cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 880 results. Next

A071521 Number of 3-smooth numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 5, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18
Offset: 1

Views

Author

Benoit Cloitre, Jun 02 2002

Keywords

Comments

A 3-smooth number is a number of the form 2^x * 3^y where x >= 0 and y >= 0.

References

  • Bruce C. Berndt and Robert A. Rankin, "Ramanujan : letters and commentary", History of Mathematics Volume 9, AMS-LMS, p. 23, p. 35.
  • G. H. Hardy, Ramanujan: Twelve lectures on subjects suggested by his life and work, AMS Chelsea Pub., 1999, pages 67-82.

Crossrefs

Programs

  • Haskell
    a071521 n = length $ takeWhile (<= n) a003586_list
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Maple
    N:= 10000: # to get a(1) to a(N)
    V:= Vector(N):
    for y from 0 to floor(log[3](N)) do
      for x from 0 to ilog2(N/3^y) do
        V[2^x*3^y]:= 1
    od od:
    convert(map(round,Statistics:-CumulativeSum(V)),list); # Robert Israel, Dec 16 2014
  • Mathematica
    a[n_] := Sum[ MoebiusMu[6k]*Floor[n/k], {k, 1, n}]; Table[a[n], {n, 1, 75}] (* Jean-François Alcover, Oct 11 2011, after Benoit Cloitre *)
    f[n_] := Sum[Floor@Log[3, n/2^i] + 1, {i, 0, Log[2, n]}]; Array[f, 75] (* faster, or *)
    f[n_] := Sum[Floor@Log[2, n/3^i] + 1, {i, 0, Log[3, n]}]; Array[f, 75] (* Robert G. Wilson v, Aug 18 2012 *)
    Accumulate[Table[If[Max[FactorInteger[n][[All,1]]]<4,1,0],{n,80}]] (* Harvey P. Dale, Jan 11 2017 *)
  • PARI
    for(n=1,100,print1(sum(k=1,n,if(sum(i=3,n,if(k%prime(i),0,1)),0,1)),","))
    
  • PARI
    a(n)=sum(k=1,n,moebius(2*3*k)*floor(n/k)) \\ Benoit Cloitre, Jun 14 2007
    
  • PARI
    a(n)=my(t=1/3); sum(k=0,logint(n,3), t*=3; logint(n\t,2)+1) \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import integer_log
    def A071521(n): return sum((n//3**i).bit_length() for i in range(integer_log(n,3)[0]+1)) # Chai Wah Wu, Sep 15 2024

Formula

a(n) = Card{ k | A003586(k) <= n }. Asymptotically: let a=1/(2*log(2)*log(3)), b=sqrt(6), then from Ramanujan a(n) ~ a*log(2*n)*log(3*n) or equivalently a(n) ~ a*log(b*n)^2.
A022331(n) = a(A000079(n)); A022330(n) = a(A000244(n)). - Reinhard Zumkeller, May 09 2006
a(n) = Sum_{k=1..n} mu(6k)*floor(n/k). - Benoit Cloitre, Jun 14 2007
a(n) = Sum_{k=1..n} (floor(6^k/k)-floor((6^k-1)/k)). - Anthony Browne, May 19 2016
From Ridouane Oudra, Jul 17 2020: (Start)
a(n) = Sum_{i=0..floor(log_2(n))} (floor(log_3(n/2^i)) + 1).
a(n) = Sum_{i=0..floor(log_3(n))} (floor(log_2(n/3^i)) + 1). (End)
A322026(n) = a(A065331(n)). - Antti Karttunen, Sep 08 2024

A166586 Totally multiplicative sequence with a(p) = p - 2 for prime p.

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 5, 0, 1, 0, 9, 0, 11, 0, 3, 0, 15, 0, 17, 0, 5, 0, 21, 0, 9, 0, 1, 0, 27, 0, 29, 0, 9, 0, 15, 0, 35, 0, 11, 0, 39, 0, 41, 0, 3, 0, 45, 0, 25, 0, 15, 0, 51, 0, 27, 0, 17, 0, 57, 0, 59, 0, 5, 0, 33, 0, 65, 0, 21, 0, 69, 0, 71, 0, 9, 0
Offset: 1

Views

Author

Jaroslav Krizek, Oct 17 2009

Keywords

Crossrefs

Cf. A000244 (powers of 3).

Programs

  • Maple
    f:= proc(n) local t;
        mul((t[1]-2)^t[2],t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 07 2016
  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); Table[a[n], {n, 1, 50}] (* G. C. Greubel, Jun 06 2016 *)
  • PARI
    a(n) = my(f = factor(n)); for (i=1, #f~, f[i,1] -= 2); factorback(f); \\ Michel Marcus, Dec 13 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-p*X+2*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2023

Formula

Multiplicative with a(p^e) = (p-2)^e. If n = Product p(k)^e(k) then a(n) = Product (p(k) - 2)^e(k). a(2k) = 0 for k >= 1.
a(A000244(n)) = 1. - Michel Marcus, Dec 13 2014
Dirichlet g.f.: 1 / Product_{p prime} (1 - p^(1 - s) + 2*p^(-s)). The Dirichlet inverse is multiplicative with b(p) = 2 - p, b(p^e) = 0, for e > 1. - Álvar Ibeas, Nov 24 2017 [corrected by Vaclav Kotesovec, Feb 10 2023]
Sum_{k=1..n} a(k) ~ c * n^2/2, where c = Product_{primes} (1 - 1/(1 + p*(p-1)/2)) = 0.3049173579282080265466051390930446635010608835584906520231313997... - Vaclav Kotesovec, Feb 10 2023

Extensions

More terms from Alonso del Arte, Dec 10 2014
a(69) and a(75) corrected by G. C. Greubel, Jun 06 2016
Erroneous formula and program removed by G. C. Greubel, Jun 06 2016

A004656 Powers of 3 written in base 2.

Original entry on oeis.org

1, 11, 1001, 11011, 1010001, 11110011, 1011011001, 100010001011, 1100110100001, 100110011100011, 1110011010101001, 101011001111111011, 10000001101111110001, 110000101001111010011, 10010001111101101111001
Offset: 0

Views

Author

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002, pp. 120 and 903.

Crossrefs

Cf. A000079, A004643, ..., A004655: powers of 2 written in base 10, 4, 5, ..., 16
Cf. A000244, A004658, A004659, ... : powers of 3 written in base 10, 4, 5, ...

Programs

  • Magma
    [Seqint(Intseq(3^n, 2)): n in [0..30]]; // G. C. Greubel, Sep 10 2018
  • Mathematica
    Table[ FromDigits[ IntegerDigits[3^n, 2]], {n, 0, 14}]
  • PARI
    a(n)=fromdigits(binary(3^n)) \\ M. F. Hasler, Jun 23 2018
    

A011754 Number of ones in the binary expansion of 3^n.

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 6, 5, 6, 8, 9, 13, 10, 11, 14, 15, 11, 14, 14, 17, 17, 20, 19, 22, 16, 18, 24, 30, 25, 25, 25, 26, 26, 34, 29, 32, 27, 34, 36, 32, 28, 39, 38, 39, 34, 34, 45, 38, 41, 33, 41, 46, 42, 35, 39, 42, 39, 40, 42, 48, 56, 56, 49, 57, 56, 51, 45, 47, 55, 55, 64, 68, 58
Offset: 0

Views

Author

Allan C. Wechsler, Dec 11 1999

Keywords

Comments

Conjecture: a(n)/n tends to log(3)/(2*log(2)) = 0.792481250... (A094148). - Ed Pegg Jr, Dec 05 2002
Senge & Straus prove that for every m, there is some N such that for all n > N, a(n) > m. Dimitrov & Howe make this effective, proving that for n > 25, a(n) > 22. - Charles R Greathouse IV, Aug 23 2021
Ed Pegg's conjecture means that about half of the bits of 3^n are nonzero. It appears that the same is true for 5^n (A000351, cf. A118738) and 7^n (A000420). - M. F. Hasler, Apr 17 2024

References

  • S. Wolfram, "A new kind of science", p. 903.

Crossrefs

Cf. A007088, A000120 (Hamming weight), A000244 (3^n), A004656, A261009, A094148.
Cf. A118738 (same for 5^n).

Programs

Formula

a(n) = A000120(3^n). - Benoit Cloitre, Dec 06 2002
a(n) = A000120(A000244(n)). - Reinhard Zumkeller, Aug 14 2015

Extensions

More terms from Stefan Steinerberger, Apr 03 2006

A013610 Triangle of coefficients in expansion of (1+3*x)^n.

Original entry on oeis.org

1, 1, 3, 1, 6, 9, 1, 9, 27, 27, 1, 12, 54, 108, 81, 1, 15, 90, 270, 405, 243, 1, 18, 135, 540, 1215, 1458, 729, 1, 21, 189, 945, 2835, 5103, 5103, 2187, 1, 24, 252, 1512, 5670, 13608, 20412, 17496, 6561, 1, 27, 324, 2268, 10206, 30618, 61236, 78732, 59049, 19683
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,k) with steps (1,0) and three kinds of steps (1,1). The number of paths with steps (1,0) and s kinds of steps (1,1) corresponds to the expansion of (1+s*x)^n. - Joerg Arndt, Jul 01 2011
Rows of A027465 reversed. - Michael Somos, Feb 14 2002
T(n,k) equals the number of n-length words on {0,1,2,3} having n-k zeros. - Milan Janjic, Jul 24 2015
T(n-1,k-1) is the number of 3-compositions of n with zeros having k positive parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020

Examples

			Triangle begins
  1;
  1,    3;
  1,    6,    9;
  1,    9,   27,   27;
  1,   12,   54,  108,   81;
  1,   15,   90,  270,  405,  243;
  1,   18,  135,  540, 1215, 1458,  729;
  1,   21,  189,  945, 2835, 5103, 5103, 2187;
		

Crossrefs

Cf. A007318, A013609, A027465, etc.
Diagonals of the triangle: A000244 (k=n), A027471 (k=n-1), A027472 (k=n-2), A036216 (k=n-3), A036217 (k=n-4), A036219 (k=n-5), A036220 (k=n-6), A036221 (k=n-7), A036222 (k=n-8), A036223 (k=n-9), A172362 (k=n-10).

Programs

  • Haskell
    a013610 n k = a013610_tabl !! n !! k
    a013610_row n = a013610_tabl !! n
    a013610_tabl = iterate (\row ->
       zipWith (+) (map (* 1) (row ++ [0])) (map (* 3) ([0] ++ row))) [1]
    -- Reinhard Zumkeller, May 26 2013
    
  • Magma
    [3^k*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 19 2021
    
  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+3*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 25 2015
  • Mathematica
    t[n_, k_] := Binomial[n, k]*3^(n-k); Table[t[n, n-k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
    BinomialROW[n_, k_, t_] := Sum[Binomial[n, k]*Binomial[k, j]*(-1)^(k - j)*t^j, {j, 0, k}]; Column[Table[BinomialROW[n, k, 4], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jan 28 2019 *)
    T[0, 0] := 1; T[n_, k_]/;0<=k<=n := T[n, k] = 3T[n-1, k-1]+T[n-1, k]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Oliver Seipel, Jan 26 2025 *)
  • PARI
    {T(n, k) = polcoeff((1 + 3*x)^n, k)}; /* Michael Somos, Feb 14 2002 */
    
  • PARI
    /* same as in A092566 but use */
    steps=[[1,0], [1,1], [1,1], [1,1]]; /* note triple [1,1] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • Sage
    flatten([[3^k*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 19 2021

Formula

G.f.: 1 / (1 - x*(1+3*y)).
Row sums are 4^n. - Joerg Arndt, Jul 01 2011
T(n,k) = 3^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*2^(n-i). - Mircea Merca, Apr 28 2012
From Peter Bala, Dec 22 2014: (Start)
Riordan array ( 1/(1 - x), 3*x/(1 - x) ).
exp(3*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(3*x)*(1 + 9*x + 27*x^2/2! + 27*x^3/3!) = 1 + 12*x + 90*x^2/2! + 540*x^3/3! + 2835*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), 3*x/(1 - x) ). (End)
T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(n,k) * binomial(k,j) * 4^j. - Kolosov Petro, Jan 28 2019
T(0,0)=1, T(n,k)=3*T(n-1,k-1)+T(n-1,k) for 0<=k<=n, T(n,k)=0 for k<0 or k>n. - Oliver Seipel, Feb 10 2025

A056576 Highest k with 2^k <= 3^n.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 17, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 49, 50, 52, 53, 55, 57, 58, 60, 61, 63, 64, 66, 68, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 91, 93, 95, 96, 98, 99, 101, 103, 104, 106, 107
Offset: 0

Views

Author

Henry Bottomley, Jun 29 2000

Keywords

Examples

			a(3)=4 because 3^3=27 and 2^4=16 is power of 2 immediately below 27.
		

Crossrefs

Cf. A000079 (powers of 2), A000244 (powers of 3), A020914, A022921.
Cf. A056850, A117630 (complement), A020857 (decimal expansion of log_2(3)), A076227, A100982.

Programs

Formula

a(n) = floor(log_2(3^n)) = log_2(A000244(n)-A056576(n)) = a(n-1)+A022921(n-1).
a(n) = A020914(n) - 1. - L. Edson Jeffery, Dec 12 2014

A078125 Number of partitions of 3^n into powers of 3.

Original entry on oeis.org

1, 2, 5, 23, 239, 5828, 342383, 50110484, 18757984046, 18318289003448, 47398244089264547, 329030840161393127681, 6190927493941741957366100, 318447442589056401640929570896, 45106654667152833836835578059359839
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2002

Keywords

Comments

a(n) = sum of the n-th row of lower triangular matrix of A078122.
From Valentin Bakoev, Feb 22 2009: (Start)
a(n) = the partitions of 3^n into powers of 3.
A125801(n) = a(n+1) - 1.
For given m, the general formula for t_m(n, k) and the corresponding tables T, computed as in the example, determine a family of related sequences (placed in the rows or in the columns of T). For example, the sequences from the 3rd, 4th, etc. rows of the given table are not represented in the OEIS till now. (End)

Examples

			Square of A078122 = A078123 as can be seen by 4 X 4 submatrix:
[1,_0,_0,0]^2=[_1,_0,_0,_0]
[1,_1,_0,0]___[_2,_1,_0,_0]
[1,_3,_1,0]___[_5,_6,_1,_0]
[1,12,_9,1]___[23,51,18,_1]
To obtain t_3(5,2) we use the table T, defined as T[i,j]= t_3(i,j), for i=1,2,...,5(=n), and j= 0,1,2,...,162(= k.m^{n-1}). It is: 1,2,3,4,5,6,7,8,...,162; 1,5,12,22,35,51,...,4510; (this row contains the first 55 members of A000326 - the pentagonal numbers) 1,23,93,238,485,...,29773; 1,239,1632,5827,15200,32856,62629; 1,5828,68457; Column 1 contains the first 5 members of this sequence. - _Valentin Bakoev_, Feb 22 2009
		

Crossrefs

Cf. A078121, A078122 (matrix shift when cubed), A078123, A078124, A125801.
Column k=3 of A145515. - Alois P. Heinz, Sep 27 2011

Programs

  • Haskell
    import Data.MemoCombinators (memo2, list, integral)
    a078125 n = a078125_list !! n
    a078125_list = f [1] where
       f xs = (p' xs $ last xs) : f (1 : map (* 3) xs)
       p' = memo2 (list integral) integral p
       p  0 = 1; p []  = 0
       p ks'@(k:ks) m = if m < k then 0 else p' ks' (m - k) + p' ks m
    -- Reinhard Zumkeller, Nov 27 2015
  • Mathematica
    m[i_, j_] := m[i, j]=If[j==0||i==j, 1, m3[i-1, j-1]]; m2[i_, j_] := m2[i, j]=Sum[m[i, k]m[k, j], {k, j, i}]; m3[i_, j_] := m3[i, j]=Sum[m[i, k]m2[k, j], {k, j, i}]; a[n_] := m2[n, 0]

Formula

Denote the sum m^n + m^n + ... + m^n, k times, by k*m^n (m > 1, n > 0 and k are natural numbers). The general formula for the number of all partitions of the sum k*m^n into powers of m is t_m(n, k)= k+1 if n=1, t_m(n, k)= 1 if k=0, and t_m(n, k)= t_m(n, k-1) + t_m(n-1, k*m) if n > 1 and k > 0. a(n) is obtained for m=3 and n=1,2,3,... - Valentin Bakoev, Feb 22 2009
a(n) = [x^(3^n)] 1/Product_{j>=0} (1-x^(3^j)). - Alois P. Heinz, Sep 27 2011

A108716 a(n) = tan(Pi/14)^(-2n) + tan(3*Pi/14)^(-2n) + tan(5*Pi/14)^(-2n).

Original entry on oeis.org

3, 21, 371, 7077, 135779, 2606261, 50028755, 960335173, 18434276035, 353858266965, 6792546291251, 130387472704741, 2502874814474531, 48044357383337973, 922243598852422035, 17703083191185355397
Offset: 0

Views

Author

Philippe Deléham, Jun 20 2005

Keywords

Comments

The Berndt-type sequence number 11 for the argument 2*Pi/7 defined by the relation a(n) = t(1)^(2*n) + t(2)^(2*n) + t(4)^(2*n) = (-sqrt(7) + 4*s(1))^(2*n) + (-sqrt(7) + 4*s(2))^(2*n) + (-sqrt(7) + 4*s(4))^(2*n), where t(j) = tan(2*Pi*j/7) and s(j) = sin(2*Pi*j/7) (the respective sum with odd powers are discussed in A215794). See also A215007, A215008, A215143, A215493, A215494, A215510, A215512, A215694, A215695, A215828 and especially A215575, where a(n) = B(2n) for the function B(n) defined in the comments. - Roman Witula, Aug 23 2012
The sequence a(n+1)/a(n) is increasing and convergent to (t(2))^2 = 19,195669... (we note that the sequence A215794(n+1)/A215794(n) is decreasing and converges to the same limit). - Roman Witula, Aug 24 2012
Let L(p) be the total length of all sides and diagonals of a regular p-sided polygon inscribed in a unit circle. Then (L(p)/p)^2 = cot(Pi/(2p))^2 is the largest root of the equation: C(p,k)-C(p,2+k)*x+C(p,4+k)*x^2-C(p,6+k)*x^3+ ... +(-1)^q*x^q = 0, where k=1 if p is odd, k=0 if p is even, q = floor(p/2), and where C denotes the binomial coefficient. The complete set of roots is: x(i) = cot((2*i-1)*Pi/(2p))^2, i=1,2,...,q. Then a(n) = x(1)^n+x(2)^n+...x(q)^n for p=7. - Seppo Mustonen, Mar 25 2014
Sum_{k=1..(m-1)/2} tan^(2n) (k*Pi/m) is an integer when m >= 3 is an odd integer (see AMM link and formula); this sequence is the particular case m = 7. All terms are odd. - Bernard Schott, Apr 22 2022

Crossrefs

Similar to: A000244 (m=3), 2*A165225 (m=5), this sequence (m=7), A353410 (m=9), A275546 (m=11), A353411 (m=13).

Programs

  • Maple
    A:= gfun:-rectoproc({-a(n+3)+21*a(n+2)-35*a(n+1)+7*a(n), a(0) = 3, a(1) = 21, a(2) = 371},a(n), remember):
    seq(A(n),n=0..20); # Robert Israel, Aug 23 2015
  • Mathematica
    Table[ Round[ Cot[Pi/14]^(2n) + Cot[3Pi/14]^(2n) + Cot[5Pi/14]^(2n)], {n, 0, 12}] (* Robert G. Wilson v, Jun 21 2005 *)
    RecurrenceTable[{a[0]== 3, a[1]== 21, a[2]==371, a[n]== 21*a[n-1] - 35*a[n-2] + 7*a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 22 2015 *)
  • PARI
    a(n)=round(tan(Pi/14)^(-2*n) + tan(3*Pi/14)^(-2*n) + tan(5*Pi/14)^(-2*n)); \\ Anders Hellström, Aug 22 2015

Formula

a(n) = 7^n*A(2n), where A(n) := A(n-1) + A(n-2) + A(n-3)/7, with A(0)=3, A(1)=1, and A(2)=3. - see Witula-Slota's (Section 6) and Witula's (Remark 11) papers for the proofs and details. In these papers A(n) denotes the value of the big omega function with index n for the argument 2*i/sqrt(7) (see also A215512). - Roman Witula, Aug 23 2012
Conjecture: a(n) = 21*a(n-1)-35*a(n-2)+7*a(n-3). G.f.: -(35*x^2-42*x+3) / (7*x^3-35*x^2+21*x-1). - Colin Barker, Jun 01 2013
To verify conjecture, note that the roots of 7*x^3-35*x^2+21*x-1 are tan(Pi/14)^2, tan(3*Pi/14)^2 and tan(5*Pi/14)^2. - Robert Israel, Aug 23 2015
E.g.f.: exp((tan(Pi/7))^2*x) + exp((cot(Pi/14))^2*x) + exp((cot(3*Pi/14))^2*x). - G. C. Greubel, Aug 22 2015
a(n) = A275195(2*n)/(7^n). - Kai Wang, Aug 02 2016
a(n) = (tan(1*Pi/7))^(2*n) + (tan(2*Pi/7))^(2*n) + (tan(3*Pi/7))^(2*n). - Bernard Schott, Apr 22 2022

Extensions

More terms from Robert G. Wilson v, Jun 21 2005

A163632 Triple and reverse digits.

Original entry on oeis.org

1, 3, 9, 72, 612, 6381, 34191, 375201, 3065211, 3365919, 75779001, 300733722, 661102209, 7266033891, 37610189712, 631965038211, 3364115985981, 34975974329001, 300789229729401, 302881986763209, 726982069546809
Offset: 1

Views

Author

Dmitry Kamenetsky, Aug 02 2009

Keywords

Crossrefs

The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Mathematica
    a[n_] := a[n] = If[n==1, 1, IntegerReverse[3a[n-1]]];
    Array[a, 40] (* Jean-François Alcover, Jan 01 2021 *)

Extensions

Offset changed from 0 to 1 by Vaclav Kotesovec, Jan 03 2020

A183111 Magnetic Tower of Hanoi, number of moves of disk number k, optimally solving the [RED ; BLUE ; NEUTRAL] or [NEUTRAL ; RED ; BLUE] pre-colored puzzle.

Original entry on oeis.org

0, 1, 3, 9, 25, 75, 223, 665, 1993, 5971, 17903, 53697, 161065, 483163, 1449439, 4348233, 13044585, 39133571, 117400431, 352200881, 1056601993, 3169805003, 9509413535, 28528238329, 85584711561, 256754129459, 770262380399, 2310787129121, 6932361368937
Offset: 0

Views

Author

Uri Levy, Dec 25 2010

Keywords

Comments

A. The Magnetic Tower of Hanoi puzzle is described in link 1 listed below. The Magnetic Tower is pre-colored. Pre-coloring is [RED ; BLUE ; NEUTRAL] or [NEUTRAL ; RED ; BLUE], given in [Source ; Intermediate ; Destination] order. The solution algorithm producing the sequence is optimal (the sequence presented gives the minimum number of moves to solve the puzzle for the given pre-coloring configurations). Optimal solutions are discussed and their optimality is proved in link 2 listed below.
B. Disk numbering is from largest disk (k = 1) to smallest disk (k = N)
C. The above-listed "original" sequence generates a "partial-sums" sequence - describing the total number of moves required to solve the puzzle.
D. The number of moves of disk k, for large k, is close to (10/11)*3^(k-1) ~ 0.909*3^(k-1). Series designation: P909(k).

Crossrefs

A000244 "Powers of 3" is the sequence (also) describing the number of moves of the k-th disk solving [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Tower of Hanoi.

Programs

  • Mathematica
    LinearRecurrence[{3,1,-1,-6},{0,1,3,9,25},30] (* Harvey P. Dale, Apr 30 2018 *)

Formula

G.f.: -x*(-1+4*x^3+x^2) / ( (3*x-1)*(2*x^3+x^2-1) ).
Recurrence Relations (a(n)=P909(n) as in referenced paper):
a(n) = a(n-2) + a(n-3) + 2*3^(n-2) + 2*3^(n-4) ; n >= 4
Closed-Form Expression:
Define:
λ1 = [1+sqrt(26/27)]^(1/3) + [1-sqrt(26/27)]^(1/3)
λ2 = -0.5* λ1 + 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
λ3 = -0.5* λ1 - 0.5*i*{[sqrt(27)+sqrt(26)]^(1/3)- [sqrt(27)-sqrt(26)]^(1/3)}
AP = [(1/11)* λ2* λ3 - (3/11)*(λ2 + λ3) + (9/11)]/[( λ2 - λ1)*( λ3 - λ1)]
BP = [(1/11)* λ1* λ3 - (3/11)*(λ1 + λ3) + (9/11)]/[( λ1 - λ2)*( λ3 - λ2)]
CP = [(1/11)* λ1* λ2 - (3/11)*(λ1 + λ2) + (9/11)]/[( λ2 - λ3)*( λ1 - λ3)]
For any n > 0:
a(n) = (10/11)*3^(n-1) + AP* λ1^(n-1) + BP* λ2^(n-1) + CP* λ3^(n-1)
33*a(n) = 10*3^n -3*( A052947(n-2) -A052947(n-1) -4*A052947(n) ). - R. J. Mathar, Feb 05 2020

Extensions

More terms from Harvey P. Dale, Apr 30 2018
Previous Showing 101-110 of 880 results. Next