A007334
Number of spanning trees in the graph K_{n}/e, which results from contracting an edge e in the complete graph K_{n} on n vertices (for n>=2).
Original entry on oeis.org
1, 2, 8, 50, 432, 4802, 65536, 1062882, 20000000, 428717762, 10319560704, 275716983698, 8099130339328, 259492675781250, 9007199254740992, 336755653118801858, 13493281232954916864, 576882827135242335362, 26214400000000000000000
Offset: 2
a(3)=2 because K_{3}/e consists of two vertices and two parallel edges, where each edge is a spanning tree.
- J. Oxley, Matroid Theory, Oxford University Press, 1992.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alin Bostan, Frédéric Chyzak, Bérénice Delcroix-Oger, Guillaume Laplante-Anfossi, Vincent Pilaud, and Kurt Stoeckl, Diagonals of permutahedra and associahedra, Sém. Lotharingien Comb., 37th Formal Power Series Alg. Comb. (FPSAC 2025). See p. 7.
- W.-K. Chen and I. C. Goyal, Tables of essential complementary partitions, IEEE Trans. Circuit Theory, 18 (1971), 562-563.
- W.-K. Chen and I. C. Goyal, Tables of essential complementary partitions, IEEE Trans. Circuit Theory, 18 (1971), 562-563. (Annotated scanned copy)
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 19, 22.
- N. Eaton, W. Kook and L. Thoma, Monotonicity for complete graphs, preprint, 2003.
- Jean-Baptiste Priez and Aladin Virmaux, Non-commutative Frobenius characteristic of generalized parking functions: Application to enumeration, arXiv:1411.4161 [math.CO], 2014-2015.
- Dennis Walsh, Notes on acyclic functions
-
nn = 17; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
Range[0, nn]! CoefficientList[Series[Exp[ tx]^2, {x, 0, nn}], x] (* Geoffrey Critzer, May 10 2013 *)
-
{a(n)=if(n==2, 1, 1-polcoeff(sum(k=2, n-1, a(k)*x^k/(1+(k-1)*x+x*O(x^n))^(k-1)), n))} /* Paul D. Hanna, Jan 17 2013 */
After correction, this became identical (except for the offset) with
A089104, contributed by N. Eaton, W. Kook and L. Thoma (andrewk(AT)math.uri.edu), Jan 17 2004. The two entries have been merged using the older A-number. -
N. J. A. Sloane, Dec 19 2017
A051442
a(n) = n^(n+1)+(n+1)^n.
Original entry on oeis.org
1, 3, 17, 145, 1649, 23401, 397585, 7861953, 177264449, 4486784401, 125937424601, 3881436747409, 130291290501553, 4731091158953433, 184761021583202849, 7721329860319737601, 343809097055019694337, 16248996011806421522977
Offset: 0
-
[n^(n+1)+(n+1)^n: n in [0..20]]; // Vincenzo Librandi, Jan 12 2012
-
Table[n^(n+1)+(n+1)^n,{n,0,20}] (* Harvey P. Dale, Oct 02 2018 *)
-
A051442[n]:=n^(n+1)+(n+1)^n$ makelist(A051442[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
a(n)=(n+1)^n+n^(n+1) \\ Charles R Greathouse IV, Jan 12 2012
A066068
a(n) = n^n + n.
Original entry on oeis.org
1, 2, 6, 30, 260, 3130, 46662, 823550, 16777224, 387420498, 10000000010, 285311670622, 8916100448268, 302875106592266, 11112006825558030, 437893890380859390, 18446744073709551632, 827240261886336764194
Offset: 0
-
[ n^n+n: n in [0..100] ]; // Vincenzo Librandi, Apr 15 2011
-
Table[ n^n + n, {n, 1, 18} ]
Table[If[n==0,1,n^n+n],{n,0,18}] (* Vladimir Joseph Stephan Orlovsky, Apr 14 2011 *)
-
a(n) = n^n + n; \\ Harry J. Smith, Nov 09 2009
A275551
Number of classes of endofunctions of [n] under vertical translation mod n and reversal.
Original entry on oeis.org
1, 1, 2, 6, 36, 325, 3924, 58996, 1049088, 21526641, 500010000, 12968792826, 371504434176, 11649044974645, 396857394156608, 14596463098125000, 576460752571858944, 24330595941321312961, 1092955779880368226560, 52063675149116964615310, 2621440000000512000000000
Offset: 0
a(2) = 2: 11, 12.
a(3) = 6: 111, 112, 113, 121, 123, 131.
a(4) = 36: 1111, 1112, 1113, 1114, 1121, 1122, 1123, 1124, 1131, 1132, 1133, 1134, 1141, 1142, 1143, 1212, 1213, 1214, 1221, 1223, 1224, 1231, 1234, 1241, 1242, 1243, 1312, 1313, 1323, 1324, 1331, 1334, 1341, 1412, 1423, 1441.
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
A275552
Number of classes of endofunctions of [n] under vertical translation mod n and complement to n+1.
Original entry on oeis.org
1, 1, 2, 5, 36, 313, 3904, 58825, 1048640, 21523361, 500000256, 12968712301, 371504186368, 11649042561241, 396857386631168, 14596463012695313, 576460752303439872, 24330595937833434241, 1092955779869348331520, 52063675148955620766421, 2621440000000000000262144
Offset: 0
Cf.
A000169 Classes under translation mod n;
Cf.
A056665 Classes under rotation;
Cf.
A168658 Classes under complement to n+1;
Cf.
A130293 Classes under translation and rotation;
Cf.
A081721 Classes under rotation and reversal;
Cf.
A275549 Classes under reversal;
Cf.
A275550 Classes under reversal and complement;
Cf.
A275551 Classes under translation and reversal;
Cf.
A275553 Classes under translation, complement and reversal;
Cf.
A275554 Classes under translation, rotation and complement;
Cf.
A275555 Classes under translation, rotation and reversal;
Cf.
A275556 Classes under translation, rotation, complement and reversal;
Cf.
A275557 Classes under rotation and complement;
Cf.
A275558 Classes under rotation, complement and reversal.
-
a[0] = 1; a[n_?OddQ] := 1 + (n^n - n)/(2n); a[n_?EvenQ] := 2^(n-1) + (n^n - 2^(n-1)*n)/(2n); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 07 2017, translated from PARI *)
-
a(n) = if(n%2, 1 + (n^n - 1*n)/(2*n), 2^(n-1) + (n^n - 2^(n-1)*n)/(2*n)); \\ Andrew Howroyd, Sep 30 2017
A275553
Number of classes of endofunctions of [n] under vertical translation mod n, complement to n+1 and reversal.
Original entry on oeis.org
1, 1, 2, 4, 24, 169, 2024, 29584, 525600, 10764961, 250030128, 6484436676, 185752964096, 5824523694025, 198428723433728, 7298231591777344, 288230377359679488, 12165297972404595841, 546477889989773968640, 26031837574639154232100, 1310720000002816000131072
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
A275554
Number of classes of endofunctions of [n] under vertical translation mod n, rotation and complement to n+1.
Original entry on oeis.org
1, 1, 2, 3, 14, 65, 680, 8407, 131416, 2391515, 50006040, 1178973851, 30958827996, 896080197025, 28346960490560, 973097534189967, 36028797169965112, 1431211525754907905, 60719765554419645244, 2740193428892401092979, 131072000000281600209176
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
A275555
Number of classes of endofunctions of [n] under vertical translation mod n, rotation and reversal.
Original entry on oeis.org
1, 1, 2, 4, 16, 77, 730, 8578, 132422, 2394795, 50031012, 1179054376, 30959574248, 896082610429, 28346986843640, 973097619619654, 36028798243701780, 1431211529242786625, 60719765604009463866, 2740193429053744941868, 131072000002841600036024
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
A275556
Number of classes of endofunctions of [n] under vertical translation mod n, rotation, complement to n+1 and reversal.
Original entry on oeis.org
1, 1, 2, 3, 13, 45, 412, 4375, 66988, 1199038, 25033020, 589567451, 15480284910, 448042511917, 14173510363424, 486548852524671, 18014399792942108, 715605766365332673, 30359882832309625502, 1370096714607544395379, 65536000002956800104588
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
A275557
Number of classes of endofunctions of [n] under rotation and complement to n+1.
Original entry on oeis.org
1, 1, 2, 6, 38, 315, 3932, 58828, 1049108, 21523445, 500010024, 12968712306, 371504436220, 11649042561247, 396857394156656, 14596463012746392, 576460752571867208, 24330595937833434249, 1092955779880370116836, 52063675148955620766430, 2621440000000512000336088
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275558 Classes under rotation, complement and reversal
Comments