cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 70 results. Next

A003071 Sorting numbers: maximal number of comparisons for sorting n elements by list merging.

Original entry on oeis.org

0, 1, 3, 5, 9, 11, 14, 17, 25, 27, 30, 33, 38, 41, 45, 49, 65, 67, 70, 73, 78, 81, 85, 89, 98, 101, 105, 109, 115, 119, 124, 129, 161, 163, 166, 169, 174, 177, 181, 185, 194, 197, 201, 205, 211, 215, 220, 225, 242, 245, 249, 253, 259, 263, 268, 273, 283, 287, 292, 297, 304
Offset: 1

Views

Author

Keywords

Comments

The following sequences all appear to have the same parity: A003071, A029886, A061297, A092524, A093431, A102393, A104258, A122248, A128975. - Jeremy Gardiner, Dec 28 2008
a(A092246(n)) = A230720(n); a(A230709(n)) = A230721(n+1). - Reinhard Zumkeller, Oct 28 2013

References

  • D. E. Knuth, Art of Computer Programming, Vol. 3, Sections 5.2.4 and 5.3.1.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003071 n = 1 - 2 ^ last es +
       sum (zipWith (*) (zipWith (+) es [0..]) (map (2 ^) es))
       where es = reverse $ a133457_row n
    -- Reinhard Zumkeller, Oct 28 2013
  • Mathematica
    a[1] = 0; a[n_] := a[n] = a[n-1] + 2^IntegerExponent[n-1, 2] + DigitCount[n-1, 2, 1] - 1; Table[a[n], {n, 1, 61}] (* Jean-François Alcover, Feb 10 2012, after Henry Bottomley *)

Formula

Let n = 2^e_1 + 2^e_2 + ... + 2^e_t, e_1 > e_2 > ... > e_t >= 0, t >= 1. Then a(n) = 1 - 2^e_t + Sum_{k=1..t} (e_k + k - 1)*2^e_k [Knuth, Problem 14, Section 5.2.4].
a(n) = a(n-1) + A061338(n) = a(n-1) + A006519(n) + A000120(n) - 1 = n + A000337(A000523(n)) + a(n - 2^A000523(n)). a(2^k) = k*2^k + 1 = A002064(k). - Henry Bottomley, Apr 27 2001
G.f.: x/(1-x)^3 + 1/(1-x)^2*Sum(k>=1, (-1+(1-x)*2^(k-1))*x^2^k/(1-x^2^k)). - Ralf Stephan, Apr 17 2003

Extensions

More terms from David W. Wilson

A036799 a(n) = 2 + 2^(n+1)*(n-1).

Original entry on oeis.org

0, 2, 10, 34, 98, 258, 642, 1538, 3586, 8194, 18434, 40962, 90114, 196610, 425986, 917506, 1966082, 4194306, 8912898, 18874370, 39845890, 83886082, 176160770, 369098754, 771751938, 1610612738, 3355443202, 6979321858, 14495514626, 30064771074, 62277025794
Offset: 0

Views

Author

Keywords

Comments

This sequence is a part of a class of sequences of the type: a(n) = Sum_{i=0..n} (C^i)*(i^k). This sequence has C=2, k=1. Sequence A036800 has C=2, k=2. Suppose C >= 2, k >= 1 are integers. What is the general closed form for a(n)? - Ctibor O. Zizka, Feb 07 2008
Partial sums of A036289. - Vladimir Joseph Stephan Orlovsky, Jul 09 2011
a(n) is the number of swaps needed in the worst case, when successively inserting 2^(n+1) - 1 keys into an initially empty binary heap (thus creating a tree with n+1 full levels). - Rudy van Vliet, Nov 09 2015
a(n) is also the total path length of the complete binary tree of height n, with nodes at depths 0,...,n. Total path length is defined to be the sum of depths over all nodes. - F. Skerman, Jul 02 2017
For n >= 1, every number greater than or equal to a(n-1) can be written as a sum of (not necessarily distinct) numbers of the form 2^n - 2^k with 0 <= k < n. However, a(n-1) - 1 cannot be written in this way. See problem N1 from the 2014 International Mathematics Olympiad Shortlist. - Dylan Nelson, Jun 02 2023

References

  • M. Petkovsek et al., A=B, Peters, 1996, p. 97.

Crossrefs

Programs

Formula

a(n) = (n-1) * 2^(n+1) + 2.
a(n) = 2 * A000337(n).
a(n) = Sum_{k=1..n} k*2^k. - Benoit Cloitre, Oct 25 2002
G.f.: 2*x/((1-x)*(1-2*x)^2). - Colin Barker, Apr 30 2012
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3) for n > 2. - Wesley Ivan Hurt, Nov 12 2015
a(n) = Sum_{k=0..n} Sum_{i=0..n} k * binomial(k,i). - Wesley Ivan Hurt, Sep 21 2017
E.g.f.: 2*exp(x) - 2*(1-2*x)*exp(2*x). - G. C. Greubel, Mar 29 2021

A173787 Triangle read by rows: T(n,k) = 2^n - 2^k, 0 <= k <= n.

Original entry on oeis.org

0, 1, 0, 3, 2, 0, 7, 6, 4, 0, 15, 14, 12, 8, 0, 31, 30, 28, 24, 16, 0, 63, 62, 60, 56, 48, 32, 0, 127, 126, 124, 120, 112, 96, 64, 0, 255, 254, 252, 248, 240, 224, 192, 128, 0, 511, 510, 508, 504, 496, 480, 448, 384, 256, 0, 1023, 1022, 1020, 1016, 1008, 992, 960, 896, 768, 512, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Examples

			Triangle begins as:
   0;
   1,  0;
   3,  2,  0;
   7,  6,  4,  0;
  15, 14, 12,  8,  0;
  31, 30, 28, 24, 16, 0;
		

Programs

  • Magma
    [2^n -2^k: k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 13 2021
    
  • Mathematica
    Table[2^n -2^k, {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 13 2021 *)
  • Sage
    flatten([[2^n -2^k for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 13 2021

Formula

A000120(T(n,k)) = A025581(n,k).
Row sums give A000337.
Central terms give A020522.
T(2*n+1, n) = A006516(n+1).
T(2*n+3, n+2) = A059153(n).
T(n, k) = A140513(n,k) - A173786(n,k), 0 <= k <= n.
T(n, k) = A173786(n,k) - A059268(n+1,k+1), 0 < k <= n.
T(2*n, 2*k) = T(n,k) * A173786(n,k), 0 <= k <= n.
T(n, 0) = A000225(n).
T(n, 1) = A000918(n) for n>0.
T(n, 2) = A028399(n) for n>1.
T(n, 3) = A159741(n-3) for n>3.
T(n, 4) = A175164(n-4) for n>4.
T(n, 5) = A175165(n-5) for n>5.
T(n, 6) = A175166(n-6) for n>6.
T(n, n-4) = A110286(n-4) for n>3.
T(n, n-3) = A005009(n-3) for n>2.
T(n, n-2) = A007283(n-2) for n>1.
T(n, n-1) = A000079(n-1) for n>0.
T(n, n) = A000004(n).

A119259 Central terms of the triangle in A119258.

Original entry on oeis.org

1, 3, 17, 111, 769, 5503, 40193, 297727, 2228225, 16807935, 127574017, 973168639, 7454392321, 57298911231, 441739706369, 3414246490111, 26447737520129, 205272288591871, 1595964714385409, 12427568655368191, 96905907580960769, 756583504975757311, 5913649000782757889
Offset: 0

Views

Author

Reinhard Zumkeller, May 11 2006

Keywords

Comments

The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 06 2022

References

  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Haskell
    a119259 n = a119258 (2 * n) n  -- Reinhard Zumkeller, Aug 06 2014
    
  • Mathematica
    Table[Binomial[2k - 1, k] Hypergeometric2F1[-2k, -k, 1 - 2k, -1], {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
  • Python
    from itertools import count, islice
    def A119259_gen(): # generator of terms
        yield from (1,3)
        a, c = 2, 1
        for n in count(1):
            yield (a<>1
    A119259_list = list(islice(A119259_gen(),20)) # Chai Wah Wu, Apr 26 2023

Formula

a(n) = A119258(2*n,n).
a(n) = Sum_{k=0..n} C(2*n,k)*C(2*n-k-1,n-k). - Paul Barry, Sep 28 2007
a(n) = Sum_{k=0..n} C(n+k-1,k)*2^k. - Paul Barry, Sep 28 2007
2*a(n) = A064062(n)+A178792(n). - Joseph Abate, Jul 21 2010
G.f.: (4*x^2+3*sqrt(1-8*x)*x-5*x)/(sqrt(1-8*x)*(2*x^2+x-1)-8*x^2-7*x+1). - Vladimir Kruchinin, Aug 19 2013
a(n) = (-1)^n - 2^(n+1)*binomial(2*n,n-1)*hyper2F1([1,2*n+1],[n+2],2). - Peter Luschny, Jul 25 2014
a(n) = (-1)^n + 2^(n+1)*A014300(n). - Peter Luschny, Jul 25 2014
a(n) = [x^n] ( (1 + x)^2/(1 - x) )^n. Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 3*x + 13*x^2 + 67*x^3 + ... is essentially the o.g.f. for A064062. - Peter Bala, Oct 01 2015
The o.g.f. is the diagonal of the bivariate rational function 1/(1 - t*(1 + x)^2/(1 - x)) and hence is algebraic by Stanley 1999, Theorem 6.33, p.197. - Peter Bala, Aug 21 2016
n*(3*n-4)*a(n) +(-21*n^2+40*n-12)*a(n-1) -4*(3*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Aug 09 2017
From Peter Bala, Mar 23 2020: (Start)
a(p) == 3 ( mod p^3 ) for prime p >= 5. Cf. A002003, A103885 and A156894.
More generally, we conjecture that a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. (End)
G.f.: (8*x)/(sqrt(1-8*x)*(1+4*x)-1+8*x). - Fabian Pereyra, Jul 20 2024
a(n) = 2^(n+1)*binomial(2*n,n) - A178792(n). - Akiva Weinberger, Dec 06 2024
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(2*n,k). - Seiichi Manyama, Jul 31 2025

A306393 Number T(n,k) of defective (binary) heaps on n elements where k ancestor-successor pairs do not have the correct order; triangle T(n,k), n >= 0, 0 <= k <= A061168(n), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 6, 6, 6, 3, 8, 16, 24, 24, 24, 16, 8, 20, 60, 100, 120, 120, 120, 100, 60, 20, 80, 240, 480, 640, 720, 720, 720, 640, 480, 240, 80, 210, 840, 1890, 3150, 4200, 4830, 5040, 5040, 4830, 4200, 3150, 1890, 840, 210
Offset: 0

Views

Author

Alois P. Heinz, Feb 12 2019

Keywords

Comments

T(n,k) is the number of permutations p of [n] having exactly k pairs (i,j) in {1,...,n} X {1,...,floor(log_2(i))} such that p(i) > p(floor(i/2^j)).
T(n,0) counts perfect (binary) heaps on n elements (A056971).

Examples

			T(4,0) = 3: 4231, 4312, 4321.
T(4,1) = 6: 3241, 3412, 3421, 4123, 4132, 4213.
T(4,2) = 6: 2341, 2413, 2431, 3124, 3142, 3214.
T(4,3) = 6: 1342, 1423, 1432, 2134, 2143, 2314.
T(4,4) = 3: 1234, 1243, 1324.
T(5,1) = 16: 43512, 43521, 45123, 45132, 45213, 45231, 45312, 45321, 52314, 52341, 52413, 52431, 53124, 53142, 53214, 53241.
(The examples use max-heaps.)
Triangle T(n,k) begins:
   1;
   1;
   1,   1;
   2,   2,   2;
   3,   6,   6,   6,   3;
   8,  16,  24,  24,  24,  16,   8;
  20,  60, 100, 120, 120, 120, 100,  60,  20;
  80, 240, 480, 640, 720, 720, 720, 640, 480, 240, 80;
  ...
		

Crossrefs

Row sums give A000142.
Central terms (also maxima) of rows give A324075.
Average number of inversions of a full binary heap on 2^n-1 elements is A000337.

Programs

  • Maple
    b:= proc(u, o) option remember; local n, g, l; n:= u+o;
          if n=0 then 1
        else g:= 2^ilog2(n); l:= min(g-1, n-g/2); expand(
             add(x^(n-j)*add(binomial(j-1, i)*binomial(n-j, l-i)*
             b(i, l-i)*b(j-1-i, n-l-j+i), i=0..min(j-1, l)), j=1..u)+
             add(x^(j-1)*add(binomial(j-1, i)*binomial(n-j, l-i)*
             b(l-i, i)*b(n-l-j+i, j-1-i), i=0..min(j-1, l)), j=1..o))
          fi
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..10);
  • Mathematica
    b[u_, o_] := b[u, o] = Module[{n, g, l}, n = u + o;
         If[n == 0, 1, g = 2^Floor@Log[2, n]; l = Min[g - 1, n - g/2]; Expand[
         Sum[x^(n-j)*Sum[Binomial[j - 1, i]*Binomial[n - j, l - i]*
         b[i, l-i]*b[j-1-i, n-l-j+i], {i, 0, Min[j - 1, l]}], {j, 1, u}] +
         Sum[x^(j-1)*Sum[Binomial[j - 1, i]*Binomial[n - j, l - i]*
         b[l-i, i]*b[n-l-j+i, j-1-i], {i, 0, Min[j-1, l]}], {j, 1, o}]]]];
    T[n_] := CoefficientList[b[n, 0], x];
    T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Feb 15 2021, after Alois P. Heinz *)

Formula

T(n,k) = T(n,A061168(n)-k) for n > 0.
Sum_{k=0..A061168(n)} k * T(n,k) = A324074(n).

A055580 Björner-Welker sequence: 2^n*(n^2 + n + 2) - 1.

Original entry on oeis.org

1, 7, 31, 111, 351, 1023, 2815, 7423, 18943, 47103, 114687, 274431, 647167, 1507327, 3473407, 7929855, 17956863, 40370175, 90177535, 200278015, 442499071, 973078527, 2130706431, 4647288831, 10099884031, 21877489663
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000; revised Feb 12 2001

Keywords

Comments

a(n) is the d=1 Betti number of the complement of '3-equal' arrangements in n-dimensional real space, see Björner-Welker reference, Table I, pp. 308-309, column '1' with k=3 and Th. 5.2, pp. 297-298.
Binomial transform of [1/2, 2/3, 3/4, 4/5, ...] = 1/2, 7/6, 31/12, 111/20, 351/30, 1023/42, ..., where 2, 6, 12, 20, ... = A002378 (deleting the zero). - Gary W. Adamson, Apr 28 2005
Number of three-dimensional block structures associated with n joint systems in the construction of stable underground structures. - Richard M. Green, Jul 26 2011
Number of monotone mappings from the chain with three points to the complete binary tree of height n (n+1 levels). For example, the seven monotone mappings from the chain with three points (denoted 1,2,3, in order) to the complete binary tree with two levels (with a the root of the tree, and b, c the atoms) are: f(1)=f(2)=f(3)=a; f(1)=f(2)=a, f(3)=b; f(1)=f(2)=a, f(3)=c; f(1)=a, f(2)=f(3)=b; f(1)=a, f(2)=f(3)=c; f(1)=f(2)=f(3)=b; f(1)=f(2)=f(3)=c. - Pietro Codara, Mar 26 2015

References

  • H. Barcelo and S. Smith, The discrete fundamental group of the order complex of B_n, Abstract 1020-05-141, 1020th Meeting Amer. Math. Soc., Cincinatti, Ohio, Oct 21-22, 2006.

Crossrefs

Fourth column of triangle A055252.

Programs

  • Magma
    [2^n*(n^2+n+2)-1: n in [0..35]]; // Vincenzo Librandi, Jul 28 2011
    
  • Mathematica
    Table[ n*(n+1)*2^(n-2), {n, 0, 26}] // Accumulate // Rest (* Jean-François Alcover, Jul 09 2013, after Paul Barry *)
    LinearRecurrence[{7,-18,20,-8},{1,7,31,111},30] (* Harvey P. Dale, Nov 27 2014 *)
  • PARI
    a(n)=(n^2+n+2)<Charles R Greathouse IV, Jul 28 2011

Formula

a(n) = A055252(n+3, 3).
a(n) = Sum_{j=0..n-1} a(j) + A045618(n), n >= 1.
G.f.: 1/((1-2*x)^3*(1-x)).
Partial sums of A001788 (without leading zero). - Paul Barry, Jun 26 2003
a(n) = A001788(n) - A000337(n). - Jon Perry, Dec 12 2003
a(n) = A119258(n+4,n). - Reinhard Zumkeller, May 11 2006
E.g.f.: 2*(1 + 2*x + 2*x^2)*exp(2*x) - exp(x). - G. C. Greubel, Oct 28 2016
a(n) = Sum_{k=0..n+1} Sum_{i=0..n+1} i^2 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017

Extensions

Edited (for consistency with change of offset) by M. F. Hasler, Nov 03 2012

A063090 a(n)/(n*n!) is the average number of comparisons needed to find a node in a binary search tree containing n nodes inserted in a random order.

Original entry on oeis.org

1, 6, 34, 212, 1488, 11736, 103248, 1004832, 10733760, 124966080, 1575797760, 21403457280, 311623441920, 4842481190400, 80007869491200, 1400671686758400, 25902542427955200, 504597366114508800, 10328835149402112000
Offset: 1

Views

Author

Rob Arthan, Aug 06 2001

Keywords

Comments

a(n) is the sum over all permutations, p, of {1, ..., n} of the number of comparisons required to find all the entries in the tree formed when the order of insertion is p(1), p(2), ... p(n). To derive the formula given, first group the trees according to the value of k = p(1). For a given k, p determines a permutation of {1, ..., k-1} that gives the structure of the left subtree. By symmetry, the contribution of the right subtrees will be the same as the left subtrees. Now count and simplify.
a(n) mod n is n-2 or 0 depending on whether n is prime or not. - Gary Detlefs, May 28 2012

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 427, C(n).

Crossrefs

Programs

  • Magma
    [Factorial(n)*((2*n+2)*HarmonicNumber(n) - 3*n): n in [1..30]]; // G. C. Greubel, Sep 01 2018
  • Maple
    A[1]:= 1:
    for n from 2 to 30 do A[n]:= (2*n-1)*(n-1)!+(n+1)*A[n-1] od:
    seq(A[n],n=1..30); # Robert Israel, Sep 21 2014
  • Mathematica
    a[n_] := n!*((2*n+2)*HarmonicNumber[n] - 3*n); Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Sep 20 2012, after Gary Detlefs *)
  • PARI
    {h(n) = sum(k=1,n, 1/k)};
    for(n=1,30, print1(n!*(2*(n+1)*h(n) - 3*n), ", ")) \\ G. C. Greubel, Sep 01 2018
    

Formula

a(1) = 1, a(n) = n*n! + 2 * Sum_{k=1}^{n-1} (n-1)!/k! * a(k).
a(n) = (2*n - 1)*(n - 1)! + (n + 1)*a(n-1).
E.g.f.: -(x+2*log(1-x))/(1-x)^2. - Vladeta Jovovic, Sep 15 2003
a(n) = Sum_{k=0..n} |Stirling1(n, k)|*A000337(k). - Vladeta Jovovic, Jul 06 2004
a(n) = 2*(n+1)*abs(Stirling1(n+1, 2))-3*n*n!. - Vladeta Jovovic, Jul 06 2004
a(n) = n!*((2*n+2)*h(n) - 3*n), where h(n) is the n-th harmonic number. - Gary Detlefs, May 28 2012
a(n) = A288964(n) + n!*n (because this sequence and A288964 have the same definition related to quicksort but under slightly different assumptions). - Petros Hadjicostas, May 03 2020

Extensions

More terms from Vladeta Jovovic, Aug 08 2001
Missing brackets in the formula in the name inserted by Rob Arthan, Sep 21 2014

A034015 Small 3-Schroeder numbers: a(n) = A027307(n+1)/2.

Original entry on oeis.org

1, 5, 33, 249, 2033, 17485, 156033, 1431281, 13412193, 127840085, 1235575201, 12080678505, 119276490193, 1187542872989, 11909326179841, 120191310803937, 1219780566014657, 12440630635406245, 127446349676475425, 1310820823328281561, 13530833791486094769
Offset: 0

Views

Author

Keywords

Comments

Series reversion of x*(Sum_{k>=0} a(k)(-x^2)^k) is Sum_{k odd} C(k)x^k where C() is Catalan numbers A000108.
Series reversion of x*(Sum_{k>=0} a(k)(-x)^k) is A000337(x). (Michael Somos)
This sequence should really have started with a(0)=1, a(1)=1, a(2)=5, a(3)=33, ..., but the present offset is too well-established. - N. J. A. Sloane, Mar 28 2021
This is the number of hypoplactic classes of 2-parking functions of size n+1. - Jun Yan, Apr 13 2024

References

  • Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

Crossrefs

Part of a family indexed by m: m=2 (A001003), m=3 is this sequence, m=4 is A243675, ....
The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021
Apart from the first term, this is A027307/2. - N. J. A. Sloane, Mar 28 2021

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 4*n+1,
          ((110*n^3+66*n^2-17*n-9) *a(n-1)
           +(n-1)*(2*n-1)*(5*n+3) *a(n-2)) /
          ((2*n+3)*(5*n-2)*(n+1)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 22 2014
  • Mathematica
    a[n_] := If[n<0, 0, Sum[2^i*Binomial[2*n+2, i]*Binomial[n+1, i+1]/(n+1), {i, 0, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 13 2014, after PARI *)
    a[n_] := Hypergeometric2F1[-n, -2 (n + 1), 2, 2];
    Table[a[n], {n, 0, 20}]  (* Peter Luschny, Nov 08 2021 *)
  • PARI
    a(n)=if(n<0,0,sum(i=0,n,2^i*binomial(2*n+2,i)*binomial(n+1,i+1))/(n+1))

Formula

a(n) = Sum_{i=0..n} Sum_{j=0..i} (-2)^(n-i)*binomial(i,j)*binomial(2i+j, n)*binomial(n+1,i)/(n+1) (conjectured). - Michael D. Weiner, May 25 2017
Yang & Jiang (2021) give an explicit formula for a(n) in Theorems 2.4 and 2.9. - N. J. A. Sloane, Mar 28 2021 [This formula is: a(n) = (1/(n + 1)) * Sum_{k=1..n+1} binomial(2*n + 2, k - 1) * binomial(n + 1, k)*2^(k - 1). - Jun Yan, Apr 13 2024]
a(n) = hypergeom([-n, -2*(n + 1)], [2], 2). - Peter Luschny, Nov 08 2021
a(n) ~ phi^(5*n + 6) / (4 * 5^(1/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Nov 08 2021
D-finite with recurrence +2*(2*n+3)*(n+1)*a(n) +(-46*n^2-43*n-9)*a(n-1) +3*(6*n^2-14*n+7)*a(n-2) +(2*n-3)*(n-2)*a(n-3)=0. - R. J. Mathar, Aug 01 2022
Let D(n) be the set of 2-Dyck paths that have n up-steps of size 2 and 2n down-steps of size 1 and never go below the x-axis. For every d in D(n), let peak(d) be the number of peaks in d. Then a(n) = Sum_{d in D(n+1)}2^(peak(d) - 1). - Jun Yan, Apr 13 2024
a(n) = (-1)^(n) * Jacobi_P(n, 1, n+2, -3)/(n+1). - Peter Bala, Sep 08 2024

A055249 Triangle of partial row sums (prs) of triangle A055248 (prs of Pascal's triangle A007318).

Original entry on oeis.org

1, 3, 1, 8, 4, 1, 20, 12, 5, 1, 48, 32, 17, 6, 1, 112, 80, 49, 23, 7, 1, 256, 192, 129, 72, 30, 8, 1, 576, 448, 321, 201, 102, 38, 9, 1, 1280, 1024, 769, 522, 303, 140, 47, 10, 1, 2816, 2304, 1793, 1291, 825, 443, 187, 57, 11, 1, 6144, 5120, 4097, 3084, 2116, 1268, 630
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is ((1-z)/(1-2*z)^2)/(1-x*z/(1-z)).
This is the second member of the family of Riordan-type matrices obtained from A007318(n,m) (Pascal's triangle read as lower triangular matrix) by repeated application of the prs-procedure.
The column sequences appear in A001792, A001787, A000337, A045618, A045889, A034009, A055250, A055251 for m=0..7.

Examples

			1;
3,1;
8,4,1;
20,12,5,1;
...
Fourth row polynomial (n=3): p(3,x)= 20+12*x+5*x^2+x^3
		

Crossrefs

Cf. A007318, A055248, A008949. Row sums: A049611(n+1) = A055252(n, 0).

Programs

  • Mathematica
    a[n_, m_] := Binomial[n, m]*Hypergeometric2F1[2, m-n, m+1, -1]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Mar 11 2014 *)

Formula

a(n, m) = Sum_{k=m,..,n} ( A055248(n, k) ), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m) = Sum_{j=m,..,(n-1)} ( a(j, m) ) + A055248(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: ((1-x)/(1-2*x)^2)*(x/(1-x))^m, m >= 0.
a(n, m) = binomial(n, m) * 2F1(2, m-n; m+1; -1) where 2F1 is the hypergeometric function. Jean-François Alcover, Mar 11 2014

A187059 The exponent of highest power of 2 dividing the product of the elements of the n-th row of Pascal's triangle (A001142).

Original entry on oeis.org

0, 0, 1, 0, 5, 2, 4, 0, 17, 10, 12, 4, 18, 8, 11, 0, 49, 34, 36, 20, 42, 24, 27, 8, 58, 36, 39, 16, 47, 22, 26, 0, 129, 98, 100, 68, 106, 72, 75, 40, 122, 84, 87, 48, 95, 54, 58, 16, 162, 116, 119, 72, 127, 78, 82, 32, 147, 94, 98, 44, 108, 52, 57, 0, 321, 258, 260, 196, 266, 200, 203, 136, 282, 212, 215, 144, 223, 150, 154, 80, 322, 244, 247, 168, 255, 174, 178, 96, 275, 190, 194, 108, 204, 116, 121, 32, 418, 324, 327, 232, 335
Offset: 0

Author

Bruce Reznick, Mar 05 2011

Keywords

Comments

The exponent of the highest power of 2 which divides Product_{k=0..n} binomial(n, k). This can be computed using de Polignac's formula.
This is the function ord_2(Ḡ_n) extensively studied in Lagarias-Mehta (2014), and plotted in Fig. 1.1. - Antti Karttunen, Oct 22 2014

Examples

			For example, if n = 4, the power of 2 that divides 1*4*6*4*1 is 5.
		

References

  • I. Niven, H. S. Zuckerman, H. L. Montgomery, An Introduction to the Theory of Numbers, Wiley, 1991, pages 182, 183, 187 (Ex. 34).

Crossrefs

Row sums of triangular table A065040.
Row 1 of array A249421.
Cf. A000295 (a(2^k-2)), A000337 (a(2^k)), A005803 (a(2^k-3)), A036799 (a(2^k+1)), A109363 (a(2^k-4)).

Programs

  • Haskell
    a187059 = a007814 . a001142  -- Reinhard Zumkeller, Mar 16 2015
    
  • Mathematica
    a[n_] := Sum[IntegerExponent[Binomial[n, k], 2], {k, 0, n}]; Array[a, 100, 0]
    A187059[n_] := Sum[#*((#+1)*2^k - n - 1) & [Floor[n/2^k]], {k, Floor[Log2[n]]}];
    Array[A187059, 100, 0] (* Paolo Xausa, Feb 11 2025 *)
    2*Accumulate[#] - Range[Length[#]]*# & [DigitCount[Range[0, 99], 2, 1]] (* Paolo Xausa, Feb 11 2025 *)
  • PARI
    a(n)=sum(k=0,n,valuation(binomial(n,k),2))
    
  • PARI
    \\ Much faster version, based on code for A065040 by Charles R Greathouse IV which if reduced even further gives the formula a(n) = 2*A000788(n) - A249154(n):
    A065040(m,k) = (hammingweight(k)+hammingweight(m-k)-hammingweight(m));
    A187059(n) = sum(k=0, n, A065040(n, k));
    for(n=0, 4095, write("b187059.txt", n, " ", A187059(n)));
    \\ Antti Karttunen, Oct 25 2014
    
  • Python
    def A187059(n): return (n+1)*n.bit_count()+sum((m:=1<>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,n.bit_length()+1)) # Chai Wah Wu, Nov 11 2024

Formula

a(2^k-1) = 0 (19th century); a(2^k) = (k-1)*2^k+1 for k >= 1. (Use de Polignac.)
a(n) = Sum_{i=0..n} A065040(n,i) [where the entries of triangular table A065040(m,k) give the exponent of the maximal power of 2 dividing binomial coefficient A007318(m,k)].
a(n) = A007814(A001142(n)). - Jason Kimberley, Nov 02 2011
a(n) = A249152(n) - A174605(n). [Exponent of 2 in the n-th hyperfactorial minus exponent of 2 in the n-th superfactorial. Cf. for example Lagarias & Mehta paper or Peter Luschny's formula for A001142.] - Antti Karttunen, Oct 25 2014
a(n) = 2*A000788(n) - A249154(n). - Antti Karttunen, Nov 02 2014
a(n) = Sum_{i=1..n} (2*i-n-1)*v_2(i), where v_2(i) = A007814(i) is the exponent of the highest power of 2 dividing i. - Ridouane Oudra, Jun 02 2022
a(n) = Sum_{k=1..floor(log_2(n))} t*((t+1)*2^k - n - 1), where t = floor(n/(2^k)). - Paolo Xausa, Feb 11 2025, derived from Ridouane Oudra's formula above.

Extensions

Name clarified by Antti Karttunen, Oct 22 2014
Previous Showing 11-20 of 70 results. Next