A128433
Triangle, read by rows, T(n,k) = numerator of the maximum of the k-th Bernstein polynomial of degree n; denominator is A128434.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 27, 3, 27, 1, 1, 256, 216, 216, 256, 1, 1, 3125, 80, 5, 80, 3125, 1, 1, 46656, 37500, 34560, 34560, 37500, 46656, 1, 1, 823543, 5103, 590625, 35, 590625, 5103, 823543, 1, 1, 16777216, 13176688, 1792, 11200000, 11200000, 1792, 13176688, 16777216, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 4, 4, 1;
1, 27, 3, 27, 1;
1, 256, 216, 216, 256, 1;
1, 3125, 80, 5, 80, 3125, 1;
1, 46656, 37500, 34560, 34560, 37500, 46656, 1;
1, 823543, 5103, 590625, 35, 590625, 5103, 823543, 1;
1, 16777216, 13176688, 1792, 11200000, 11200000, 1792, 13176688, 16777216, 1;
-
B[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k]*k^k*(n-k)^(n-k)/n^n];
T[n_, k_]= Numerator[B[n, k]];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 19 2021 *)
-
def B(n,k): return 1 if (k==0 or k==n) else binomial(n, k)*k^k*(n-k)^(n-k)/n^n
def T(n,k): return numerator(B(n,k))
flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jul 19 2021
A128434
Triangle, read by rows, T(n,k) = denominator of the maximum of the k-th Bernstein polynomial of degree n; numerator is A128433.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 9, 9, 1, 1, 64, 8, 64, 1, 1, 625, 625, 625, 625, 1, 1, 7776, 243, 16, 243, 7776, 1, 1, 117649, 117649, 117649, 117649, 117649, 117649, 1, 1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1, 1, 43046721, 43046721, 6561, 43046721, 43046721, 6561, 43046721, 43046721, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 9, 9, 1;
1, 64, 8, 64, 1;
1, 625, 625, 625, 625, 1;
1, 7776 243, 16, 243, 7776, 1;
1, 117649, 117649, 117649, 117649, 117649, 117649, 1;
1, 2097152, 16384, 2097152, 128, 2097152, 16384, 2097152, 1;
-
B[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k]*k^k*(n-k)^(n-k)/n^n];
T[n_, k_]= Denominator[B[n, k]];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 19 2021 *)
-
def B(n,k): return 1 if (k==0 or k==n) else binomial(n, k)*k^k*(n-k)^(n-k)/n^n
def T(n,k): return denominator(B(n,k))
flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jul 19 2021
A246609
Number T(n,k) of endofunctions on [n] whose cycle lengths are multiples of k; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 4, 1, 0, 27, 6, 2, 0, 256, 57, 24, 6, 0, 3125, 680, 300, 120, 24, 0, 46656, 9945, 4480, 2160, 720, 120, 0, 823543, 172032, 78750, 41160, 17640, 5040, 720, 0, 16777216, 3438673, 1591296, 866460, 430080, 161280, 40320, 5040
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 4, 1;
0, 27, 6, 2;
0, 256, 57, 24, 6;
0, 3125, 680, 300, 120, 24;
0, 46656, 9945, 4480, 2160, 720, 120;
0, 823543, 172032, 78750, 41160, 17640, 5040, 720;
...
Columns k=0-10 give:
A000007,
A000312,
A060435,
A246610,
A246611,
A246612,
A246613,
A246614,
A246615,
A246616,
A246617.
Main diagonal gives
A000142(n-1) for n > 0.
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i=0 or i>n, 0, add(b(n-i*j, i+k, k)*(i-1)!^j*
multinomial(n, n-i*j, i$j)/j!, j=0..n/i)))
end:
T:= (n, k)->add(b(j, k$2)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(seq(T(n,k), k=0..n), n=0..10);
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0 || i > n, 0, Sum[b[n-i*j, i+k, k]*(i-1)!^j*multinomial[n, {n-i*j, Sequence @@ Table[i, {j}]}]/j!, {j, 0, n/i}]]]; T[0, 0] = 1; T[n_, k_] := Sum[b[j, k, k]*n^(n-j)*Binomial[n-1, j-1], {j, 0, n}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
A008786
a(n) = (n+5)^n.
Original entry on oeis.org
1, 6, 49, 512, 6561, 100000, 1771561, 35831808, 815730721, 20661046784, 576650390625, 17592186044416, 582622237229761, 20822964865671168, 799006685782884121, 32768000000000000000, 1430568690241985328321, 66249952919459433152512, 3244150909895248285300369
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785, this sequence,
A008787,
A008788,
A008789,
A008790,
A008791.
-
List([0..20], n-> (n+5)^n); # G. C. Greubel, Sep 11 2019
-
[(n+5)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
Table[(n+5)^n,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n+4)^(n-1)) \\ G. C. Greubel, Sep 11 2019
-
[(n+5)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008787
a(n) = (n + 6)^n.
Original entry on oeis.org
1, 7, 64, 729, 10000, 161051, 2985984, 62748517, 1475789056, 38443359375, 1099511627776, 34271896307633, 1156831381426176, 42052983462257059, 1638400000000000000, 68122318582951682301, 3011361496339065143296
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786, this sequence,
A008788,
A008789,
A008790,
A008791.
-
List([0..20], n-> (n+6)^n); # G. C. Greubel, Sep 11 2019
-
[(n+6)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:= n-> (n+6)^n: seq(a(n), n=0..20);
-
Table[(n+6)^n,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n+5)^(n-1)) \\ G. C. Greubel, Sep 11 2019
-
[(n+6)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008790
a(n) = n^(n+4).
Original entry on oeis.org
0, 1, 64, 2187, 65536, 1953125, 60466176, 1977326743, 68719476736, 2541865828329, 100000000000000, 4177248169415651, 184884258895036416, 8650415919381337933, 426878854210636742656, 22168378200531005859375
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008789,
A008791.
-
List([0..20], n-> n^(n+4)); # G. C. Greubel, Sep 11 2019
-
[n^(n+4): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:=n->mul(n,k=-3..n):seq(a(n),n=0..20); # Zerinvary Lajos, Jan 26 2008
-
Table[n^(n+4),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+3)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+4) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A056788
a(n) = n^n + (n-1)^(n-1).
Original entry on oeis.org
2, 5, 31, 283, 3381, 49781, 870199, 17600759, 404197705, 10387420489, 295311670611, 9201412118867, 311791207040509, 11414881932150269, 449005897206417391, 18884637964090410991, 845687005960046315793, 40173648337182874339601, 2017766063735610126699403
Offset: 1
a(3) = 2^2 + 3^3 = 4 + 27 = 31.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see equation (6.7).
-
Join[{2}, Table[n^n+(n-1)^(n-1), {n, 2, 20}]] (* T. D. Noe, Aug 13 2004 *)
Join[{2},Total/@Partition[Table[n^n,{n,20}],2,1]] (* Harvey P. Dale, Jun 26 2017 *)
-
A056788(n)=n^n+(n-1)^(n-1) \\ M. F. Hasler, Oct 02 2012
A057075
Table read by antidiagonals of T(n,k)=floor(n^n/k) with n,k >= 1.
Original entry on oeis.org
1, 0, 4, 0, 2, 27, 0, 1, 13, 256, 0, 1, 9, 128, 3125, 0, 0, 6, 85, 1562, 46656, 0, 0, 5, 64, 1041, 23328, 823543, 0, 0, 4, 51, 781, 15552, 411771, 16777216, 0, 0, 3, 42, 625, 11664, 274514, 8388608, 387420489, 0, 0, 3, 36, 520, 9331, 205885, 5592405, 193710244, 10000000000
Offset: 1
From _Seiichi Manyama_, Aug 12 2023: (Start)
Square array begins:
1, 0, 0, 0, 0, 0, ...
4, 2, 1, 1, 0, 0, ...
27, 13, 9, 6, 5, 4, ...
256, 128, 85, 64, 51, 42, ...
3125, 1562, 1041, 781, 625, 520, ...
46656, 23328, 15552, 11664, 9331, 7776, ... (End)
A070896
Determinant of the Cayley addition table of Z_{n}.
Original entry on oeis.org
0, -1, -9, 96, 1250, -19440, -352947, 7340032, 172186884, -4500000000, -129687123005, 4086546038784, 139788510734886, -5159146026151936, -204350482177734375, 8646911284551352320, 389289535005334947848, -18580248257778920521728
Offset: 1
a(3) = -9 because the determinant of {{0,1,2}, {1,2,0}, {2,0,1}} is -9.
-
[(-1)^Floor(n/2)*(1/2)*(n-1)*n^(n-1): n in [1..50]]; // G. C. Greubel, Nov 14 2017
-
Table[(-1)^Floor[n/2]*(1/2)*(n - 1)*n^(n - 1), {n, 1, 50}] (* G. C. Greubel, Nov 14 2017 *)
-
a(n)=(-1)^floor(n/2)*(1/2)*(n-1)*n^(n-1)
A133018
Partition number of n, raised to power n.
Original entry on oeis.org
1, 1, 4, 27, 625, 16807, 1771561, 170859375, 54875873536, 19683000000000, 17080198121677824, 16985107389382393856, 43439888521963583647921, 113809328043328941786781301, 667840509835890864312744140625, 4816039244598889571670527496421376
Offset: 0
a(6)=1771561 because the partition number of 6 is 11 and 11^6=1771561.
Comments