A275557
Number of classes of endofunctions of [n] under rotation and complement to n+1.
Original entry on oeis.org
1, 1, 2, 6, 38, 315, 3932, 58828, 1049108, 21523445, 500010024, 12968712306, 371504436220, 11649042561247, 396857394156656, 14596463012746392, 576460752571867208, 24330595937833434249, 1092955779880370116836, 52063675148955620766430, 2621440000000512000336088
Offset: 0
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A081721 Classes under rotation and reversal
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275558 Classes under rotation, complement and reversal
A090657
Triangle read by rows: T(n,k) = number of functions from [1,2,...,n] to [1,2,...,n] such that the image contains exactly k elements (0<=k<=n).
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 3, 18, 6, 0, 4, 84, 144, 24, 0, 5, 300, 1500, 1200, 120, 0, 6, 930, 10800, 23400, 10800, 720, 0, 7, 2646, 63210, 294000, 352800, 105840, 5040, 0, 8, 7112, 324576, 2857680, 7056000, 5362560, 1128960, 40320
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 2;
0, 3, 18, 6;
0, 4, 84, 144, 24;
...
-
T:= proc(n,k) option remember;
if k=n then n!
elif k=0 or k>n then 0
else n * (T(n-1,k-1) + k/(n-k) * T(n-1,k))
fi
end:
seq(seq(T(n,k), k=0..n), n=0..10);
-
Table[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 0, n}], {n, 0,10}] // Flatten (* Geoffrey Critzer, Sep 09 2011 *)
Revised description from Jan Maciak, Apr 25 2004
A245397
A(n,k) is the sum of k-th powers of coefficients in full expansion of (z_1+z_2+...+z_n)^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 4, 10, 1, 1, 6, 27, 35, 1, 1, 10, 93, 256, 126, 1, 1, 18, 381, 2716, 3125, 462, 1, 1, 34, 1785, 36628, 127905, 46656, 1716, 1, 1, 66, 9237, 591460, 7120505, 8848236, 823543, 6435, 1, 1, 130, 51033, 11007556, 495872505, 2443835736, 844691407, 16777216, 24310
Offset: 0
A(3,2) = 93: (z1+z2+z3)^3 = z1^3 +3*z1^2*z2 +3*z1^2*z3 +3*z1*z2^2 +6*z1*z2*z3 +3*z1*z3^2 +z2^3 +3*z2^2*z3 +3*z2*z3^2 +z3^3 => 1^2+3^2+3^2+3^2+6^2+3^2+1^2+3^2+3^2+1^2 = 93.
Square array A(n,k) begins:
0 : 1, 1, 1, 1, 1, 1, ...
1 : 1, 1, 1, 1, 1, 1, ...
2 : 3, 4, 6, 10, 18, 34, ...
3 : 10, 27, 93, 381, 1785, 9237, ...
4 : 35, 256, 2716, 36628, 591460, 11007556, ...
5 : 126, 3125, 127905, 7120505, 495872505, 41262262505, ...
Columns k=0-10 give:
A001700(n-1) for n>0,
A000312,
A033935,
A055733,
A055740,
A246240,
A246241,
A246242,
A246243,
A246244,
A246245.
-
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
add(b(n-j, i-1, k)*binomial(n, j)^k, j=0..n))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n-j, i-1, k] * Binomial[n, j]^(k-1)/j!, {j, 0, n}]]]; A[n_, k_] := n!*b[n, n, k]; Table[ Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 30 2015, after Alois P. Heinz *)
A245501
Number A(n,k) of endofunctions f on [n] such that f^k(i) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 27, 1, 1, 1, 4, 10, 256, 1, 1, 1, 3, 19, 41, 3125, 1, 1, 1, 4, 12, 110, 196, 46656, 1, 1, 1, 3, 19, 73, 751, 1057, 823543, 1, 1, 1, 4, 10, 116, 556, 5902, 6322, 16777216, 1, 1, 1, 3, 21, 41, 901, 4737, 52165, 41393, 387420489, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 4, 3, 4, 3, 4, 3, ...
1, 27, 10, 19, 12, 19, 10, ...
1, 256, 41, 110, 73, 116, 41, ...
1, 3125, 196, 751, 556, 901, 220, ...
1, 46656, 1057, 5902, 4737, 8422, 1921, ...
Column k=0-10 give:
A000012,
A000312,
A000248,
A060905,
A060906,
A060907,
A245502,
A245503,
A245504,
A245505,
A245506.
-
with(numtheory):
A:= (n, k)-> `if`(k=0, 1, `if`(k=1, n^n, n! *coeff(series(
exp(add((x*exp(x))^d/d, d=divisors(k-1))), x, n+1), x, n))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[0, 1] = 1; A[n_, k_] := If[k==0, 1, If[k==1, n^n, n!*SeriesCoefficient[ Exp[ DivisorSum[k-1, (x*Exp[x])^#/#&]], {x, 0, n}]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)
A282190
E.g.f.: 1/(1 + LambertW(1-exp(x))), where LambertW() is the Lambert W-function.
Original entry on oeis.org
1, 1, 5, 40, 447, 6421, 112726, 2338799, 55990213, 1519122598, 46066158817, 1543974969769, 56677405835276, 2261488166321697, 97455090037460785, 4510770674565054000, 223183550978156866507, 11755122645815049275521, 656670295411196201190366, 38779502115371642484125915, 2413908564514961126280655257
Offset: 0
E.g.f.: A(x) = 1 + x/1! + 5*x^2/2! + 40*x^3/3! + 447*x^4/4! + 6421*x^5/5! + 112726*x^6/6! + ...
- G. C. Greubel, Table of n, a(n) for n = 0..375
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Eric Weisstein's MathWorld, Stirling Transform
-
b:= proc(n, m) option remember;
`if`(n=0, m^m, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Aug 03 2021
-
Range[0, 20]! CoefficientList[Series[1/(1 + ProductLog[1 - Exp[x]]), {x, 0, 20}], x]
Join[{1}, Table[Sum[StirlingS2[n, k] k^k, {k, 1, n}], {n, 1, 20}]]
-
x='x+O('x^50); Vec(serlaplace(1/(1 + lambertw(1-exp(x))))) \\ G. C. Greubel, Nov 12 2017
A008789
a(n) = n^(n+3).
Original entry on oeis.org
0, 1, 32, 729, 16384, 390625, 10077696, 282475249, 8589934592, 282429536481, 10000000000000, 379749833583241, 15407021574586368, 665416609183179841, 30491346729331195904, 1477891880035400390625, 75557863725914323419136
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008790,
A008791.
-
List([0..20], n-> n^(n+3)); # G. C. Greubel, Sep 11 2019
-
[n^(n+3): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
printlevel := -1; a := [0]; T := x->-LambertW(-x); f := series((T(x)*(1+8*T(x)+6*(T(x))^2)/(1-T(x))^7),x,24); for m from 1 to 23 do a := [op(a),op(2*m-1,f)*m! ] od; print(a); # Len Smiley, Nov 19 2001
-
Table[n^(n+3),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+2)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+3) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A055137
Regard triangle of rencontres numbers (see A008290) as infinite matrix, compute inverse, read by rows.
Original entry on oeis.org
1, 0, 1, -1, 0, 1, -2, -3, 0, 1, -3, -8, -6, 0, 1, -4, -15, -20, -10, 0, 1, -5, -24, -45, -40, -15, 0, 1, -6, -35, -84, -105, -70, -21, 0, 1, -7, -48, -140, -224, -210, -112, -28, 0, 1, -8, -63, -216, -420, -504, -378, -168, -36, 0, 1, -9, -80, -315, -720
Offset: 0
1; 0,1; -1,0,1; -2,-3,0,1; -3,-8,-6,0,1; ...
(Bagula's matrix has a different sign convention from the list.)
From _Roger L. Bagula_, Feb 20 2009: (Start)
{ 1},
{ 0, 1},
{-1, 0, 1},
{ 2, -3, 0, 1},
{-3, 8, -6, 0, 1},
{ 4, -15, 20, -10, 0, 1},
{-5, 24, -45, 40, -15, 0, 1},
{ 6, -35, 84, -105, 70, -21, 0, 1},
{-7, 48, -140, 224, -210, 112, -28, 0, 1},
{ 8, -63, 216, -420, 504, -378, 168, -36, 0, 1},
{-9, 80, -315, 720, -1050, 1008, -630, 240, -45, 0, 1}
(End)
R(3,x) = (-1)^3*Sum_{permutations p in S_3} sign(p)*(-x)^(fix(p)).
p | fix(p) | sign(p) | (-1)^3*sign(p)*(-x)^fix(p)
========+========+=========+===========================
(123) | 3 | +1 | x^3
(132) | 1 | -1 | -x
(213) | 1 | -1 | -x
(231) | 0 | +1 | -1
(312) | 0 | +1 | -1
(321) | 1 | -1 | -x
========+========+=========+===========================
| R(3,x) = x^3 - 3*x - 2
- _Peter Bala_, Aug 08 2011
- Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. p. 17.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p.184 problem 3.
- Problem B6, The 66th William Lowell Putnam Mathematical Competition Saturday, Dec 03 2005
- M. Bhargava, K. Kedlaya, and L. Ng, Solutions to the 66th William Lowell Putnam Mathematical Competition Saturday, Dec 03 2005
- T. Copeland, Cycling through the Zeta Garden: Zeta functions for graphs, cycle index polynomials, and determinants
- T. Copeland, Riemann zeta function at positive integers and an Appell sequence of polynomials related to fractional calculus
-
M[n_] := Table[If[i == j, x, 1], {i, 1, n}, {j, 1, n}]; a = Join[{{1}}, Flatten[Table[CoefficientList[Det[M[n]], x], {n, 1, 10}]]] (* Roger L. Bagula, Feb 20 2009 *)
t[n_, k_] := (k-n+1)*Binomial[n, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2013, after Pari *)
-
T(n,k)=(1-n+k)*if(k<0 || k>n,0,n!/k!/(n-k)!)
A055858
Coefficient triangle for certain polynomials.
Original entry on oeis.org
1, 1, 2, 4, 9, 6, 27, 64, 48, 36, 256, 625, 500, 400, 320, 3125, 7776, 6480, 5400, 4500, 3750, 46656, 117649, 100842, 86436, 74088, 63504, 54432, 823543, 2097152, 1835008, 1605632, 1404928, 1229312, 1075648, 941192, 16777216, 43046721
Offset: 0
{1}; {1,2}; {4,9,6}; {27,64,48,36}; ...
Fourth row polynomial (n=3): p(3,x) = 27 + 64*x + 48*x^2 + 36*x^3.
-
a[n_, m_] /; n < m = 0; a[0, 0] = 1; a[n_, 0] := n^n; a[n_, m_] := n^(m-1)*(n+1)^(n-m+1); Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2013 *)
A062481
a(n) = n^prime(n).
Original entry on oeis.org
1, 8, 243, 16384, 48828125, 13060694016, 232630513987207, 144115188075855872, 8862938119652501095929, 100000000000000000000000000000, 191943424957750480504146841291811, 8505622499821102144576131684114829934592, 4695452425098908797088971409337422035076128813
Offset: 1
A066588
a(n) = sum of the digits of n^n.
Original entry on oeis.org
1, 1, 4, 9, 13, 11, 27, 25, 37, 45, 1, 41, 54, 58, 52, 99, 88, 98, 108, 127, 31, 117, 148, 146, 153, 151, 154, 189, 163, 167, 63, 184, 205, 207, 214, 260, 270, 271, 265, 306, 112, 308, 315, 313, 325, 306, 352, 374, 333, 355, 151, 414, 412, 350, 378, 442, 391, 450
Offset: 0
Robert A. Stump (bee_ess107(AT)yahoo.com), Jan 07 2002
a(7) = 25 because 7^7 = 823543 and 8 + 2 + 3 + 5 + 4 + 3 = 25.
-
[&+Intseq((n^n)): n in [0..80] ]; // Vincenzo Librandi, Jun 18 2015
-
a:= n-> add(i, i=convert(n^n, base, 10)):
seq(a(n), n=0..60); # Alois P. Heinz, Oct 06 2023
-
Table[Plus@@IntegerDigits@(n^n), {n, 80}] (* Vincenzo Librandi, Jun 18 2015 *)
-
a(n) = sumdigits(n^n) \\ Michel Marcus, Jun 18 2015
Comments