 0, 3, 5, 3, 5, 6, 0, 4, 7, 4, 5, 5, 4, 6, 7, 1, 0, 8, 7, 4, 3, 1, 5, 3, 6, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 30 2020

Keywords

Examples

			1.041158072823444580338360569925615669376071...
		

References

  • B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.

Crossrefs

Formula

A334426 / A334427 = 28*zeta(3)/Pi^3.
A334424 * A334426 = 840*zeta(3)/Pi^6.

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A334447 Decimal expansion of Product_{k>=1} (1 + 1/A002145(k)^4).

Original entry on oeis.org

1, 0, 1, 2, 8, 4, 9, 7, 3, 7, 5, 0, 3, 6, 5, 8, 2, 4, 1, 0, 5, 3, 7, 3, 8, 8, 0, 9, 6, 3, 0, 1, 1, 2, 0, 3, 9, 6, 8, 4, 5, 0, 4, 2, 1, 6, 5, 5, 3, 8, 6, 9, 4, 5, 0, 9, 2, 2, 2, 1, 4, 4, 1, 8, 1, 9, 1, 3, 4, 1, 5, 6, 6, 9, 0, 0, 5, 5, 2, 5, 7, 1, 6, 6, 4, 2, 4, 8, 6, 1, 2, 7, 5, 4, 1, 3, 0, 2, 9, 9, 9, 3, 4, 4, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 30 2020

Keywords

Comments

In general, for s>1, Product_{k>=1} (1 + 1/A002145(k)^s)/(1 - 1/A002145(k)^s) = 2^s * (2^s - 1) * zeta(s) / (zeta(s, 1/4) - zeta(s, 3/4)) = 1 / (2 * (-1)^s * PolyGamma(s-1, 1/4) / (2^s * (2^s - 1) * Gamma(s) * zeta(s)) - 1).

Examples

			1.01284973750365824105373880963011203968450421655386945092221...
		

References

  • B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.

Crossrefs

Formula

A334447 / A334448 = 1/(PolyGamma(3, 1/4)/(8*Pi^4) - 1).
A334445 * A334447 = 1680 / (17*Pi^4).

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A334451 Decimal expansion of Product_{k>=1} (1 + 1/A002145(k)^5).

Original entry on oeis.org

1, 0, 0, 4, 1, 8, 1, 8, 1, 6, 7, 7, 0, 8, 5, 6, 6, 9, 0, 3, 8, 8, 7, 2, 6, 9, 7, 6, 5, 6, 5, 8, 5, 6, 9, 6, 0, 6, 3, 1, 5, 8, 1, 9, 5, 0, 6, 3, 6, 7, 4, 3, 2, 8, 8, 2, 8, 3, 4, 2, 4, 9, 7, 6, 8, 6, 9, 7, 7, 9, 4, 4, 9, 6, 4, 3, 9, 9, 3, 8, 0, 8, 1, 9, 9, 2, 1, 4, 5, 9, 3, 8, 0, 5, 7, 9, 0, 0, 6, 2, 3, 4, 5, 2, 5
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 30 2020

Keywords

Comments

In general, for s>0, Product_{k>=1} (1 + 1/A002145(k)^(2*s+1))/(1 - 1/A002145(k)^(2*s+1)) = (2*s)! * (2^(2*s + 2) - 2) * zeta(2*s+1) / (Pi^(2*s+1) * A000364(s)). - Dimitris Valianatos, May 01 2020
In general, for s>1, Product_{k>=1} (1 + 1/A002145(k)^s)/(1 - 1/A002145(k)^s) = 2^s * (2^s - 1) * zeta(s) / (zeta(s, 1/4) - zeta(s, 3/4)).

Examples

			1.0041818167708566903887269765658569606315819506367432882834249768697794496439...
		

References

  • B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.

Crossrefs

Formula

A334451 / A334452 = 1488*zeta(5)/(5*Pi^5).
A334449 * A334451 = 90720*zeta(5)/Pi^10.

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020

A096018 Number of Pythagorean quadruples mod n; i.e., number of solutions to w^2 + x^2 + y^2 = z^2 mod n.

Original entry on oeis.org

1, 8, 21, 64, 145, 168, 301, 512, 621, 1160, 1221, 1344, 2353, 2408, 3045, 4096, 5185, 4968, 6517, 9280, 6321, 9768, 11661, 10752, 18625, 18824, 16281, 19264, 25201, 24360, 28861, 32768, 25641, 41480, 43645, 39744, 51985, 52136, 49413, 74240
Offset: 1

Views

Author

T. D. Noe, Jun 15 2004

Keywords

Crossrefs

Cf. A062775 (number of solutions to x^2 + y^2 = z^2 mod n), A240547.

Programs

  • Maple
    A096018 := proc(n)
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            if p = 2 then
                a := a*p^(3*e) ;
            elif modp(p,4) = 1 then
                a := a* p^(2*e-1)*(p^(e+1)+p^e-1) ;
            else
                if type(e,'even') then
                    a := a* (p^(3*e)+(p-1)*p^(2*e-1)*(1-p^e)/(1+p)) ;
                else
                    a := a* (p^(3*e)-(p-1)*p^(2*e-1)*(1+p^e)/(1+p)) ;
                end if;
            end if;
        end do:
        a ;
    end proc:
    seq(A096018(n),n=1..50) ; # R. J. Mathar, Jun 24 2018
  • Mathematica
    Table[cnt=0; Do[If[Mod[w^2+x^2+y^2-z^2, n]==0, cnt++ ], {w, 0, n-1}, {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}]
    f[2, e_] := 2^(3*e); f[p_, e_] := If[Mod[p, 4] == 1, p^(2*e - 1)*(p^(e + 1) + p^e - 1), If[EvenQ[e], p^(3*e) + (p - 1)*p^(2*e - 1)*(1 - p^e)/(1 + p), p^(3*e) - (p - 1)*p^(2*e - 1)*(1 + p^e)/(1 + p)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    M(n,f)={sum(i=0, n-1, Mod(x^(f(i)%n), x^n-1))}
    a(n)={polcoeff(lift(M(n, i->i^2)^3 * M(n, i->-(i^2))), 0)} \\ Andrew Howroyd, Jun 23 2018
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(p == 2, 2^(3*e), if(p%4 == 1, p^(2*e-1)*(p^(e+1) + p^e - 1), if(e%2, p^(3*e) - (p - 1)*p^(2*e - 1)*(1 + p^e)/(1 + p), p^(3*e) + (p - 1)*p^(2*e - 1)*(1 - p^e)/(1 + p)))));} \\ Amiram Eldar, Nov 21 2023

Formula

a(n) is multiplicative. For the powers of primes p, there are several cases. For p=2, we have a(2^e) = 2^(3e). For odd primes p with p==1 (mod 4), we have a(p^e) = p^(2*e-1)*(p^(e+1)+p^e-1). For odd primes p with p==3 (mod 4) and even e we have a(p^e) = p^(3*e) +(p-1)*p^(2*e-1)*(1-p^e)/(1+p). For odd primes p == 3 (mod 4) and odd e we have a(p^e) = p^(3*e) -(p-1)*p^(2*e-1)*(1+p^e)/(1+p). [Corrected Jun 24 2018, R. J. Mathar]
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = A334425 * A334426 /(A088539 * A243381) = 0.94532146880744347512... . - Amiram Eldar, Nov 21 2023

A242822 Decimal expansion of B. Davis' constant Pi^2/(8*G), a Riesz-Kolmogorov constant, where G is Catalan's constant.

Original entry on oeis.org

1, 3, 4, 6, 8, 8, 5, 2, 5, 1, 9, 9, 9, 4, 0, 6, 5, 9, 5, 1, 8, 2, 0, 0, 7, 5, 5, 5, 4, 4, 1, 1, 0, 7, 7, 9, 4, 7, 1, 5, 2, 5, 1, 6, 2, 5, 5, 6, 8, 9, 6, 8, 8, 2, 0, 8, 1, 9, 4, 2, 6, 2, 2, 8, 1, 2, 7, 0, 0, 8, 1, 0, 7, 3, 4, 2, 9, 5, 8, 3, 5, 2, 1, 0, 8, 2, 2, 9, 6, 3, 7, 7, 5, 4, 4, 7, 9, 8, 4, 7, 5
Offset: 1

Views

Author

Jean-François Alcover, May 23 2014

Keywords

Examples

			1.3468852519994065951820075554411...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 7.7 Riesz-Kolmogorov Constants, p. 474.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Pi(R)^2/(8*Catalan(R)); // G. C. Greubel, Aug 25 2018
  • Maple
    s:= convert(evalf(Pi^2/(8*Catalan), 140), string):
    map(parse, subs("."=NULL, [seq(i, i=s)]))[]; # Alois P. Heinz, May 23 2014
  • Mathematica
    RealDigits[Pi^2/(8*Catalan), 10, 100] // First
  • PARI
    default(realprecision, 100); Pi^2/(8*Catalan) \\ G. C. Greubel, Aug 25 2018
    

Formula

(Sum_{n>=0} 1/(2*n + 1)^2) / (Sum_{n>=0} (-1)^n/(2*n + 1)^2) = A111003/A006752.
Equals Product_{k>=1} (1 + 1/A002145(k)^2)/(1 - 1/A002145(k)^2) = A243381 / A243379. - Vaclav Kotesovec, Apr 30 2020
Equals Sum_{q in A004614} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021
Equals 1/A377753. - Hugo Pfoertner, Nov 22 2024

A204617 Multiplicative with a(p^e) = p^(e-1)*H(p). H(2) = 1, H(p) = p - 1 if p == 1 (mod 4) and H(p) = p + 1 if p == 3 (mod 4).

Original entry on oeis.org

1, 1, 4, 2, 4, 4, 8, 4, 12, 4, 12, 8, 12, 8, 16, 8, 16, 12, 20, 8, 32, 12, 24, 16, 20, 12, 36, 16, 28, 16, 32, 16, 48, 16, 32, 24, 36, 20, 48, 16, 40, 32, 44, 24, 48, 24, 48, 32, 56, 20, 64, 24, 52, 36, 48, 32, 80, 28, 60, 32, 60, 32, 96, 32, 48, 48, 68, 32
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a := n->add(jacobi(-1,d)*mobius(d)*n/d, d in divisors(n)):
    seq(a(n), n = 1..60); # Peter Bala, Dec 26 2023
  • Mathematica
    ar[p_,s_] := Which[Mod[p,4]==1, p^(s-1)*(p-1), Mod[p,4]==3, p^(s-1)*(p+1), True,p^(s-1)]; arit[1] = 1; arit[n_] := Product[ar[FactorInteger[n][[i,1]], FactorInteger[n][[i,2]]], {i, Length[FactorInteger[n]]}]; Array[arit, 100]
  • PARI
    A204617(n) = { my(f=factor(n),p); prod(i=1, #f~, p=f[i, 1]; (p^(f[i, 2]-1)) * if(2==p,1,if(1==(p%4),p-1,p+1))); }; \\ Antti Karttunen, Nov 16 2021

Formula

a(n) = phi(n) if n is in A072437.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (3/8) * Product_{primes p == 1 (mod 4)} (1 - 1/p^2) * Product_{primes p == 3 (mod 4)} (1 + 1/p^2) = 3*A243381/(8*A175647) = 0.409404... . - Amiram Eldar, Dec 24 2022
a(n) = n*Product_{primes p, p | n} (1 - A034947(p)/p) = Sum_{d | n} A034947(d)* mobius(d)*n/d. Cf. A000010(n) = Sum_{d | n} mobius(d)*n/d. - Peter Bala, Dec 26 2023
a(n) = A079458(n)/A062570(n). - Ridouane Oudra, Jun 04 2024
Showing 1-10 of 12 results. Next