cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 131 results. Next

A343667 Number of partitions of an n-set without blocks of size 7.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 876, 4132, 21075, 115375, 673620, 4172413, 27296089, 187891174, 1356343385, 10238632307, 80615222404, 660560758879, 5621465069117, 49594663447612, 452846969975391, 4273130715906123, 41612346388251187, 417668648929556073, 4315893703814296053
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j=7, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 25 2021
  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^7/7!], {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Sum[(-1)^k BellB[n - 7 k]/((n - 7 k)! k! (7!)^k), {k, 0, Floor[n/7]}], {n, 0, 25}]
    a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 7, 0, Binomial[n - 1, k - 1]  a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]

Formula

E.g.f.: exp(exp(x) - 1 - x^7/7!).
a(n) = n! * Sum_{k=0..floor(n/7)} (-1)^k * Bell(n-7*k) / ((n-7*k)! * k! * (7!)^k).

A343668 Number of partitions of an n-set without blocks of size 8.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4139, 21138, 115885, 677745, 4206172, 27577513, 190289713, 1377315050, 10426866782, 82350895629, 677003941219, 5781485704892, 51193839084907, 469251258854001, 4445769329586348, 43475305461354931, 438270620701587657, 4549243731200717053
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j=8, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 25 2021
  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^8/8!], {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Sum[(-1)^k BellB[n - 8 k]/((n - 8 k)! k! (8!)^k), {k, 0, Floor[n/8]}], {n, 0, 25}]
    a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 8, 0, Binomial[n - 1, k - 1]  a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]

Formula

E.g.f.: exp(exp(x) - 1 - x^8/8!).
a(n) = n! * Sum_{k=0..floor(n/8)} (-1)^k * Bell(n-8*k) / ((n-8*k)! * k! * (8!)^k).

A343669 Number of partitions of an n-set without blocks of size 9.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115965, 678460, 4212497, 27633712, 190795218, 1381942530, 10470109267, 82764226404, 681048663329, 5822029128397, 51610194855972, 473631475252041, 4492967510009533, 43996047374513046, 444151309687221889, 4617189912288741028
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j=9, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 25 2021
  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^9/9!], {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Sum[(-1)^k BellB[n - 9 k]/((n - 9 k)! k! (9!)^k), {k, 0, Floor[n/9]}], {n, 0, 25}]
    a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 9, 0, Binomial[n - 1, k - 1]  a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]

Formula

E.g.f.: exp(exp(x) - 1 - x^9/9!).
a(n) = n! * Sum_{k=0..floor(n/9)} (-1)^k * Bell(n-9*k) / ((n-9*k)! * k! * (9!)^k).

A006342 Coloring a circuit with 4 colors.

Original entry on oeis.org

1, 1, 4, 10, 31, 91, 274, 820, 2461, 7381, 22144, 66430, 199291, 597871, 1793614, 5380840, 16142521, 48427561, 145282684, 435848050, 1307544151, 3922632451, 11767897354, 35303692060, 105911076181, 317733228541, 953199685624, 2859599056870, 8578797170611
Offset: 0

Views

Author

Keywords

Comments

Also equal to the number of set partitions of {1,2,...,n+2} with at most 4 parts such that each part does not contain both i,i+1 for 1<=iMike Zabrocki, Sep 08 2020
Also a(n) equals the number of color-complete multipoles with n terminals (that is, having all the states allowed by the Parity Lemma). - Miquel A. Fiol, May 27 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [3*3^n/8+1/4+3*(-1)^n/8: n in [0..30]]; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    A006342:=-(-1+2*z)/(z-1)/(3*z-1)/(z+1); # conjectured by Simon Plouffe in his 1992 dissertation
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]-1 od: seq(a[n], n=1..26); # Zerinvary Lajos, Apr 28 2008
  • Mathematica
    CoefficientList[Series[(1-2 x)/((1-x^2) (1-3 x)),{x,0,30}],x] (* or *) LinearRecurrence[{3,1,-3},{1,1,4},30] (* Harvey P. Dale, Aug 16 2016 *)
  • PARI
    Vec((1 - 2*x) / ((1 - x)*(1 + x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Nov 07 2017

Formula

G.f.: (1 - 2 x ) / (( 1 - x^2 ) ( 1 - 3 x )).
Binomial transform of A002001 (with interpolated zeros). Partial sums of A054878. E.g.f.: exp(x)(3*cosh(2*x) + 1)/4; a(n) = 3*3^n/8 + 1/4 + 3(-1)^n/8 = Sum_{k=0..n} (3^k + 3(-1)^k)/4. - Paul Barry, Sep 03 2003
a(n) = 2*a(n-1) + 3*a(n-2) - 1, n > 1. - Gary Detlefs, Jun 21 2010
a(n) = a(n-1) + A054878(n-2). - Yuchun Ji, Sep 12 2017
From Colin Barker, Nov 07 2017: (Start)
a(n) = (3^(n+1) + 5) / 8 for n even.
a(n) = (3^(n+1) - 1) / 8 for n odd.
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) for n > 2.
(End)
a(n) = 3*a(n-1) + (3*(-1)^n - 1)/2 for n > 0. - Yuchun Ji, Dec 05 2019

A105795 Shallow diagonal sums of the triangle k!*Stirling2(n,k): a(n) = Sum_{k=0..floor(n/2)} T(n-k,k) where T is A019538.

Original entry on oeis.org

1, 0, 1, 1, 3, 7, 21, 67, 237, 907, 3741, 16507, 77517, 385627, 2024301, 11174587, 64673997, 391392667, 2470864941, 16237279867, 110858862477, 784987938907, 5755734591981, 43636725010747, 341615028340557, 2758165832945947, 22940755633301421, 196354180631212027
Offset: 0

Views

Author

Paul Barry, Apr 20 2005

Keywords

Comments

From Gus Wiseman, Jan 08 2019: (Start)
Also the number of set partitions of {1,...,n} into blocks of sizes > 1 whose minima form an initial interval of positive integers. For example, the a(5) = 7 set partitions are:
{{1,2,3,4,5}}
{{1,3},{2,4,5}}
{{1,4},{2,3,5}}
{{1,5},{2,3,4}}
{{1,3,4},{2,5}}
{{1,3,5},{2,4}}
{{1,4,5},{2,3}}
Also the number of ordered set partitions of {1,...,n-k} of length k, for any 0 <= k <= n. For example, the a(5) = 7 ordered set partitions are:
{{1,2,3,4}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1,2},{3}}
{{1,3},{2}}
{{2,3},{1}}
(End)

Examples

			a(8) = 1!*Stirling2(7,1) + 2!*Stirling2(6,2) + 3!*Stirling2(5,3) + 4!*Stirling2(4,4) = 1 + 62 + 150 + 24 = 237. - _Peter Bala_, Jul 09 2014
		

Crossrefs

Programs

  • Maple
    a:= n-> add(Stirling2(n-k, k)*k!, k=0..n/2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 09 2014
  • Mathematica
    Table[Sum[StirlingS2[n-k, k]*k!, {k,0,n/2}],{n,0,20}] (* Vaclav Kotesovec, Jul 16 2014 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[Length[Join@@Permutations/@Select[sps[Range[n-k]],Length[#]==k&]],{k,0,n}],{n,0,10}] (* Gus Wiseman, Jan 08 2019 *)
  • PARI
    /* From Paul Barry's formula: */
    {a(n)=sum(k=0,floor(n/2), sum(i=0,k,(-1)^i*binomial(k, i)*(k-i)^(n-k)))} \\ Paul D. Hanna, Dec 28 2013
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* From e.g.f. series involving iterated integration: */
    {INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G}
    {a(n)=local(A=1+x);A=1+sum(k=1,n,INTEGRATE(k,(exp(x+x*O(x^n))-1)^k ));n!*polcoeff(A,n)} \\ Paul D. Hanna, Dec 28 2013

Formula

a(n) = sum{k=0..floor(n/2), sum{(-1)^i*binomial(k, i)*(k-i)^(n-k)}}.
E.g.f.: Sum_{n>=0} Integral^n (exp(x) - 1)^n dx^n, where integral^n F(x) dx^n is the n-th integration of F(x) with no constant of integration. - Paul D. Hanna, Dec 28 2013
Formal o.g.f.: 1/(1 + x)*sum {n >= 0} 1/(1 - n*x)*(x/(1 + x))^n = 1 + x^2 + x^3 + 3*x^4 + 7*x^5 + .... Cf. A229046. - Peter Bala, Jul 09 2014

A106640 Row sums of A059346.

Original entry on oeis.org

1, 1, 4, 11, 36, 117, 393, 1339, 4630, 16193, 57201, 203799, 731602, 2643903, 9611748, 35130195, 129018798, 475907913, 1762457595, 6550726731, 24428808690, 91377474411, 342763939656, 1289070060903, 4859587760076, 18360668311027, 69514565858653, 263693929034909
Offset: 0

Views

Author

Philippe Deléham, May 26 2005

Keywords

Comments

a(n) = p(n + 1) where p(x) is the unique degree-n polynomial such that p(k) = Catalan(k) for k = 0, 1, ..., n. - Michael Somos, Jan 05 2012
Number of Dyck (n+1)-paths whose minimum ascent length is 1. - David Scambler, Aug 22 2012
From Alois P. Heinz, Jun 29 2014: (Start)
a(n) is the number of ordered rooted trees with n+2 nodes such that the minimal outdegree equals 1. a(2) = 4:
o o o o
| | / \ / \
o o o o o o
| / \ | |
o o o o o
|
o
(End)
Number of non-crossing partitions of {1,2,..,n+1} that contain cyclical adjacencies. a(2) = 4, [12|3, 13|2, 1|23, 123]. - Yuchun Ji, Nov 13 2020

Examples

			1 + x + 4*x^2 + 11*x^3 + 36*x^4 + 117*x^5 + 393*x^6 + 1339*x^7 + 4630*x^8 + ...
a(2) = 4 since p(x) = (x^2 - x + 2) / 2 interpolates p(0) = 1, p(1) = 1, p(2) = 2, and p(3) = 4. - _Michael Somos_, Jan 05 2012
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 1, 4][n+1],
          ((30*n^3-44*n^2-22*n+24)*a(n-1)-(25*n^3-105*n^2+140*n-48)*a(n-2)
           -6*(n-1)*(5*n-4)*(2*n-3)*a(n-3))/(n*(n+2)*(5*n-9)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 29 2014
  • Mathematica
    max = 30; t = Table[Differences[Table[CatalanNumber[k], {k, 0, max}], n], {n, 0, max}]; a[n_] := Sum[t[[n-k+1, k]], {k, 1, n}]; Array[a, max] (* Jean-François Alcover, Jan 21 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n++; subst( polinterpolate( vector(n, k, binomial( 2*k - 2, k - 1) / k)), x, n + 1))} /* Michael Somos, Jan 05 2012 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 2 / (sqrt( 1 - 2*x - 3*x^2 + A) + (1 + x) * sqrt( 1 - 4*x + A)) ,n))} /* Michael Somos, Jan 05 2012 */

Formula

G.f.: (sqrt( 1 - 2*x - 3*x^2 ) / (1 + x) - sqrt( 1 - 4*x )) / (2*x^2) = 2 / (sqrt( 1 - 2*x - 3*x^2 ) + (1 + x) * sqrt( 1 - 4*x )). - Michael Somos, Jan 05 2012
a(n) = A000108(n+1) - A005043(n+1).
a(n) ~ 2^(2*n+2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jan 21 2017
a(n) = A000296(n+2) - A247494(n+1); i.e., remove the crossing partitions from the partitions with cyclical adjacencies. - Yuchun Ji, Nov 17 2020

Extensions

Typo in a(20) corrected and more terms from Alois P. Heinz, Jun 29 2014

A216963 Triangle read by rows, arising in enumeration of permutations by cyclic peaks, cycles and fixed points.

Original entry on oeis.org

1, 0, 1, 1, 1, 4, 5, 11, 28, 5, 41, 153, 71, 162, 872, 759, 61, 715, 5191, 7262, 1665, 3425, 32398, 66510, 29778, 1385, 17722, 211937, 601080, 443231, 60991, 98253, 1451599, 5446847, 5994473, 1642877, 50521, 580317, 10393114, 49940615, 76889330, 35162440, 3249025
Offset: 0

Views

Author

N. J. A. Sloane, Sep 27 2012

Keywords

Comments

See Ma and Chow (2012) for precise definition (cf. Proposition 3).

Examples

			Triangle begins:
:   1;
:   0;
:   1;
:   1,    1;
:   4,    5;
:  11,   28,    5;
:  41,  153,   71;
: 162,  872,  759,   61;
: 715, 5191, 7262, 1665;
...
		

Crossrefs

Column k=0 gives A000296.
Row sums give A000166.
T(2n+1,n) gives A000364(n) for n>0.

Programs

  • Maple
    p:= proc(n) option remember; expand(`if`(n<4,
          [1, 0, x, x*(1+q)][n+1], (n-1)*q*p(n-1)+
          2*q*(1-q)*diff(p(n-1), q)+x*(1-q)*
          diff(p(n-1), x)+(n-1)*x*p(n-2)))
        end:
    T:= n-> (t-> seq(coeff(t, q, i), i=0..
             max(0, degree(t))))(subs(x=1, p(n))):
    seq(T(n), n=0..15);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    p[0] = 1; p[1] = 0; p[2] = x; p[3] = (1 + q) x;
    p[n_] := p[n] = Expand[(n - 1) q p[n - 1] + 2 q (1 - q) D[p[n - 1], q] + x (1 - q) D[p[n - 1], x] + (n - 1) x p[n - 2]];
    T[n_] := CoefficientList[p[n] /. x -> 1 , q]; T[1] = {0};
    Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Nov 08 2017 *)
  • PARI
    tabf(m) = {P = x; M = subst(P, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); Q = (1+q)*x; M = subst(Q, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); for (n=3, m, newP = n*q*Q + 2*q*(1-q)*deriv(Q,q) + x*(1-q)*deriv(Q,x) + n*x*P; M = subst(newP, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = Q; Q = newP;);} \\ Michel Marcus, Feb 09 2013

Extensions

More terms from Michel Marcus, Feb 09 2013
One row for T(0,0)=1 prepended by Alois P. Heinz, Apr 13 2017

A306386 Number of chord diagrams with n chords all having arc length at least 3.

Original entry on oeis.org

1, 0, 0, 1, 7, 68, 837, 11863, 189503, 3377341, 66564396, 1439304777, 33902511983, 864514417843, 23735220814661, 698226455579492, 21914096529153695, 731009183350476805, 25829581529376423945, 963786767538027630275, 37871891147795243899204, 1563295398737378236910447
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2019

Keywords

Comments

A cyclical form of A190823.
Also the number of 2-uniform set partitions of {1...2n} such that, when the vertices are arranged uniformly around a circle, no block has its two vertices separated by an arc length of less than 3.

Examples

			The a(8) = 7 2-uniform set partitions with all arc lengths at least 3:
  {{1,4},{2,6},{3,7},{5,8}}
  {{1,4},{2,7},{3,6},{5,8}}
  {{1,5},{2,6},{3,7},{4,8}}
  {{1,5},{2,6},{3,8},{4,7}}
  {{1,5},{2,7},{3,6},{4,8}}
  {{1,6},{2,5},{3,7},{4,8}}
  {{1,6},{2,5},{3,8},{4,7}}
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<8, [1, 0$2, 1, 7, 68, 837, 11863][n+1],
          ((8*n^4-64*n^3+142*n^2-66*n+109)    *a(n-1)
          -(24*n^4-248*n^3+870*n^2-1106*n+241)*a(n-2)
          +(24*n^4-264*n^3+982*n^2-1270*n+145)*a(n-3)
          -(8*n^4-96*n^3+374*n^2-486*n+33)    *a(n-4)
          -(4*n^3-24*n^2+39*n-2)              *a(n-5))/(4*n^3-36*n^2+99*n-69))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 27 2019
  • Mathematica
    dtui[{},]:={{}};dtui[set:{i,___},n_]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s],n]]/@Table[{i,j},{j,Switch[i,1,Select[set,3<#i+2&]]}];
    Table[Length[dtui[Range[n],n]],{n,0,12,2}]

Formula

a(n) is even <=> n in { A135042 }. - Alois P. Heinz, Feb 27 2019

Extensions

a(10)-a(16) from Alois P. Heinz, Feb 26 2019
a(17)-a(21) from Alois P. Heinz, Feb 27 2019

A327884 Number T(n,k) of set partitions of [n] such that at least one of the block sizes is k or k=0; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 4, 3, 1, 15, 11, 9, 4, 1, 52, 41, 35, 20, 5, 1, 203, 162, 150, 90, 30, 6, 1, 877, 715, 672, 455, 175, 42, 7, 1, 4140, 3425, 3269, 2352, 1015, 280, 56, 8, 1, 21147, 17722, 17271, 13132, 6237, 1890, 420, 72, 9, 1, 115975, 98253, 97155, 76540, 39480, 12978, 3150, 600, 90, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 28 2019

Keywords

Examples

			T(4,1) = 11: 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
T(4,2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
T(4,3) = 4: 123|4, 124|3, 134|2, 1|234.
T(4,4) = 1: 1234.
T(5,1) = 41: 1234|5, 1235|4, 123|4|5, 1245|3, 124|3|5, 12|34|5, 125|3|4, 12|35|4, 12|3|45, 12|3|4|5, 1345|2, 134|2|5, 13|24|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 1|2345, 1|234|5, 15|23|4, 1|235|4, 1|23|45, 1|23|4|5, 145|2|3, 14|25|3, 14|2|35, 14|2|3|5, 15|24|3, 1|245|3, 1|24|35, 1|24|3|5, 15|2|34, 1|25|34, 1|2|345, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
Triangle T(n,k) begins:
      1;
      1,     1;
      2,     1,     1;
      5,     4,     3,     1;
     15,    11,     9,     4,    1;
     52,    41,    35,    20,    5,    1;
    203,   162,   150,    90,   30,    6,   1;
    877,   715,   672,   455,  175,   42,   7,  1;
   4140,  3425,  3269,  2352, 1015,  280,  56,  8, 1;
  21147, 17722, 17271, 13132, 6237, 1890, 420, 72, 9, 1;
  ...
		

Crossrefs

Columns k=0-3 give: A000110, A000296(n+1), A327885, A328153.
T(2n,n) gives A276961.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          `if`(j=k, 0, b(n-j, k)*binomial(n-1, j-1)), j=1..n))
        end:
    T:= (n, k)-> b(n, 0)-`if`(k=0, 0, b(n, k)):
    seq(seq(T(n, k), k=0..n), n=0..11);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[If[j == k, 0, b[n - j,k] Binomial[ n - 1, j - 1]], {j, 1, n}]];
    T[n_, k_] := b[n, 0] - If[k == 0, 0, b[n, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)

Formula

E.g.f. of column k: exp(exp(x)-1) - [k>0] * exp(exp(x)-1-x^k/k!).
T(n,0) - T(n,1) = A000296(n).

A337039 a(n) = exp(-1/3) * Sum_{k>=0} (3*k - 1)^n / (3^k * k!).

Original entry on oeis.org

1, 0, 3, 9, 54, 351, 2673, 22842, 216513, 2248965, 25351704, 307699965, 3995419365, 55207193328, 808078734999, 12480510487509, 202697232446070, 3451417004044323, 61450890989472837, 1141331486235356178, 22066085726516137149, 443236553318792110113, 9233934519951699602400
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 12 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[(Exp[3 x] - 1)/3 - x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k] 3^k a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 22}]
    Table[Sum[(-1)^(n - k) Binomial[n, k] 3^k BellB[k, 1/3], {k, 0, n}], {n, 0, 22}]

Formula

G.f. A(x) satisfies: A(x) = (1 - 3*x + x*A(x/(1 - 3*x))) / (1 - 2*x - 3*x^2).
G.f.: (1/(1 + x)) * Sum_{k>=0} (x/(1 + x))^k / Product_{j=1..k} (1 - 3*j*x/(1 + x)).
E.g.f.: exp((exp(3*x) - 1) / 3 - x).
a(0) = 1; a(n) = Sum_{k=1..n-1} binomial(n-1,k) * 3^k * a(n-k-1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A004212(k).
a(n) ~ 3^(n - 1/3) * n^(n - 1/3) * exp(n/LambertW(3*n) - n - 1/3) / (sqrt(1 + LambertW(3*n)) * LambertW(3*n)^(n - 1/3)). - Vaclav Kotesovec, Jun 26 2022
Previous Showing 51-60 of 131 results. Next