cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 606 results. Next

A275557 Number of classes of endofunctions of [n] under rotation and complement to n+1.

Original entry on oeis.org

1, 1, 2, 6, 38, 315, 3932, 58828, 1049108, 21523445, 500010024, 12968712306, 371504436220, 11649042561247, 396857394156656, 14596463012746392, 576460752571867208, 24330595937833434249, 1092955779880370116836, 52063675148955620766430, 2621440000000512000336088
Offset: 0

Views

Author

Olivier Gérard, Aug 05 2016

Keywords

Comments

Classes can be of size 1,2,4, n and 2n.
n 1 2 4 n 2n
--------------------------
1 1
2 0 2
3 1 1 4
4 0 4 4 2 28
5 1 2 0 0 312
6 0 6 6 70 3850
7 1 3 0 0 58824
For n odd, the constant function (n+1)/2 is the only stable by rotation and complement. So #c1=1.
For n even, there is no stable function, so #c1=0, but constant functions are grouped two by two making n/2 classes of size 2. Functions alternating a value and its complement are also grouped two by two, making another n/2 classes. This gives #c2=n.

Crossrefs

Cf. A000312 All endofunctions
Cf. A000169 Classes under translation mod n
Cf. A001700 Classes under sort
Cf. A056665 Classes under rotation
Cf. A168658 Classes under complement to n+1
Cf. A130293 Classes under translation and rotation
Cf. A081721 Classes under rotation and reversal
Cf. A275549 Classes under reversal
Cf. A275550 Classes under reversal and complement
Cf. A275551 Classes under translation and reversal
Cf. A275552 Classes under translation and complement
Cf. A275553 Classes under translation, complement and reversal
Cf. A275554 Classes under translation, rotation and complement
Cf. A275555 Classes under translation, rotation and reversal
Cf. A275556 Classes under translation, rotation, complement and reversal
Cf. A275558 Classes under rotation, complement and reversal

Programs

  • PARI
    \\ see A056391 for Polya enumeration functions
    a(n) = NonequivalentSorts(CyclicPerms(n), ReversiblePerms(n)); \\ Andrew Howroyd, Sep 30 2017

Extensions

Terms a(8) and beyond from Andrew Howroyd, Sep 30 2017

A090657 Triangle read by rows: T(n,k) = number of functions from [1,2,...,n] to [1,2,...,n] such that the image contains exactly k elements (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 18, 6, 0, 4, 84, 144, 24, 0, 5, 300, 1500, 1200, 120, 0, 6, 930, 10800, 23400, 10800, 720, 0, 7, 2646, 63210, 294000, 352800, 105840, 5040, 0, 8, 7112, 324576, 2857680, 7056000, 5362560, 1128960, 40320
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2003

Keywords

Comments

Another version is in A101817. - Philippe Deléham, Feb 16 2013

Examples

			Triangle begins:
  1;
  0,  1;
  0,  2,   2;
  0,  3,  18,   6;
  0,  4,  84, 144, 24;
  ...
		

Crossrefs

Row sums give: A000312. Columns k=0-2 give: A000007, A001477, A068605. Diagonal, lower diagonal give: A000142, A001804. Cf. A007318, A048993, A019538, A008279.

Programs

  • Maple
    T:= proc(n,k) option remember;
          if k=n then n!
        elif k=0 or k>n then 0
        else n * (T(n-1,k-1) + k/(n-k) * T(n-1,k))
          fi
        end:
    seq(seq(T(n,k), k=0..n), n=0..10);
  • Mathematica
    Table[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 0, n}], {n, 0,10}] // Flatten  (* Geoffrey Critzer, Sep 09 2011 *)

Formula

T(n,k) = C(n,k) * k! * A048993(n,k).
T(n,k) = A008279(n,k) * A048993(n,k).
T(n,k) = C(n,k) * A019538(n, k).
T(n,k) = C(n,k) * Sum_{j=0..k} (-1)^(k-j) * C(k,j) * j^n.
T(n,k) = n * (T(n-1,k-1) + k/(n-k) * T(n-1,k)) with T(n,n) = n! and T(n,0) = 0 for n>0.
T(2n,n) = A288312(n). - Alois P. Heinz, Jun 07 2017

Extensions

Revised description from Jan Maciak, Apr 25 2004
Edited by Alois P. Heinz, Jan 17 2011

A245397 A(n,k) is the sum of k-th powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 4, 10, 1, 1, 6, 27, 35, 1, 1, 10, 93, 256, 126, 1, 1, 18, 381, 2716, 3125, 462, 1, 1, 34, 1785, 36628, 127905, 46656, 1716, 1, 1, 66, 9237, 591460, 7120505, 8848236, 823543, 6435, 1, 1, 130, 51033, 11007556, 495872505, 2443835736, 844691407, 16777216, 24310
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2014

Keywords

Examples

			A(3,2) = 93: (z1+z2+z3)^3 = z1^3 +3*z1^2*z2 +3*z1^2*z3 +3*z1*z2^2 +6*z1*z2*z3 +3*z1*z3^2 +z2^3 +3*z2^2*z3 +3*z2*z3^2 +z3^3 => 1^2+3^2+3^2+3^2+6^2+3^2+1^2+3^2+3^2+1^2 = 93.
Square array A(n,k) begins:
0 :    1,    1,      1,       1,         1,           1, ...
1 :    1,    1,      1,       1,         1,           1, ...
2 :    3,    4,      6,      10,        18,          34, ...
3 :   10,   27,     93,     381,      1785,        9237, ...
4 :   35,  256,   2716,   36628,    591460,    11007556, ...
5 :  126, 3125, 127905, 7120505, 495872505, 41262262505, ...
		

Crossrefs

Columns k=0-10 give: A001700(n-1) for n>0, A000312, A033935, A055733, A055740, A246240, A246241, A246242, A246243, A246244, A246245.
Rows n=0+1, 2 give: A000012, A052548.
Main diagonal gives A245398.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
          add(b(n-j, i-1, k)*binomial(n, j)^k, j=0..n))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n-j, i-1, k] * Binomial[n, j]^(k-1)/j!, {j, 0, n}]]]; A[n_, k_] := n!*b[n, n, k]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 30 2015, after Alois P. Heinz *)

Formula

A(n,k) = [x^n] (n!)^k * (Sum_{j=0..n} x^j/(j!)^k)^n.

A245501 Number A(n,k) of endofunctions f on [n] such that f^k(i) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 27, 1, 1, 1, 4, 10, 256, 1, 1, 1, 3, 19, 41, 3125, 1, 1, 1, 4, 12, 110, 196, 46656, 1, 1, 1, 3, 19, 73, 751, 1057, 823543, 1, 1, 1, 4, 10, 116, 556, 5902, 6322, 16777216, 1, 1, 1, 3, 21, 41, 901, 4737, 52165, 41393, 387420489, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 24 2014

Keywords

Examples

			Square array A(n,k) begins:
  1,     1,    1,    1,    1,    1,    1, ...
  1,     1,    1,    1,    1,    1,    1, ...
  1,     4,    3,    4,    3,    4,    3, ...
  1,    27,   10,   19,   12,   19,   10, ...
  1,   256,   41,  110,   73,  116,   41, ...
  1,  3125,  196,  751,  556,  901,  220, ...
  1, 46656, 1057, 5902, 4737, 8422, 1921, ...
		

Crossrefs

Main diagonal gives A245507.

Programs

  • Maple
    with(numtheory):
    A:= (n, k)-> `if`(k=0, 1, `if`(k=1, n^n, n! *coeff(series(
        exp(add((x*exp(x))^d/d, d=divisors(k-1))), x, n+1), x, n))):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[0, 1] = 1; A[n_, k_] := If[k==0, 1, If[k==1, n^n, n!*SeriesCoefficient[ Exp[ DivisorSum[k-1, (x*Exp[x])^#/#&]], {x, 0, n}]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)

Formula

A(n,k) = n! * [x^n] exp(Sum_{d|(k-1)} (x*exp(x))^d/d) for k>1, A(n,0)=1, A(n,1)=n^n.

A282190 E.g.f.: 1/(1 + LambertW(1-exp(x))), where LambertW() is the Lambert W-function.

Original entry on oeis.org

1, 1, 5, 40, 447, 6421, 112726, 2338799, 55990213, 1519122598, 46066158817, 1543974969769, 56677405835276, 2261488166321697, 97455090037460785, 4510770674565054000, 223183550978156866507, 11755122645815049275521, 656670295411196201190366, 38779502115371642484125915, 2413908564514961126280655257
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2017

Keywords

Comments

Stirling transform of A000312.

Examples

			E.g.f.: A(x) = 1 + x/1! + 5*x^2/2! + 40*x^3/3! + 447*x^4/4! + 6421*x^5/5! + 112726*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, m^m, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    Range[0, 20]! CoefficientList[Series[1/(1 + ProductLog[1 - Exp[x]]), {x, 0, 20}], x]
    Join[{1}, Table[Sum[StirlingS2[n, k] k^k, {k, 1, n}], {n, 1, 20}]]
  • PARI
    x='x+O('x^50); Vec(serlaplace(1/(1 + lambertw(1-exp(x))))) \\ G. C. Greubel, Nov 12 2017

Formula

a(0) = 1, a(n) = Sum_{k=1..n} Stirling2(n,k)*k^k.
a(n) ~ n^n / (sqrt(1+exp(1)) * (log(1+exp(-1)))^(n+1/2) * exp(n)). - Vaclav Kotesovec, Feb 17 2017

A008789 a(n) = n^(n+3).

Original entry on oeis.org

0, 1, 32, 729, 16384, 390625, 10077696, 282475249, 8589934592, 282429536481, 10000000000000, 379749833583241, 15407021574586368, 665416609183179841, 30491346729331195904, 1477891880035400390625, 75557863725914323419136
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> n^(n+3)); # G. C. Greubel, Sep 11 2019
  • Magma
    [n^(n+3): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
    
  • Maple
    printlevel := -1; a := [0]; T := x->-LambertW(-x); f := series((T(x)*(1+8*T(x)+6*(T(x))^2)/(1-T(x))^7),x,24); for m from 1 to 23 do a := [op(a),op(2*m-1,f)*m! ] od; print(a); # Len Smiley, Nov 19 2001
  • Mathematica
    Table[n^(n+3),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
  • PARI
    vector(20, n, (n-1)^(n+2)) \\ G. C. Greubel, Sep 11 2019
    
  • Sage
    [n^(n+3) for n in (0..20)] # G. C. Greubel, Sep 11 2019
    

Formula

E.g.f.(x): T*(1 +8*T +6*T^2)*(1-T)^(-7); where T=T(x) is Euler's tree function (see A000169). - Len Smiley, Nov 19 2001
See A008517 and A134991 for similar e.g.f.s and diagonals of A048993. - Tom Copeland, Oct 03 2011
E.g.f.: d^3/dx^3 {x^3/(T(x)^3*(1-T(x)))}, where T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is the tree function of A000169. - Peter Bala, Aug 05 2012
a(n) = n*A008788(n). - R. J. Mathar, Oct 31 2015

A055137 Regard triangle of rencontres numbers (see A008290) as infinite matrix, compute inverse, read by rows.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, -2, -3, 0, 1, -3, -8, -6, 0, 1, -4, -15, -20, -10, 0, 1, -5, -24, -45, -40, -15, 0, 1, -6, -35, -84, -105, -70, -21, 0, 1, -7, -48, -140, -224, -210, -112, -28, 0, 1, -8, -63, -216, -420, -504, -378, -168, -36, 0, 1, -9, -80, -315, -720
Offset: 0

Views

Author

Christian G. Bower, Apr 25 2000

Keywords

Comments

The n-th row consists of coefficients of the characteristic polynomial of the adjacency matrix of the complete n-graph.
Triangle of coefficients of det(M(n)) where M(n) is the n X n matrix m(i,j)=x if i=j, m(i,j)=i/j otherwise. - Benoit Cloitre, Feb 01 2003
T is an example of the group of matrices outlined in the table in A132382--the associated matrix for rB(0,1). The e.g.f. for the row polynomials is exp(x*t) * exp(x) *(1-x). T(n,k) = Binomial(n,k)* s(n-k) where s = (1,0,-1,-2,-3,...) with an e.g.f. of exp(x)*(1-x) which is the reciprocal of the e.g.f. of A000166. - Tom Copeland, Sep 10 2008
Row sums are: {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...}. - Roger L. Bagula, Feb 20 2009
T is related to an operational calculus connecting an infinitesimal generator for fractional integro-derivatives with the values of the Riemann zeta function at positive integers (see MathOverflow links). - Tom Copeland, Nov 02 2012
The submatrix below the null subdiagonal is signed and row reversed A127717. The submatrix below the diagonal is A074909(n,k)s(n-k) where s(n)= -n, i.e., multiply the n-th diagonal by -n. A074909 and its reverse A135278 have several combinatorial interpretations. - Tom Copeland, Nov 04 2012
T(n,k) is the difference between the number of even (A145224) and odd (A145225) permutations (of an n-set) with exactly k fixed points. - Julian Hatfield Iacoponi, Aug 08 2024

Examples

			1; 0,1; -1,0,1; -2,-3,0,1; -3,-8,-6,0,1; ...
(Bagula's matrix has a different sign convention from the list.)
From _Roger L. Bagula_, Feb 20 2009: (Start)
  { 1},
  { 0,   1},
  {-1,   0,    1},
  { 2,  -3,    0,    1},
  {-3,   8,   -6,    0,     1},
  { 4, -15,   20,  -10,     0,    1},
  {-5,  24,  -45,   40,   -15,    0,    1},
  { 6, -35,   84, -105,    70,  -21,    0,   1},
  {-7,  48, -140,  224,  -210,  112,  -28,   0,   1},
  { 8, -63,  216, -420,   504, -378,  168, -36,   0, 1},
  {-9,  80, -315,  720, -1050, 1008, -630, 240, -45, 0, 1}
(End)
R(3,x) = (-1)^3*Sum_{permutations p in S_3} sign(p)*(-x)^(fix(p)).
    p   | fix(p) | sign(p) | (-1)^3*sign(p)*(-x)^fix(p)
========+========+=========+===========================
  (123) |    3   |    +1   |      x^3
  (132) |    1   |    -1   |       -x
  (213) |    1   |    -1   |       -x
  (231) |    0   |    +1   |       -1
  (312) |    0   |    +1   |       -1
  (321) |    1   |    -1   |       -x
========+========+=========+===========================
                           | R(3,x) = x^3 - 3*x - 2
- _Peter Bala_, Aug 08 2011
		

References

  • Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. p. 17.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p.184 problem 3.

Crossrefs

Cf. A005563, A005564 (absolute values of columns 1, 2).
Cf. A000312.

Programs

  • Mathematica
    M[n_] := Table[If[i == j, x, 1], {i, 1, n}, {j, 1, n}]; a = Join[{{1}}, Flatten[Table[CoefficientList[Det[M[n]], x], {n, 1, 10}]]] (* Roger L. Bagula, Feb 20 2009 *)
    t[n_, k_] := (k-n+1)*Binomial[n, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2013, after Pari *)
  • PARI
    T(n,k)=(1-n+k)*if(k<0 || k>n,0,n!/k!/(n-k)!)

Formula

G.f.: (x-n+1)*(x+1)^(n-1) = Sum_(k=0..n) T(n,k) x^k.
T(n, k) = (1-n+k)*binomial(n, k).
k-th column has o.g.f. x^k(1-(k+2)x)/(1-x)^(k+2). k-th row gives coefficients of (x-k)(x+1)^k. - Paul Barry, Jan 25 2004
T(n,k) = Coefficientslist[Det[Table[If[i == j, x, 1], {i, 1, n}, {k, 1, n}],x]. - Roger L. Bagula, Feb 20 2009
From Peter Bala, Aug 08 2011: (Start)
Given a permutation p belonging to the symmetric group S_n, let fix(p) be the number of fixed points of p and sign(p) its parity. The row polynomials R(n,x) have a combinatorial interpretation as R(n,x) = (-1)^n*Sum_{permutations p in S_n} sign(p)*(-x)^(fix(p)). An example is given below.
Note: The polynomials P(n,x) = Sum_{permutations p in S_n} x^(fix(p)) are the row polynomials of the rencontres numbers A008290. The integral results Integral_{x = 0..n} R(n,x) dx = n/(n+1) = Integral_{x = 0..-1} R(n,x) dx lead to the identities Sum_{p in S_n} sign(p)*(-n)^(1 + fix(p))/(1 + fix(p)) = (-1)^(n+1)*n/(n+1) = Sum_{p in S_n} sign(p)/(1 + fix(p)). The latter equality was Problem B6 in the 66th William Lowell Putnam Mathematical Competition 2005. (End)
From Tom Copeland, Jul 26 2017: (Start)
The e.g.f. in Copeland's 2008 comment implies this entry is an Appell sequence of polynomials P(n,x) with lowering and raising operators L = d/dx and R = x + d/dL log[exp(L)(1-L)] = x+1 - 1/(1-L) = x - L - L^2 - ... such that L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
P(n,x) = (1-L) exp(L) x^n = (1-L) (x+1)^n = (x+1)^n - n (x+1)^(n-1) = (x+1-n)(x+1)^(n-1) = (x+s.)^n umbrally, where (s.)^n = s_n = P(n,0).
The formalism of A133314 applies to the pair of entries A008290 and A055137.
The polynomials of this pair P_n(x) and Q_n(x) are umbral compositional inverses; i.e., P_n(Q.(x)) = x^n = Q_n(P.(x)), where, e.g., (Q.(x))^n = Q_n(x).
The exponential infinitesimal generator (infinigen) of this entry is the negated infinigen of A008290, the matrix (M) noted by Bala, related to A238363. Then e^M = [the lower triangular A008290], and e^(-M) = [the lower triangular A055137]. For more on the infinigens, see A238385. (End)
From the row g.f.s corresponding to Bagula's matrix example below, the n-th row polynomial has a zero of multiplicity n-1 at x = 1 and a zero at x = -n+1. Since this is an Appell sequence dP_n(x)/dx = n P_{n-1}(x), the critical points of P_n(x) have the same abscissas as the zeros of P_{n-1}(x); therefore, x = 1 is an inflection point for the polynomials of degree > 2 with P_n(1) = 0, and the one local extremum of P_n has the abscissa x = -n + 2 with the value (-n+1)^{n-1}, signed values of A000312. - Tom Copeland, Nov 15 2019
From Julian Hatfield Iacoponi, Aug 08 2024: (Start)
T(n,k) = A145224(n,k) - A145225(n,k).
T(n,k) = binomial(n,k)*(A003221(n-k)-A000387(n-k)). (End)

Extensions

Additional comments from Michael Somos, Jul 04 2002

A055858 Coefficient triangle for certain polynomials.

Original entry on oeis.org

1, 1, 2, 4, 9, 6, 27, 64, 48, 36, 256, 625, 500, 400, 320, 3125, 7776, 6480, 5400, 4500, 3750, 46656, 117649, 100842, 86436, 74088, 63504, 54432, 823543, 2097152, 1835008, 1605632, 1404928, 1229312, 1075648, 941192, 16777216, 43046721
Offset: 0

Views

Author

Wolfdieter Lang, Jun 20 2000

Keywords

Comments

The coefficients of the partner polynomials are found in triangle A055864.

Examples

			{1}; {1,2}; {4,9,6}; {27,64,48,36}; ...
Fourth row polynomial (n=3): p(3,x) = 27 + 64*x + 48*x^2 + 36*x^3.
		

Crossrefs

Column sequences are A000312(n), n >= 1, A055860 (A000169), A055861 (A053506), A055862-3 for m=0..4, row sums: A045531(n+1)= |A039621(n+1, 2)|, n >= 0.

Programs

  • Mathematica
    a[n_, m_] /; n < m = 0; a[0, 0] = 1; a[n_, 0] := n^n; a[n_, m_] := n^(m-1)*(n+1)^(n-m+1); Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2013 *)

Formula

a(n, m)=0 if n < m; a(0, 0)=1, a(n, 0) = n^n, n >= 1, a(n, m) = n^(m-1)*(n+1)^(n-m+1), n >= m >= 1;
E.g.f. for column m: A(m, x); A(0, x) = 1/(1+W(-x)); A(1, x) = -1 - (d/dx)W(-x) = -1-W(-x)/((1+W(-x))*x); A(2, x) = A(1, x)-int(A(1, x), x)/x-(1/x+x); recursion: A(m, x) = A(m-1, x)-int(A(m-1, x), x)/x-((m-1)^(m-1))*(x^(m-1))/(m-1)!, m >= 3; W(x) principal branch of Lambert's function.

A062481 a(n) = n^prime(n).

Original entry on oeis.org

1, 8, 243, 16384, 48828125, 13060694016, 232630513987207, 144115188075855872, 8862938119652501095929, 100000000000000000000000000000, 191943424957750480504146841291811, 8505622499821102144576131684114829934592, 4695452425098908797088971409337422035076128813
Offset: 1

Views

Author

Labos Elemer, Jul 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n^Prime[n],{n,20}] (* Harvey P. Dale, Jun 12 2014 *)
  • PARI
    a(n)={n^prime(n)} \\ Harry J. Smith, Aug 08 2009
    
  • Python
    from sympy import prime
    def a(n): return n**prime(n)
    print([a(n) for n in range(1, 14)]) # Michael S. Branicky, Jun 15 2022

Formula

From Amiram Eldar, Nov 18 2020: (Start)
a(n) = n^A000040(n).
Sum_{n>=1} 1/a(n) = A096250. (End)
a(n) == n (mod prime(n)). [Fermat's little theorem] - Nicolas Bělohoubek, Jun 14 2022

Extensions

More terms from Harvey P. Dale, Jun 12 2014

A066588 a(n) = sum of the digits of n^n.

Original entry on oeis.org

1, 1, 4, 9, 13, 11, 27, 25, 37, 45, 1, 41, 54, 58, 52, 99, 88, 98, 108, 127, 31, 117, 148, 146, 153, 151, 154, 189, 163, 167, 63, 184, 205, 207, 214, 260, 270, 271, 265, 306, 112, 308, 315, 313, 325, 306, 352, 374, 333, 355, 151, 414, 412, 350, 378, 442, 391, 450
Offset: 0

Views

Author

Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 07 2002

Keywords

Examples

			a(7) = 25 because 7^7 = 823543 and 8 + 2 + 3 + 5 + 4 + 3 = 25.
		

Crossrefs

Programs

  • Magma
    [&+Intseq((n^n)): n in [0..80] ]; // Vincenzo Librandi, Jun 18 2015
  • Maple
    a:= n-> add(i, i=convert(n^n, base, 10)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 06 2023
  • Mathematica
    Table[Plus@@IntegerDigits@(n^n), {n, 80}] (* Vincenzo Librandi, Jun 18 2015 *)
  • PARI
    a(n) = sumdigits(n^n) \\ Michel Marcus, Jun 18 2015
    

Extensions

More terms from Paolo P. Lava, May 15 2007
a(0)=1 inserted by Sean A. Irvine, Oct 06 2023
Previous Showing 91-100 of 606 results. Next