cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A002005 Number of rooted planar cubic maps with 2n vertices.

Original entry on oeis.org

1, 4, 32, 336, 4096, 54912, 786432, 11824384, 184549376, 2966845440, 48855252992, 820675092480, 14018773254144, 242919827374080, 4261707069259776, 75576645116559360, 1353050213048123392, 24428493151359467520, 444370175232646840320, 8138178004138611179520
Offset: 0

Views

Author

Keywords

Comments

Equivalently, number of rooted planar triangulations with 2n faces.
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

References

  • R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
Column k=0 of A266240.

Programs

  • Maple
    seq(2*8^n*binomial(n*3/2, n)/((n + 2)*(n + 1)), n = 0..19); # Peter Luschny, Nov 14 2022
  • Mathematica
    Table[2^(2 n + 1) (3 n)!!/((n + 2)! n!!), {n, 0, 20}] (* Vincenzo Librandi, Dec 28 2015 *)
    CoefficientList[Series[(-1 + 96 z + Hypergeometric2F1[-2/3,-1/3,1/2,432z^2]- 96 z Hypergeometric2F1[-1/6,1/6,3/2,432z^2])/(192 z^2), {z, 0, 10}], z] (* Benedict W. J. Irwin, Aug 07 2016 *)
  • PARI
    factorial2(n) = my(x = (2^(n\2)*(n\2)!)); if (n%2, n!/x, x);
    a(n) = 2^(2*n+1)*factorial2(3*n)/((n+2)!*factorial2(n));
    vector(20, i, a(i-1))
    \\ test: y = Ser(vector(201, n, a(n-1))); x*(1-432*x^2)*y' == 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1
    \\ Gheorghe Coserea, Jun 13 2017

Formula

a(n) = 2^(2*n+1)*(3*n)!!/((n+2)!*n!!). - Sean A. Irvine, May 19 2013
a(n) ~ sqrt(6/Pi) * n^(-5/2) * (12*sqrt(3))^n. - Gheorghe Coserea, Feb 25 2016
G.f.: (96*x - 1 + 2F1(-2/3, -1/3; 1/2; 432*x^2) - 96*x*2F1(-1/6, 1/6; 3/2; 432*x^2))/(192*x^2). - Benedict W. J. Irwin, Aug 07 2016
From Gheorghe Coserea, Jun 13 2017: (Start)
G.f. y(x) satisfies:
x*(1-432*x^2)*deriv(y,x) = 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1.
0 = 64*x^3*y^3 + x*(1-96*x)*y^2 + (30*x-1)*y - 27*x + 1.
(End).
D-finite with recurrence (n+2)*(n+1)*a(n) -48*(3*n-2)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Feb 08 2021
From Karol A. Penson and Katarzyna Gorska (katarzyna.gorska@ifj.edu.pl), Nov 02 2022: (Start)
a(n) = Integral_{x=0..12*sqrt(3)} x^n*W(x), where
W(x) = (T1(x) + T2(x)) / T3(x), and
T1(x) = -x^(2/3) * (108 + sqrt(3) * sqrt(432 - x^2));
T2(x) = 3^(1/6)*(36+sqrt(3)*sqrt(432-x^2))^(2/3) * (-432+x^2+36*sqrt(3)* sqrt(432-x^2)) / sqrt(432-x^2);
T3(x) = (128*3^(5/6)*Pi*x^(1/3)*(36+sqrt(3)*sqrt(432-x^2))^(1/3)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with the singularity x^(-1/3), and for x > 0 is monotonically decreasing to zero at x = 12*sqrt(3). (End)
a(n) = 2^(3*n + 1)*binomial(n*3/2, n)/((n + 1)*(n + 2)) = A358367(n) / A000217(n + 1). - Peter Luschny, Nov 14 2022

Extensions

More terms from Sean A. Irvine, May 19 2013

A006335 a(n) = 4^n*(3*n)!/((n+1)!*(2*n+1)!).

Original entry on oeis.org

1, 2, 16, 192, 2816, 46592, 835584, 15876096, 315031552, 6466437120, 136383037440, 2941129850880, 64614360416256, 1442028424527872, 32619677465182208, 746569714888605696, 17262927525017812992, 402801642250415636480, 9474719710174783733760, 224477974671833337692160
Offset: 0

Views

Author

Keywords

Comments

Number of planar lattice walks of length 3n starting and ending at (0,0), remaining in the first quadrant and using only NE,W,S steps.
Equals row sums of triangle A140136. - Michel Marcus, Nov 16 2014
Number of linear extensions of the poset V x [n], where V is the 3-element poset with one least element and two incomparable elements: see Kreweras and Niederhausen (1981) and Hopkins and Rubey (2020) references. - Noam Zeilberger, May 28 2020

Examples

			G.f. = 1 + 2*x + 16*x^2 + 192*x^3 + 2816*x^4+ 46592*x^5 + 835584*x^6 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals 2^(n-1) * A000309(n-1) for n>1.
Cf. A098272. First row of array A098273.

Programs

  • Magma
    [4^n*Factorial(3*n)/(Factorial(n+1)*Factorial(2*n+1)) : n in [0..20]]; // Wesley Ivan Hurt, Nov 16 2014
    
  • Maple
    A006335:=n->4^n*(3*n)!/((n+1)!*(2*n+1)!): seq(A006335(n), n=0..20); # Wesley Ivan Hurt, Nov 16 2014
  • Mathematica
    aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 3 n], {n, 0, 25}] (* Manuel Kauers, Nov 18 2008 *)
    Table[(4^n (3 n)! / ((n + 1)! (2 n + 1)!)), {n, 0, 200}] (* Vincenzo Librandi, Nov 17 2014 *)
  • PARI
    {a(n) = if( n<0, 0, 4^n * (3*n)! / ((n+1)! * (2*n+1)!))}; /* Michael Somos, Jan 23 2003 */
    
  • Sage
    def a(n):
        return (4**n * binomial(3 * n, 2 * n)) // ((n + 1) * (2 * n + 1))
    # F. Chapoton, Jun 01 2020

Formula

G.f.: (1/(12*x)) * (hypergeom([ -2/3, -1/3],[1/2],27*x)-1). - Mark van Hoeij, Nov 02 2009
a(n+1) = 6*(3*n+2)*(3*n+1)*a(n)/((2+n)*(2*n+3)). - Robert Israel, Nov 17 2014
a(n) ~ 3^(3*n + 1/2) / (4*sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Mar 26 2016
E.g.f.: 2F2(1/3,2/3; 3/2,2; 27*x). - Ilya Gutkovskiy, Jan 25 2017

Extensions

Edited by N. J. A. Sloane, Dec 20 2008 at the suggestion of R. J. Mathar

A153231 a(n) = 2^n * binomial(3n,n)/(2n+1).

Original entry on oeis.org

1, 2, 12, 96, 880, 8736, 91392, 992256, 11075328, 126297600, 1465052160, 17233182720, 205074874368, 2464404045824, 29864206663680, 364535993597952, 4477993284993024, 55316387638149120, 686720560048373760, 8563155161736806400, 107206525476085432320
Offset: 0

Views

Author

Yidong Sun (sydmath(AT)yahoo.com.cn), Dec 21 2008

Keywords

Comments

a(n) is also the number of rooted generalized noncrossing trees on n+1 vertices.
The series reversion of y = x +2*x^3 is x = y -2*y^3 +12*y^5 -96*y^7 +880*y^9 -8736*y^11 +... - R. J. Mathar, Sep 29 2012
Lattice paths in the 1st quadrant from (0,0) to (3n,0) using steps D(1,-1) and two types of U(1,2). - David Scambler, Jun 22 2013
From Torsten Muetze, May 08 2024: (Start)
a(n) also counts ternary trees with n nodes that are colored red or blue.
a(n) also counts triangulations of a convex (2n+2)-gon whose points are colored red and blue alternatingly, and that do not have monochromatic triangles (i.e., every triangle has at least one red point and at least one blue point). (End)

References

  • Bruce E. Sagan, Proper partitions of a polygon and k-Catalan numbers, Ars Combinatoria, 88 (2008), 109-124.

Crossrefs

Cf. A369510 (colorful triangulations with an odd number of points).

Programs

  • Magma
    [2^n*Binomial(3*n,n)/(2*n+1): n in [0..30]]; // Vincenzo Librandi, Sep 08 2015
    
  • Mathematica
    Table[2^n Binomial[3n, n]/(2n+1), {n, 0, 25}] (* Vincenzo Librandi, Sep 08 2015 *)
  • PARI
    a(n) = 2^n*binomial(3*n,n)/(2*n+1); \\ Altug Alkan, Sep 24 2018
    
  • SageMath
    [2^n*binomial(3*n,n)/(2*n+1) for n in range(31)] # G. C. Greubel, Mar 08 2023

Formula

a(n) = 2^n*A001764(n). - R. J. Mathar, Oct 06 2012
D-finite with recurrence n*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Nov 16 2012
a(n) = (n+1)*A000309(n). - Johannes W. Meijer, Aug 22 2013
G.f.: sqrt(2)/sqrt(3*x)*sin(1/3*asin(sqrt(27*x/2))). - Vladimir Kruchinin, Sep 08 2015
E.g.f.: Hypergeometric2F2(1/3,2/3; 1,3/2; 27*x/2). - Ilya Gutkovskiy, Nov 23 2017

Extensions

More terms from N. J. A. Sloane, Dec 21 2008

A000264 Number of 3-edge-connected rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle.

Original entry on oeis.org

1, 1, 3, 14, 80, 518, 3647, 27274, 213480, 1731652, 14455408, 123552488, 1077096124, 9548805240, 85884971043, 782242251522, 7203683481720, 66989439309452, 628399635777936, 5940930064989720, 56562734108608536
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    max = 21; b[n_] := (2n)!*(2n + 2)!/(2*n!*(n + 1)!^2*(n + 2)!); b[0] = 0; bf[x_] := Sum[b[n]*x^n, {n, 0, max}]; Clear[a]; a[0] = 0; a[1] = a[2] = 1; af[x_] := Sum[a[n]*x^n, {n, 0, max}]; se = Series[bf[x] - af[x*(1 + 2*bf[x])^2], {x, 0, max}] // Normal; Table[a[n], {n, 1, max}] /. SolveAlways[se == 0, x] // First (* Jean-François Alcover, Jan 31 2013, after Sean A. Irvine *)

Formula

Let b(n)=(2n)!*(2n+2)!/(2*n!*(n+1)!^2*(n+2)!). Let B(x) be the generating function producing b(n), and A(x) be the generating function producing a(n). Then these sequences satisfy the functional equation B(x)=A(x(1+2*B(x))^2). - Sean A. Irvine, Apr 05 2010

Extensions

Better definition from Michael Albert, Oct 24 2008
More terms from Sean A. Irvine, Apr 05 2010

A218473 Number of 3n-length 3-ary words, either empty or beginning with the first letter of the alphabet, that can be built by repeatedly inserting triples of identical letters into the initially empty word.

Original entry on oeis.org

1, 1, 7, 61, 591, 6101, 65719, 729933, 8297247, 96044101, 1128138567, 13411861629, 161066465583, 1950996039669, 23808159962839, 292413627476141, 3611870017079871, 44838216520062117, 559127724970143079, 7000374603097246173, 87964883375131331151
Offset: 0

Views

Author

Alois P. Heinz, Oct 29 2012

Keywords

Crossrefs

Column k=3 of A213027. Cf. A000139, A000309, A001764.

Programs

  • Maple
    a:= n-> `if`(n=0, 1, add(binomial(3*n, j)*(n-j)*2^j, j=0..n-1)/n):
    seq(a(n), n=0..20);
    # second Maple program
    a:= proc(n) a(n):= `if`(n<3, [1, 1, 7][n+1], (-81*(3*n-1)*(3*n-5)*a(n-2)
           +(81*n^2-81*n+15)*a(n-1))/ ((2*n-1)*n))
        end:
    seq(a(n), n=0..20);
  • Mathematica
    Flatten[{1,Table[1/n*Sum[Binomial[3*n,j]*(n-j)*2^j,{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2013 *)
    Flatten[{1,Table[FullSimplify[SeriesCoefficient[(1/(81*x-3)+2/((3-81*x)*(1-27*x-3*Sqrt[3*x*(27*x-2)])^(2/3))),{x,0,n}]],{n,1,10}]}] (* Vaclav Kotesovec, Jul 06 2013 *)

Formula

a(n) = (1/n) * Sum_{j=0..n-1} binomial(3*n,j)*(n-j)*2^j for n>0, a(0) = 1.
a(n) ~ 3^(3*n-3/2)/(sqrt(Pi)*2^(n-1)*n^(3/2)). - Vaclav Kotesovec, May 22 2013
G.f. (for n>0): (1/(81*x-3)+2/((3-81*x)*(1-27*x-3*sqrt(3*x*(27*x-2)))^(2/3))). - Vaclav Kotesovec, Jul 06 2013
From Peter Bala, Feb 06 2022: (Start)
The o.g.f. A(x) satisfies the algebraic equation 8*x - 36*x*A(x) + (54*x - 1)*A(x)^2 + (-27*x + 1)*A(x)^3 = 0.
A(x) = (6 - 4*T(2*x))/(2*T(2*x)^2 - 9*T(2*x) + 9), where T(x) = 1 + x*T(x)^3 is the o.g.f. of A001764.
A(x) = 1 + 2*x*B'(2*x)/B(2*x), where B(x) = 2 + x + 2*x^2 + 6*x^3 + 22*x^4 + 91*x^5 + ... is the o.g.f. of A000139.
exp(Sum_{n >= 1} a(n)*x*n/n) = 1 + x + 4*x^2 + 24*x^3 + 176*x^4 + 1456*x^5 + ... is the o.g.f. of A000309, a power series with integral coefficients. It follows that the Gauss congruences a(n*p^k) == a(n*p*(k-1)) (mod p^k) hold for all prime p and positive integers n and k. (End)

A358091 Triangle read by rows. Coefficients of the polynomials P(n, x) = 2^(n-2)*(3*n-1)* hypergeometric([-3*n, 1 - n, -n + 4/3], [-n, -n + 1/3], x). T(n, k) = [x^k] P(n, x).

Original entry on oeis.org

1, 5, -6, 16, -60, 48, 44, -288, 660, -440, 112, -1056, 4032, -7280, 4368, 272, -3360, 17952, -52224, 81600, -45696, 640, -9792, 67200, -267520, 656640, -930240, 496128, 1472, -26880, 225216, -1133440, 3740352, -8160768, 10767680, -5537664
Offset: 1

Views

Author

Peter Luschny, Oct 28 2022

Keywords

Examples

			[1]    1;
[2]    5,     -6;
[3]   16,    -60,     48;
[4]   44,   -288,    660,     -440;
[5]  112,  -1056,   4032,    -7280,    4368;
[6]  272,  -3360,  17952,   -52224,   81600,   -45696;
[7]  640,  -9792,  67200,  -267520,  656640,  -930240,   496128;
[8] 1472, -26880, 225216, -1133440, 3740352, -8160768, 10767680, -5537664;
		

Crossrefs

Programs

  • SageMath
    def P(n):
        h = 2^(n-2)*(3*n-1)*hypergeometric([-3*n, 1 - n, -n + 4/3], [-n, -n + 1/3], x)
        return h.series(x, n+1).polynomial(SR)
    for n in range(1, 9): print(P(n).list())
    # To evaluate the polynomials use:
    def p(n, t): return Integer(P(n)(x=t).n())
    # For example the next statements yield A062236 and A000309.
    print([p(n, -1/2) for n in range(1, 21)])
    print([(-1)^n*p(n + 1, 1) for n in range(0, 22)])

Formula

P(n, -1/2) = A062236(n).
(-1)^n*P(n + 1, 1) = A000309(n).

A336110 Irregular triangle of Catalan-based numbers, read by rows.

Original entry on oeis.org

1, 1, 2, -2, 5, -14, 5, 14, -74, 74, -14, 42, -352, 668, -352, 42, 132, -1588, 4808, -4808, 1588, -132, 429, -6946, 30371, -48540, 30371, -6946, 429, 1430, -29786, 176270, -407810, 407810, -176270, 29786, -1430
Offset: 1

Views

Author

Sergii Voloshyn, Jul 08 2020

Keywords

Comments

Calculation of the sum over the partitions of r of products of dimensions of two different representations of a symmetric group S_r gives
Sum_{L |- S_r} f(L)*f(l+q^N) = (r+q^N)! * G[N+1] * G[q+1]/(G[N+q+1]) * B_r(1!c_1, ..., r!c_r) where f(L) is the dimension of the symmetric group S_r, G[x] is Barnes function, and B_r() is the complete exponential Bell polynomial.
In the limit N -> infinity the coefficients [are?]
c_1 = 1/(1+x), c_i = 1/(i*N^(2*(i-1)))*P(i-1), for i >= 2.
Coefficient of x^n in the numerator of P(i) is T(s, i).
This triangle of coefficients was discovered by Borisenko et al. In mathematical physics these coefficients appear as an important ingredient of series that define the free energy of the SU(N) standard lattice model in the large N limit.
They are easily obtained from the g.f.
Some special cases are given by A000108 (first column of the triangle), A138156 (second column of the triangle).
The sum of the numbers in row 2*k+1 is (-1)^k * A000260(k) * 2^(2*k).

Examples

			     1;
     1;
     2,     -2;
     5,    -14,      5;
    14,    -74,     74,     -14;
    42,   -352,    668,    -352,     42;
   132,  -1588,   4808,   -4808,   1588,    -132;
   429,  -6946,  30371,  -48540,  30371,   -6946,   429;
  1430, -29786, 176270, -407810, 407810, -176270, 29786, -1430;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[L_, n_] := CatalanNumber[L] Sum[u[L, a]/u[0, a] M[n - 1 - 2*a, L], {a, 0, (n - 1)/2}]-4^L Sum[v[L, a]/v[0, a] M[n - 2 - 2*a, L], {a,0,(n-2)/2}];
    M[n_, l_] := Sum[k!/n! BellY[n,k,Table[(-1)^(j-1) j!Binomial[3l+j,j], {j,n}]], {k, 0, n}];
    u[k_, n_] := Product[Binomial[2 k + 2 l + 1, 3], {l, 1, n}];
    v[k_, n_] := Product[ Binomial[2 k + 2 l + 2, 3], {l, 1, n}];
    (* alternate program using coefficients in numerator *)
    P[s_] := x CatalanNumber[s] HypergeometricPFQ[{s + 1/2, s + 1, s + 3/2}, {1/2, 3/2}, x^2] - x^2*4^s HypergeometricPFQ[{s + 1, s + 3/2, s + 2}, {3/2, 2}, x^2];
    Table[CoefficientList[P[s] // Together // Numerator, x] // Rest, {s, 0, 10}] // Flatten (* amended by Jean-François Alcover, Sep 25 2020 *)
    (* another program using coefficients in numerator *)
    Needs["Combinatorica`"];
    OA[p_,x_]:= (2^p(-(1/(x+1)))^(2p+1))/((2p+1)!(p+1)!) Sum[(-x/(1+x))^(p-r+1)Product[Pochhammer[1+Plus@@Table[3*k[[i]]-1,{i,1,j-1}],3*k[[j]]],{j,1,r}],{r, 1, p},{k,Compositions[p-r,r]+1}]; Table[CoefficientList[OA[s, x] // Together // Numerator, x] //
       Rest, {s, 0, 10}] // Flatten (* Sergii Voloshyn, Sep 03 2021 *)

Formula

Coefficients of x^n in the numerator of P(s) = (x * C[s]* 3F2[ s+ 1/2, s+1, s+3/2; 1/2,3/2; x^2] - x^2 * 4^s * 3F2[ s+1,s+3/2, s+2; 3/2, 2; x^2]), where C(s) are Catalan numbers.
or in a more explicit way (only for k >= 1)
T(s, n) = C(s) * U(s, n) - 4^s * V(s, n), where
U(s, n) = Sum_{a=0..(n-1)/2} (u(s, a)/u(0,a)) * M(s, n-1- 2a),
V(s, n) = Sum_{a=0..(n-2)/2} (v(s, a)/v(0,a)) * M(s, n-2- 2a), and
u(s, n) = Product_{L=1..n} binomial(2s+2L+1, 3),
v(s, n) = Product_{L=1..n} binomial(2s+2L+2, 3), and
M(m, n) = Sum_{L=1..n} L!/n! B_{n,l} ( x_1, ..., x_{n-L+1}), and
x_i = (-1)^{1+i} * (3s+i)_i = (-1)^{1+i} * i! * binomial(3s + i, i), where
B_{n,l} (x_1, ..., x_{n-L+1}) is the n-th partial or incomplete exponential Bell polynomial with monomials sorted into graded lexicographic order.
Sum of numbers in the particular row:
Sum_{n=1..2*k+1} T(2*k+1, n) = 2*(4*k+1)!/((k+1)!*(3*k+2)!) *2^(2*k) (odd s);
Sum_{n=1..2*k} T(2*k, n) = 0 (even s).
From Sergii Voloshyn, Oct 22 2020: (Start)
Formulae for particular columns:
T(s, 1) = C(s);
T(s, 2) = C(s)*(3*s+1) - 4^s;
T(s, 3) = C(s)*(binomial(2*s+3,3) + (3*s+1)^2 - binomial(3*s +2,2)) - 4^s*(3*s+1);
T(s, 4) = C(s)*((2*s+1)binomial(2*s+3,3) +(3*s+1)^3 - 2(3*s+1)* binomial(3*s+2,2)+ binomial(3*s+3, 3)) - 4^s*(binomial(3*s+4, 3)/4 + (3*s+1)^2 - binomial(3*s+2,2));
...
T(s, s) = (-1)^(s+1)*C(s). (End)
From Sergii Voloshyn, Mar 17 2021: (Start)
Recursion ( P[0] = x/(1+x) ):
x*(d^3/dx^3)*P[s] = (1/4)*(2*k+2)*(2*k+3)*(2*k+4)*P[s+1]
for P[s_] := x CatalanNumber[s] HypergeometricPFQ[{s + 1/2, s + 1, s + 3/2}, {1/2, 3/2}, x^2] - x^2*4^s HypergeometricPFQ[{s + 1, s + 3/2, s + 2}, {3/2, 2}, x^2].
(End)
Recursion for array ( T(1,1) = 1 ): T(k, p) = (1/(k*(k+1)*(2k+1)))*[p*(p+1)*(p+2)*T(k-1,p+2) - 3*p*(p+1)*(3*k-p-1)*T(k-1,p+1) + 3*p*(3*k-p)*(3*k-p-1)*T(k-1,p) - (3*k-p+1)*(3*k-p)*(3*k-p-1)*T(k-1,p-1)]; p =[1,...,k]. - Sergii Voloshyn, Apr 14 2021
From Sergii Voloshyn, Apr 17 2021: (Start)
G.f.: Sum_{m>=1} x^m Om(k, m) = (1/(1+x)^(3*k+1))*Sum_{n=1..k} x^k * T(k,n);
Om(k, m) = (12^k/((1+k)!*(2k+1)!)) * Product_{L=1..k} binomial(m+2L, 3).
(End)
From Sergii Voloshyn, Apr 25 2021: (Start)
Differential equation for P[k_]:
x*(x^2-1)*(d^3/dx^3)P[s] + (2*k+2)*3*x^2*(d^2/dx^2)P[s] +(2*k+2)*(2*k+1)*3*x (d/dx)P[s] + (2*k+2)(2*k+1)*2*k*P[s] = 0.
Discrete set equation for T(k,n) (n=-1..k-2) at fixed k:
(k-n-1)*(k-n)*(k-n+1)*T(k,n) - (k-n-1)*(k-n)*(8*k+n+5)*T(k,n+1) - (n+1)*(n+2)*(9-n+3)*T(k,n+2) + (n+1)*(n+2)*(n+3)*T(k,n+3) = 0
and
Sum_{m=1..k} (k*(5+7*k) + 12*n*(n-1-k))*T(k,n) = 0. (End)
P[k_]:= (2^k)/((2*k+1)!*(k+1)!)*(-1/(1+x))^{2k+1}[Sum_{r(1)+...+ r(L)=k} (-x/(1+x))^{k-L+1}* 1^{(3*r(1))}*(1+3*r(1)-1)^{(3*r(2))}*... *(1+Sum_{i=1..L-1} 3 r(i) -L+1)^{(3*r(L))}] where Sum_ r_i = k runs over all integer compositions of k, L is a number of parts of this composition and 1^{(3 r(1))} is a rising factorial. - Sergii Voloshyn, Sep 03 2021
Sum_{k} abs(T(n,k)) = A000309(n-1). - Sergii Voloshyn, Nov 20 2024
Previous Showing 11-17 of 17 results.