cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 96 results. Next

A019536 Number of length n necklaces with integer entries that cover an initial interval of positive integers.

Original entry on oeis.org

1, 2, 5, 20, 109, 784, 6757, 68240, 787477, 10224812, 147512053, 2340964372, 40527565261, 760095929840, 15352212731933, 332228417657960, 7668868648772701, 188085259070219000, 4884294069438337429
Offset: 1

Views

Author

Manfred Goebel (goebel(AT)informatik.uni-tuebingen.de)

Keywords

Comments

Original name: a(n) = number of necklaces of n beads with up to n unlabeled colors.
The Moebius transform of this sequence is A060223.

Examples

			a(3) = 5 since there are the following length 3 words up to rotation:
     111,  112, 122, 123, 132.
a(4) = 20 since there are the following length 4 words up to rotation:
     1111,
     1112, 1122, 1212, 1222,
     1123, 1132, 1213, 1223, 1232, 1233, 1322, 1323, 1332,
     1234, 1243, 1324, 1342, 1423, 1432.
		

Crossrefs

Programs

  • Mathematica
    Needs["DiscreteMath`Combinatorica`"];
    mult[li:{__Integer}] := Multinomial @@ Length /@ Split[Sort[li]];
    neck[li:{__Integer}] := Module[{n, d}, n=Plus @@ li; d=n-First[li];Fold[ #1+(EulerPhi[ #2]*(n/#2)!)/Times @@ ((li/#2)!)&, 0, Divisors[GCD @@ li]]/n];
    Table[(mult /@ Partitions[n]).(neck /@ Partitions[n]), {n, 24}]
    (* second program: *)
    a[n_] := Sum[DivisorSum[n, EulerPhi[#]*StirlingS2[n/#, k] k! &]/n, {k, 1, n}];
    Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Mar 31 2016, after Philippe Deléham *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2)*k!)/n); \\ Michel Marcus, Mar 31 2016

Formula

See Mathematica code.
a(n) ~ (n-1)! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Jul 21 2019
From Petros Hadjicostas, Aug 19 2019: (Start)
The first formula is due to Philippe Deléham from the Crossrefs (see also the programs below). The second one follows easily from the first one. The third one follows from the second one using the associative property of Dirichlet convolutions.
a(n) = Sum_{k = 1..n} (k!/n) * Sum_{d|n} phi(d) * S2(n/d, k), where S2(n, k) = Stirling numbers of 2nd kind (A008277).
a(n) = (1/n) * Sum_{d|n} phi(d) * A000670(n/d).
a(n) = Sum_{d|n} A060223(d).
(End)
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = (1/n)*Sum_{k=1..n} A000670(gcd(n,k)).
a(n) = (1/n)*Sum_{k=1..n} A000670(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)

Extensions

Edited by Wouter Meeussen, Aug 06 2002
Corrected by T. D. Noe, Oct 31 2006
Edited by Andrew Howroyd, Aug 19 2019

A000013 Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 10, 20, 30, 56, 94, 180, 316, 596, 1096, 2068, 3856, 7316, 13798, 26272, 49940, 95420, 182362, 349716, 671092, 1290872, 2485534, 4794088, 9256396, 17896832, 34636834, 67110932, 130150588, 252648992, 490853416, 954444608, 1857283156, 3616828364
Offset: 0

Views

Author

Keywords

Comments

Definition (2): Equivalently, number of different output sequences from an n-stage pure cycling shift register when 2 sequences are considered the same if one is the complement of the other.
Definition (3): Also number of different output sequences from an n-stage pure cycling shift register constrained so contents have even weight.
Definition (4): Also number of output sequences from (n-1)-stage shift register which feeds back the mod 2 sum of the contents of the register.
The equivalence of definitions (1) and (2) follows at once from the definitions.
If u is an output sequence of type (2) then its derivative is of type (3) - so (2) and (3) count the same things.
If we have a shift register of type (4), append a new cell which contains the mod 2 sum of the contents to get a shift register of type (3). So (3) and (4) count the same things.
If n is even, a(n) = A000116(n/2). If 2^(n+1)-1 is prime, then a(n) = A128976(n+1), the number of cycles in the digraph of the Lucas-Lehmer operator LL(x) = x^2 - 2 acting on Z/(2^(n+1)-1). - M. F. Hasler, May 19 2007
Also number of 2n-bead balanced binary necklaces that are equivalent to their complements. - Andrew Howroyd, Sep 29 2017

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 8*x^6 + 10*x^7 + 20*x^8 + ...
		

References

  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 172.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000013 0 = 1
    a000013 n = sum (zipWith (*)
       (map (a000010 . (* 2)) ds) (map (2 ^) $ reverse ds)) `div` (2 * n)
       where ds = a027750_row n
    -- Reinhard Zumkeller, Jul 08 2013
    
  • Maple
    with(numtheory): A000013 := proc(n) local s,d; if n = 0 then RETURN(1) else s := 0; for d in divisors(n) do s := s+(phi(2*d)*2^(n/d))/(2*n); od; RETURN(s); fi; end;
  • Mathematica
    a[n_] := Fold[ #1 + EulerPhi[2#2]2^(n/#2)/(2n) &, 0, Divisors[n]]
    a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, EulerPhi[2 #] 2^(n/#) &] / (2 n)]; (* Michael Somos, Dec 19 2014 *)
    mx=40;CoefficientList[Series[1-Sum[EulerPhi[2i] Log[1-2*x^i]/(2i),{i,1,mx}],{x,0,mx}],x] (* Herbert Kociemba, Nov 01 2016 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (2*n))}; /* Michael Somos, Oct 20 1999 */
    
  • Python
    from sympy import divisors, totient
    def a(n): return 1 if n<1 else sum([totient(2*d)*2**(n//d) for d in divisors(n)])//(2*n) # Indranil Ghosh, Apr 28 2017

Formula

a(n) = Sum_{ d divides n } (phi(2*d)*2^(n/d))/(2*n) for n>0. - Michael Somos, Oct 20 1999
G.f.: 1 - Sum_{i>=1} phi(2*i)*log(1-2*x^i)/(2*i). - Herbert Kociemba, Nov 01 2016
From Richard L. Ollerton, May 11 2021: (Start)
For n >= 1:
a(n) = (1/(2*n))*Sum_{k=1..n} phi(2*gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)), where phi = A000010.
a(n) = (1/(2*n))*Sum_{k=1..n} phi(2*n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End)
a(n) ~ 2^(n-1)/n. - Cedric Lorand, Apr 24 2022
a(n) = Sum_{k=1..n} A385665(n,k) = Sum_{d|n} A000048(d). - Tilman Piesk, Jul 31 2025

A000029 Number of necklaces with n beads of 2 colors, allowing turning over (these are also called bracelets).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 13, 18, 30, 46, 78, 126, 224, 380, 687, 1224, 2250, 4112, 7685, 14310, 27012, 50964, 96909, 184410, 352698, 675188, 1296858, 2493726, 4806078, 9272780, 17920860, 34669602, 67159050, 130216124, 252745368, 490984488, 954637558, 1857545300
Offset: 0

Views

Author

Keywords

Comments

"Necklaces with turning over allowed" are usually called bracelets. - Joerg Arndt, Jun 10 2016

Examples

			For n=2, the three bracelets are AA, AB, and BB. For n=3, the four bracelets are AAA, AAB, ABB, and BBB. - _Robert A. Russell_, Sep 24 2018
		

References

  • J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
  • Martin Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pages 245-246.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

Row sums of triangle in A052307, second column of A081720, column 2 of A051137.
Cf. A000011, A000013, A000031 (turning over not allowed), A001371 (primitive necklaces), A059076, A164090.

Programs

  • Maple
    with(numtheory): A000029 := proc(n) local d,s; if n = 0 then return 1 else if n mod 2 = 1 then s := 2^((n-1)/2) else s := 2^(n/2-2)+2^(n/2-1) fi; for d in divisors(n) do s := s+phi(d)*2^(n/d)/(2*n) od; return s; fi end:
  • Mathematica
    a[0] := 1; a[n_] := Fold[#1 + EulerPhi[#2]2^(n/#2)/(2n) &, If[OddQ[n], 2^((n - 1)/2), 2^(n/2 - 1) + 2^(n/2 - 2)], Divisors[n]]
    mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-2*x^n]/n,{n,mx}]+(1+x)^2/(1-2*x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *)
    a[0] = 1; a[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#)&]/(2*n); Array[a, 36, 0] (* Jean-François Alcover, Nov 05 2017 *)
  • PARI
    a(n)=if(n<1,!n,(n%2+3)/4*2^(n\2)+sumdiv(n,d,eulerphi(n/d)*2^d)/2/n)
    
  • Python
    from sympy import divisors, totient
    def a(n):
        return 1 if n<1 else ((2**(n//2+1) if n%2 else 3*2**(n//2-1)) + sum(totient(n//d)*2**d for d in divisors(n))//n)//2
    print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 23 2017

Formula

a(n) = Sum_{d divides n} phi(d)*2^(n/d)/(2*n) + either 2^((n - 1)/2) if n odd or 2^(n/2 - 1) + 2^(n/2 - 2) if n even.
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 2*x^n)/n + (1 + x)^2/(1 - 2*x^2))/2. - Herbert Kociemba, Nov 02 2016
Equals (A000031 + A164090) / 2 = A000031 - A059076 = A059076 + A164090. - Robert A. Russell, Sep 24 2018
From Richard L. Ollerton, May 04 2021: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} 2^gcd(n,k)/(2*n) + either 2^((n - 1)/2) if n odd or 2^(n/2 - 1) + 2^(n/2 - 2) if n even.
a(0) = 1; a(n) = A000031(n)/2 + (2^floor((n+1)/2) + 2^ceiling((n+1)/2))/4. See A051137. (End)

Extensions

More terms from Christian G. Bower

A047996 Triangle read by rows: T(n,k) is the (n,k)-th circular binomial coefficient, where 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 4, 3, 1, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 1, 4, 7, 10, 7, 4, 1, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 1, 5, 12, 22, 26, 22, 12, 5, 1, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 1, 6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, 1, 1, 6, 22
Offset: 0

Views

Author

Keywords

Comments

Equivalently, T(n,k) = number of necklaces with k black beads and n-k white beads (binary necklaces of weight k).
The same sequence arises if we take the table U(n,k) = number of necklaces with n black beads and k white beads and read it by antidiagonals (cf. A241926). - Franklin T. Adams-Watters, May 02 2014
U(n,k) is also equal to the number of ways to express 0 as a sum of k elements in Z/nZ. - Jens Voß, Franklin T. Adams-Watters, N. J. A. Sloane, Apr 30 2014 - May 05 2014. See link ("A Note on Modular Partitions and Necklaces") for proof.
The generating function for column k is given by the substitution x_j -> x^j/(1-x^j) in the cycle index of the Symmetric Group of order k. - R. J. Mathar, Nov 15 2018
From Petros Hadjicostas, Jul 12 2019: (Start)
Regarding the comments above by Voss, Adams-Watters, and Sloane, note that Fredman (1975) proved that the number S(n, k, v) of vectors (a_0, ..., a_{n-1}) of nonnegative integer components that satisfy a_0 + ... + a_{n-1} = k and Sum_{i=0..n-1} i*a_i = v (mod n) is given by S(n, k, v) = (1/(n + k)) * Sum_{d | gcd(n, k)} A054535(d, v) * binomial((n + k)/d, k/d) = S(k, n, v).
This result was also proved by Elashvili et al. (1999), who also proved that S(n, k, v) = Sum_{d | gcd(n, k, v)} S(n/d, k/d, 1). Here, S(n, k, 0) = A241926(n, k) = U(n, k) = T(n + k, k) (where T(n, k) is the current array). Also, S(n, k, 1) = A245558(n, k). See also Panyushev (2011) for more general results and for generating functions.
Finally, note that A054535(d, v) = c_d(v) = Sum_{s | gcd(d,v)} s*Moebius(d/s). These are the Ramanujan sums, which equal also the von Sterneck function c_d(v) = phi(d) * Moebius(d/gcd(d, v))/phi(d/gcd(d, v)). We have A054535(d, v) = A054534(v, d).
It would be interesting to see whether there is a proof of the results by Fredman (1975), Elashvili et al. (1999), and Panyushev (2011) for a general v using Molien series as it is done by Sloane (2014) for the case v = 0 (in which case, A054535(d, 0) = phi(d)). (Even though the columns of array A054535(d, v) start at v = 1, we may start the array at column v = 0 as well.)
(End)
U(n, k) is the number of equivalence classes of k-tuples of residues modulo n, identifying those that differ componentwise by a constant and those that differ by a permutation. - Álvar Ibeas, Sep 21 2021

Examples

			Triangle starts:
[ 0]  1,
[ 1]  1,  1,
[ 2]  1,  1,  1,
[ 3]  1,  1,  1,  1,
[ 4]  1,  1,  2,  1,  1,
[ 5]  1,  1,  2,  2,  1,  1,
[ 6]  1,  1,  3,  4,  3,  1,  1,
[ 7]  1,  1,  3,  5,  5,  3,  1,  1,
[ 8]  1,  1,  4,  7, 10,  7,  4,  1,  1,
[ 9]  1,  1,  4, 10, 14, 14, 10,  4,  1,  1,
[10]  1,  1,  5, 12, 22, 26, 22, 12,  5,  1, 1,
[11]  1,  1,  5, 15, 30, 42, 42, 30, 15,  5, 1, 1,
[12]  1,  1,  6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, ...
		

References

  • N. G. de Bruijn, Polya's theory of counting, in: Applied Combinatorial Mathematics (E. F. Beckenbach, ed.), John Wiley and Sons, New York, 1964, pp. 144-184 (implies g.f. for this triangle).
  • Richard Stanley, Enumerative Combinatorics, 2nd. ed., Vol 1, Chapter I, Problem 105, pp. 122 and 168, discusses the number of subsets of Z/nZ that add to 0. - N. J. A. Sloane, May 06 2014
  • J. Voß, Posting to Sequence Fans Mailing List, April 30, 2014.
  • H. S. Wilf, personal communication to N. J. A. Sloane, Nov., 1990.
  • See A000031 for many additional references and links.

Crossrefs

Row sums: A000031. Columns 0-12: A000012, A000012, A004526, A007997(n+5), A008610, A008646, A032191-A032197.
See A037306 and A241926 for essentially identical triangles.
See A245558, A245559 for a closely related array.

Programs

  • Maple
    A047996 := proc(n,k) local C,d; if k= 0 then return 1; end if; C := 0 ; for d in numtheory[divisors](igcd(n,k)) do C := C+numtheory[phi](d)*binomial(n/d,k/d) ; end do: C/n ; end proc:
    seq(seq(A047996(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Apr 14 2011
  • Mathematica
    t[n_, k_] := Total[EulerPhi[#]*Binomial[n/#, k/#] & /@ Divisors[GCD[n, k]]]/n; t[0, 0] = 1; Flatten[Table[t[n, k], {n, 0, 13}, {k, 0, n}]] (* Jean-François Alcover, Jul 19 2011, after given formula *)
  • PARI
    p(n) = if(n<=0, n==0, 1/n * sum(i=0,n-1, (x^(n/gcd(i,n))+1)^gcd(i,n) ));
    for (n=0,17, print(Vec(p(n)))); /* print triangle */
    /* Joerg Arndt, Sep 28 2012 */
    
  • PARI
    T(n,k) = if(n<=0, n==0, 1/n * sumdiv(gcd(n,k), d, eulerphi(d)*binomial(n/d,k/d) ) );
    /* print triangle: */
    { for (n=0, 17, for (k=0, n, print1(T(n,k),", "); ); print(); ); }
    /* Joerg Arndt, Oct 21 2012 */

Formula

T(n, k) = (1/n) * Sum_{d | (n, k)} phi(d)*binomial(n/d, k/d).
T(2*n,n) = A003239(n); T(2*n+1,n) = A000108(n). - Philippe Deléham, Jul 25 2006
G.f. for row n (n>=1): (1/n) * Sum_{i=0..n-1} ( x^(n/gcd(i,n)) + 1 )^gcd(i,n). - Joerg Arndt, Sep 28 2012
G.f.: Sum_{n, k >= 0} T(n, k)*x^n*y^k = 1 - Sum_{s>=1} (phi(s)/s)*log(1-x^s*(1+y^s)). - Petros Hadjicostas, Oct 26 2017
Product_{d >= 1} (1 - x^d - y^d) = Product_{i,j >= 0} (1 - x^i*y^j)^T(i+j, j), where not both i and j are zero. (It follows from Somos' infinite product for array A051168.) - Petros Hadjicostas, Jul 12 2019

Extensions

Name edited by Petros Hadjicostas, Nov 16 2017

A000358 Number of binary necklaces of length n with no subsequence 00, excluding the necklace "0".

Original entry on oeis.org

1, 2, 2, 3, 3, 5, 5, 8, 10, 15, 19, 31, 41, 64, 94, 143, 211, 329, 493, 766, 1170, 1811, 2787, 4341, 6713, 10462, 16274, 25415, 39651, 62075, 97109, 152288, 238838, 375167, 589527, 927555, 1459961, 2300348, 3626242, 5721045, 9030451, 14264309, 22542397, 35646312, 56393862, 89264835, 141358275
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of inequivalent compositions of n into parts 1 and 2 where two compositions are considered to be equivalent if one is a cyclic rotation of the other. a(6)=5 because we have: 2+2+2, 2+2+1+1, 2+1+2+1, 2+1+1+1+1, 1+1+1+1+1+1. - Geoffrey Critzer, Feb 01 2014
Moebius transform is A006206. - Michael Somos, Jun 02 2019

Examples

			G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 5*x^7 + 8*x^8 + 10*x^9 + ... - _Michael Somos_, Jun 02 2019
Binary necklaces are: 1; 01, 11; 011, 111; 0101, 0111, 1111; 01010, 01011, 01111. - _Michael Somos_, Jun 02 2019
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 499.
  • T. Helleseth and A. Kholosha, Bent functions and their connections to combinatorics, in Surveys in Combinatorics 2013, edited by Simon R. Blackburn, Stefanie Gerke, Mark Wildon, Camb. Univ. Press, 2013.

Crossrefs

Column k=0 of A320341.

Programs

  • Maple
    A000358 := proc(n) local sum; sum := 0; for d in divisors(n) do sum := sum + phi(n/d)*(fibonacci(d+1)+fibonacci(d-1)) od; RETURN(sum/n); end;
    with(combstruct); spec := {A=Union(zero,Cycle(one),Cycle(Prod(zero,Sequence(one,card>0)))),one=Atom,zero=Atom}; seq(count([A,spec,unlabeled],size=i),i=1..30);
  • Mathematica
    nn=48;Drop[Map[Total,Transpose[Map[PadRight[#,nn]&,Table[ CoefficientList[ Series[CycleIndex[CyclicGroup[n],s]/.Table[s[i]->x^i+x^(2i),{i,1,n}],{x,0,nn}],x],{n,0,nn}]]]],1] (* Geoffrey Critzer, Feb 01 2014 *)
    max = 50; B[x_] := x*(1+x); A = Sum[EulerPhi[k]/k*Log[1/(1-B[x^k])], {k, 1, max}]/x + O[x]^max; CoefficientList[A, x] (* Jean-François Alcover, Feb 08 2016, after Joerg Arndt *)
    Table[1/n * Sum[EulerPhi[n/d] Total@ Map[Fibonacci, d + # & /@ {-1, 1}], {d, Divisors@ n}], {n, 47}] (* Michael De Vlieger, Dec 28 2016 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[n, EulerPhi[n/#] LucasL[#] &]/n]; (* Michael Somos, Jun 02 2019 *)
  • PARI
    N=66;  x='x+O('x^N);
    B(x)=x*(1+x);
    A=sum(k=1, N, eulerphi(k)/k*log(1/(1-B(x^k))));
    Vec(A)
    /* Joerg Arndt, Aug 06 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, eulerphi(n/d) * (fibonacci(d+1) + fibonacci(d-1)))/n)}; /* Michael Somos, Jun 02 2019 */
    
  • Python
    from sympy import totient, lucas, divisors
    def A000358(n): return (n&1^1)+sum(totient(n//k)*(lucas(k)-((k&1^1)<<1)) for k in divisors(n,generator=True))//n # Chai Wah Wu, Sep 23 2023

Formula

a(n) = (1/n) * Sum_{ d divides n } totient(n/d) [ Fib(d-1)+Fib(d+1) ].
G.f.: Sum_{k>=1} phi(k)/k * log( 1/(1-B(x^k)) ) where B(x)=x*(1+x). - Joerg Arndt, Aug 06 2012
a(n) ~ ((1+sqrt(5))/2)^n / n. - Vaclav Kotesovec, Sep 12 2014
a(n) = Sum_{0 <= i <= ceiling((n-1)/2)} [ (1/(n - i)) * Sum_{d|gcd(i, n-i)} phi(d) * binomial((n - i)/d, i/d) ]. (This is DeFord's formula for the number of distinct Lucas tilings of a 1 X n bracelet up to symmetry, even though in the paper he refers to sequence A032192(n) = a(n) - 1.) - Petros Hadjicostas, Jun 07 2019

A152176 Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations and reflections.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 14, 11, 3, 1, 1, 8, 31, 33, 16, 3, 1, 1, 17, 82, 137, 85, 27, 4, 1, 1, 22, 202, 478, 434, 171, 37, 4, 1, 1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1, 1, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1, 1, 121, 3838, 26148
Offset: 1

Views

Author

Vladeta Jovovic, Nov 27 2008

Keywords

Comments

Number of bracelet structures of length n using exactly k different colored beads. Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure. - Andrew Howroyd, Apr 06 2017
The number of achiral structures (A) is given in A140735 (odd n) and A293181 (even n). The number of achiral structures plus twice the number of chiral pairs (A+2C) is given in A152175. These can be used to determine A+C by taking half their average, as is done in the Mathematica program. - Robert A. Russell, Feb 24 2018
T(n,k)=pi_k(C_n) which is the number of non-equivalent partitions of the cycle on n vertices, with exactly k parts. Two partitions P1 and P2 of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. - Mohammad Hadi Shekarriz, Aug 21 2019

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,   1;
  1,  3,   2,    1;
  1,  3,   5,    2,    1;
  1,  7,  14,   11,    3,    1;
  1,  8,  31,   33,   16,    3,   1;
  1, 17,  82,  137,   85,   27,   4,  1;
  1, 22, 202,  478,  434,  171,  37,  4, 1;
  1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1;
  ...
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are A056357, A056358, A056359, A056360, A056361.
Row sums are A084708.
Partial row sums include A000011, A056353, A056354, A056355, A056356.
Cf. A081720, A273891, A008277 (set partitions), A284949 (up to reflection), A152175 (up to rotation).

Programs

  • Mathematica
    Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
      1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
      True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
    Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[0==n, 1, 0], 1, If[n>0, 1, 0],
      (* else *) _, If[OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1],
      {i, 0, (n-1)/2}], Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
      + 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]] (* achiral loops of length n, k colors *)
    Table[(CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x]
    + Table[Ach[n, k],{k,1,n}])/2, {n, 1, 20}] // Flatten (* Robert A. Russell, Feb 24 2018 *)
  • PARI
    \\ see A056391 for Polya enumeration functions
    T(n,k) = NonequivalentStructsExactly(DihedralPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
    
  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={(R(n) + Ach(n))/2}
    { my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

A005232 Expansion of (1-x+x^2)/((1-x)^2*(1-x^2)*(1-x^4)).

Original entry on oeis.org

1, 1, 3, 4, 8, 10, 16, 20, 29, 35, 47, 56, 72, 84, 104, 120, 145, 165, 195, 220, 256, 286, 328, 364, 413, 455, 511, 560, 624, 680, 752, 816, 897, 969, 1059, 1140, 1240, 1330, 1440, 1540, 1661, 1771, 1903, 2024, 2168, 2300, 2456, 2600, 2769, 2925, 3107, 3276
Offset: 0

Views

Author

Keywords

Comments

Also number of n X 2 binary matrices under row and column permutations and column complementations (if offset is 0).
Also Molien series for certain 4-D representation of dihedral group of order 8.
With offset 4, number of bracelets (turnover necklaces) of n-bead of 2 colors with 4 red beads. - Washington Bomfim, Aug 27 2008
From Vladimir Shevelev, Apr 23 2011: (Start)
Also number of non-equivalent necklaces of 4 beads each of them painted by one of n colors.
The sequence solves the so-called Reis problem about convex k-gons in case k=4 (see our comment to A032279). (End)
Number of 2 X 2 matrices with nonnegative integer values totaling n under row and column permutations. - Gabriel Burns, Nov 08 2016
From Petros Hadjicostas, Jan 12 2019: (Start)
By "necklace", Vladimir Shevelev (above) means "turnover necklace", i.e., a bracelet. Zagaglia Salvi (1999) also uses this terminology: she calls a bracelet "necklace" and a necklace "cycle".
According to Cyvin et al. (1997), the sequence (a(n): n >= 0) consists of "the total numbers of isomers of polycyclic conjugated hydrocarbons with q + 1 rings and q internal carbons in one ring (class Q_q)", where q = 4 and n is the hydrogen content (i.e., we count certain isomers of C_{n+2*q} H_n with q = 4 and n >= 0). (End)

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 8*x^4 + 10*x^5 + 16*x^6 + 20*x^7 + 29*x^8 + ...
There are 8 4 X 2 matrices up to row and column permutations and column complementations:
  [1 1] [1 0] [1 0] [0 1] [0 1] [0 1] [0 1] [0 0]
  [1 1] [1 1] [1 0] [1 0] [1 0] [1 0] [0 1] [0 1]
  [1 1] [1 1] [1 1] [1 1] [1 0] [1 0] [1 0] [1 0]
  [1 1] [1 1] [1 1] [1 1] [1 1] [1 0] [1 0] [1 1].
There are 8 2 X 2 matrices of nonnegative integers totaling 4 up to row and column permutations:
  [4 0] [3 1] [2 2] [2 1] [2 1] [3 0] [2 0] [1 1]
  [0 0] [0 0] [0 0] [0 1] [1 0] [1 0] [2 0] [1 1].
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

Row n=2 of A343875.
Column k=4 of A052307.

Programs

  • Maple
    A005232:=-(-1-z-2*z**3+2*z**2+z**7-2*z**6+2*z**4)/(z**2+1)/(1+z)**2/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence apart from an initial 1
  • Mathematica
    k = 4; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    CoefficientList[ Series[(1 - x + x^2)/((1 - x)^2(1 - x^2)(1 - x^4)), {x, 0, 51}], x] (* Robert G. Wilson v, Mar 29 2006 *)
    LinearRecurrence[{2,0,-2,2,-2,0,2,-1},{1,1,3,4,8,10,16,20},60] (* Harvey P. Dale, Oct 24 2012 *)
    k=4 (* Number of red beads in bracelet problem *); CoefficientList[Series[(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)
  • PARI
    {a(n) = (n^3 + 9*n^2 + (32-9*(n%2))*n + [48, 15, 36, 15][n%4+1]) / 48}; \\ Michael Somos, Feb 01 2007
    
  • PARI
    {a(n) = my(s=1); if( n<-5, n = -6-n; s=-1); if( n<0, 0, s * polcoeff( (1 - x + x^2) / ((1 - x)^2 * (1 - x^2) * (1 - x^4)) + x * O(x^n), n))}; \\ Michael Somos, Feb 01 2007
    
  • PARI
    a(n) = round((n^3 +9*n^2 +(32-9*(n%2))*n)/48 +0.6) \\ Washington Bomfim, Jul 17 2008
    
  • PARI
    a(n) = ceil((n+1)*(2*n^2+16*n+39+9*(-1)^n)/96) \\ Tani Akinari, Aug 23 2013
    
  • Python
    a=lambda n: sum((k//2+1)*((n-k)//2+1) for k in range((n-1)//2+1))+(n+1)%2*(((n//4+1)*(n//4+2))//2)  # Gabriel Burns, Nov 08 2016

Formula

G.f.: (1+x^3)/((1-x)*(1-x^2)^2*(1-x^4)).
G.f.: (1/8)*(1/(1-x)^4+3/(1-x^2)^2+2/(1-x)^2/(1-x^2)+2/(1-x^4)). - Vladeta Jovovic, Aug 05 2000
Euler transform of length 6 sequence [ 1, 2, 1, 1, 0, -1 ]. - Michael Somos, Feb 01 2007
a(2n+1) = A006918(2n+2)/2;
a(2n) = (A006918(2n+1) + A008619(n))/2.
a(n) = -a(-6 - n) for all n in Z. - Michael Somos, Feb 05 2011
From Vladimir Shevelev, Apr 22 2011: (Start)
if n == 0 (mod 4), then a(n) = n*(n^2-3*n+8)/48;
if n == 1, 3 (mod 4), then a(n) = (n^2-1)*(n-3)/48;
if n == 2 (mod 4), then a(n) = (n-2)*(n^2-n+6)/48. (End)
a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - 2*a(n-5) + 2*a(n-7) - a(n-8) with a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 4, a(4) = 8, a(5) = 10, a(6) = 16, a(7) = 20. - Harvey P. Dale, Oct 24 2012
a(n) = ((n+3)*(2*n^2+12*n+19+9*(-1)^n) + 6*(-1)^((2*n-1+(-1)^n)/4)*(1+(-1)^n))/96. - Luce ETIENNE, Mar 16 2015
a(n) = |A128498(n)| + |A128498(n-3)|. - R. J. Mathar, Jun 11 2019

Extensions

Sequence extended by Christian G. Bower

A027671 Number of necklaces with n beads of 3 colors, allowing turning over.

Original entry on oeis.org

1, 3, 6, 10, 21, 39, 92, 198, 498, 1219, 3210, 8418, 22913, 62415, 173088, 481598, 1351983, 3808083, 10781954, 30615354, 87230157, 249144711, 713387076, 2046856566, 5884491500, 16946569371, 48883660146, 141217160458, 408519019449, 1183289542815
Offset: 0

Views

Author

Keywords

Comments

Number of bracelets of n beads using up to three different colors. - Robert A. Russell, Sep 24 2018

Examples

			For n=2, the six bracelets are AA, AB, AC, BB, BC, and CC. - _Robert A. Russell_, Sep 24 2018
		

References

  • J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
  • M. Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pp. 245-246.

Crossrefs

a(n) = A081720(n,3), n >= 3. - Wolfdieter Lang, Jun 03 2012
Column 3 of A051137.
a(n) = A278639(n) + A182751(n+1).
Equals A001867 - A278639.

Programs

  • Mathematica
    Needs["Combinatorica`"];  Join[{1}, Table[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->3, {i,1,n}], {n,1,30}]] (* Geoffrey Critzer, Sep 29 2012 *)
    Needs["Combinatorica`"]; Join[{1}, Table[NumberOfNecklaces[n, 3, Dihedral], {n, 30}]] (* T. D. Noe, Oct 02 2012 *)
    mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-3*x^n]/n,{n,mx}]+(1+3 x+3 x^2)/(1-3 x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *)
    t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1+k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); a[0] = 1; a[n_] := t[n, 3]; Array[a, 30, 0] (* Jean-François Alcover, Nov 02 2017, after Maple code for A081720 *)
    k=3; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 1] (* Robert A. Russell, Sep 24 2018 *)
  • PARI
    a(n,k=3) = if(n==0,1,(k^floor((n+1)/2) + k^ceil((n+1)/2))/4 + (1/(2*n))* sumdiv(n, d, eulerphi(d)*k^(n/d) ) );
    vector(55,n,a(n-1)) \\ Joerg Arndt, Oct 20 2019

Formula

G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 3*x^n)/n + (1+3*x+3*x^2)/(1-3*x^2))/2. - Herbert Kociemba, Nov 02 2016
For n > 0, a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))* Sum_{d|n} phi(d)*k^(n/d), where k=3 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
a(0) = 1; a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i), where k=3 is the maximum number of colors.
(See A075195 formulas.) - Richard L. Ollerton, May 04 2021
2*a(n) = A182751(n+1) + A001867(n), n>0.

Extensions

More terms from Christian G. Bower

A005513 Number of n-bead bracelets (turnover necklaces) of two colors with 6 red beads and n-6 black beads.

Original entry on oeis.org

1, 1, 4, 7, 16, 26, 50, 76, 126, 185, 280, 392, 561, 756, 1032, 1353, 1782, 2277, 2920, 3652, 4576, 5626, 6916, 8372, 10133, 12103, 14448, 17063, 20128, 23528, 27474, 31824, 36822, 42315, 48564, 55404, 63133, 71554, 81004
Offset: 6

Views

Author

Keywords

Comments

From Vladimir Shevelev, Apr 23 2011: (Start)
Also number of non-equivalent (turnover) necklaces of 6 beads each of them painted by one of n colors.
The sequence solves the so-called Reis problem about convex k-gons in case k=6 (see our comment to A032279).
(End)
Also number of reverse invariant anonymous and neutral equivalence classes of preference profiles with 3 alternatives and (n-6) agents (IANC model). - Alexander Karpov, Apr 12 2018
Also the number of weighted cubic graphs with weight n derived from one of the 2 cubic graphs on 6 vertices (contributing to A321306). - R. J. Mathar, Nov 05 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

Column k=6 of A052307.

Programs

  • Maple
    A005513 := proc(n) if n mod 6 = 0 then (24*binomial(n-1,5)+3*(n+1)*(n-2)*(n-4)+16*n)/288 elif n mod 6 = 3 then (24*binomial(n-1,5)+3*(n-1)*(n-3)*(n-5)+16*n-48)/288 elif n mod 6 = 2 or n mod 6 = 4 then (8*binomial(n-1,5)+(n+1)*(n-2)*(n-4))/96 elif n mod 6 = 1 or n mod 6 = 5 then (8*binomial(n-1,5)+(n-1)*(n-3)*(n-5))/96 fi: end: seq(A005513(n),n=6..44); # Johannes W. Meijer, Aug 11 2011
  • Mathematica
    k = 6; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    k=6; CoefficientList[Series[x^k*(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)
    CoefficientList[Series[(1/12) (1/(1 - x)^6 + 4/(1 - x^2)^3 + 2/(1 - x^3)^2 + 3/((1 - x)^2 (1 - x^2)^2) + 2/(1 - x^6)), {x, 0, 43}], x] (* Vincenzo Librandi, Apr 24 2018 *)

Formula

S. J. Cyvin et al. (1997) give a g.f.
G.f.: (x^6/12)*(1/(1-x)^6+4/(1-x^2)^3+2/(1-x^3)^2+3/((1-x)^2*(1-x^2)^2)+2/(1-x^6)). - Vladeta Jovovic, Feb 28 2007
G.f.: x^6*(1-x+x^2+x^3+2*x^4+2*x^6+x^8-x^5) / ( (x^2-x+1)*(1+x+x^2)^2*(1+x)^3*(x-1)^6 ). - R. J. Mathar, Sep 18 2011
From Vladimir Shevelev, Apr 23 2011: (Start)
if n==0 mod 6, a(n)=(24*C(n-1,5)+3*(n+1)*(n-2)*(n-4)+16*n)/288;
if n==3 mod 6, a(n)=(24*C(n-1,5)+3*(n-1)*(n-3)*(n-5)+16*n-48)/288;
if n==2,4 mod 6, a(n)=(8*C(n-1,5)+(n+1)*(n-2)*(n-4))/96;
if n==1,5 mod 6, a(n)=(8*C(n-1,5)+(n-1)*(n-3)*(n-5))/96.
(End)

Extensions

Sequence extended and description corrected by Christian G. Bower
Name edited by Petros Hadjicostas, Jan 10 2019

A007123 Number of connected unit interval graphs with n nodes; also number of bracelets (turnover necklaces) with n black beads and n-1 white beads.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 76, 232, 750, 2494, 8524, 29624, 104468, 372308, 1338936, 4850640, 17685270, 64834550, 238843660, 883677784, 3282152588, 12233309868, 45741634536, 171530482864, 644953425740, 2430975800876, 9183681736376, 34766785487152, 131873995933480
Offset: 1

Views

Author

Keywords

Comments

Also number of rooted planar general trees (of n vertices or n-1 edges) up to reflection. - Antti Karttunen, Aug 09 2002 (For the correspondence with bracelets, start by considering Raney's lemma as explained by Graham, Knuth & Patashnik.)
Number of connected lattice path matroids on n elements up to isomorphism.
a(n) = number of noncrossing set partitions of [n] up to reflection (i<->n+1-i). Example: a(4) counts 123, 1-23, 13-2, 1-2-3 but not 12-3 because it is the reflection of 1-23. - David Callan, Oct 08 2005
From Vladimir Shevelev, Apr 23 2011: (Start)
Also number of non-equivalent necklaces of n beads, each of which is painted by one of 2*n-1 colors.
The sequence solves the so-called Reis problem about convex k-gons in case N=2*n-1, k=n. H. Gupta (1979) gave a full solution; I gave a short proof of Gupta's result and showed an equivalence of this problem and each of the following problems: the problem of enumerating the bracelets of n beads of 2 colors, k of them black, and the problem of enumerating the necklaces of k beads, each painted by one of n colors.
a(n) is an essentially unimprovable upper estimate for the number of distinct values of the permanent in (0,1)-circulants of order 2*n-1 with n 1's in every row. (End)
The number of Dyck paths of semilength n-1 up to reversal; that is, the number of Dyck paths of semilength n-1, treating as identical a path and that path when traveled in reverse order. - Noah A Rosenberg, Jan 28 2019

Examples

			x + x^2 + 2*x^3 + 4*x^4 + 10*x^5 + 26*x^6 + 76*x^7 + 232*x^8 + 750*x^9 + ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.7.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 345 & 346.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1980.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Occurs as row 164 in A073201.
Next-to-center columns of triangle A052307.
Equal to A001405 plus A006079.

Programs

  • Mathematica
    f[k_Integer, n_] := (Plus @@ (EulerPhi[ # ]Binomial[n/#, k/# ] & /@ Divisors[GCD[n, k]])/n + Binomial[(n - If[OddQ@n, 1, If[OddQ@k, 2, 0]])/2, (k - If[OddQ@k, 1, 0])/2])/2 (* Robert A. Russell, Sep 27 2004 *)
    Table[ f[n, 2n - 1], {n, 10}]
    (* Comment from Wouter Meeussen, Feb 02 2013, added by N. J. A. Sloane, Feb 02 2013: To get lists of the necklaces in Mathematica, use (if n=4, say):
    <
    				
  • PARI
    {a(n) = if( n<1, 0, (2 * binomial(n-1, (n-1)\2) + binomial(2*n, n) / (2*n - 1)) / 4)} /* Michael Somos, Apr 16 2012 */
    
  • Python
    from sympy import catalan, binomial, floor
    def a(n): return 1 if n==1 else (catalan(n - 1) + binomial(n - 1, floor((n - 1)/2)))/2 # Indranil Ghosh, Jun 03 2017

Formula

a(n+1) = (Catalan(n) + binomial(n, floor(n/2)))/2 = (A000108(n) + A001405(n))/2. - Antti Karttunen, Aug 09 2002
G.f.: (1 + 2*x - sqrt(1 - 4*x)*sqrt(1 - 4*x^2))/(4*sqrt(1 - 4*x^2)).
G.f.: (sqrt((1 + 2*x) / (1 - 2*x)) - sqrt(1 - 4*x)) / 4. - Michael Somos, Apr 16 2012
a(n) = (A063886(n) - A002420(n)) / 4. - Michael Somos, Apr 16 2012
D-finite with recurrence n*(n-1)*(n-4)*a(n) - 4*(n-1)*(n^2-5*n+5)*a(n-1) - 4*(n-2)*(n^2-7*n+11)*a(n-2) + 8*(2*n-7)*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Aug 22 2018

Extensions

Extended by Christian G. Bower
Edited by Jon E. Schoenfield, Feb 14 2015
Previous Showing 11-20 of 96 results. Next