cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 324 results. Next

A159991 Powers of 60: a(n) = 60^n.

Original entry on oeis.org

1, 60, 3600, 216000, 12960000, 777600000, 46656000000, 2799360000000, 167961600000000, 10077696000000000, 604661760000000000, 36279705600000000000, 2176782336000000000000, 130606940160000000000000, 7836416409600000000000000, 470184984576000000000000000
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2009

Keywords

Examples

			G.f. = 1 + 60*x + 3600*x^2 + 216000*x^3 + 12960000*x^4 + 77600000*x^5 + ... - _Michael Somos_, Jan 01 2019
		

Crossrefs

Programs

Formula

a(n) = A000400(n)*A011557(n) = A000351(n)*A001021(n) = A000302(n)*A001024(n) = A000244(n)*A009964(n). (Corrected by Robert B Fowler, Jan 25 2023)
From Muniru A Asiru, Nov 21 2018: (Start)
a(n) = 60^n.
a(n) = 60*a(n-1) for n > 0, a(0) = 1.
G.f.: 1/(1-60*x).
E.g.f: exp(60*x). (End)
a(n) = 1/a(-n) for all n in Z. - Michael Somos, Jan 01 2019

A052562 a(n) = 5^n * n!.

Original entry on oeis.org

1, 5, 50, 750, 15000, 375000, 11250000, 393750000, 15750000000, 708750000000, 35437500000000, 1949062500000000, 116943750000000000, 7601343750000000000, 532094062500000000000, 39907054687500000000000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

A simple regular expression in a labeled universe.
For n >= 1 a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_5)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001

Crossrefs

Programs

  • Magma
    [5^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Z,Z,Z,Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    with(combstruct):A:=[N,{N=Cycle(Union(Z$5))},labeled]: seq(count(A,size=n)/5,n=1..16); # Zerinvary Lajos, Dec 05 2007
  • Mathematica
    Table[5^n*n!, {n, 0, 20}] (* Wesley Ivan Hurt, Sep 28 2013 *)
  • PARI
    {a(n) = 5^n*n!}; \\ G. C. Greubel, May 05 2019
    
  • Sage
    [5^n*factorial(n) for n in (0..20)] # G. C. Greubel, May 05 2019

Formula

a(n) = A051150(n+1, 0) (first column of triangle).
E.g.f.: 1/(1-5*x).
a(n) = 5*n*a(n-1) with a(0)=1.
G.f.: 1/(1-5*x/(1-5*x/(1-10*x/(1-10*x/(1-15*x/(1-15*x/(1-20*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
G.f.: 1/Q(0), where Q(k) = 1 - 5*x*(2*k+1) - 25*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 28 2013
a(n) = n!*A000351(n). - R. J. Mathar, Aug 21 2014
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/5) (A092514).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/5) (A092618). (End)

Extensions

Name changed by Arkadiusz Wesolowski, Oct 04 2011

A109395 Denominator of phi(n)/n = Product_{p|n} (1 - 1/p); phi(n)=A000010(n), the Euler totient function.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 15, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 15, 31, 2, 33, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 15, 23, 47, 3, 7, 5, 51, 13, 53, 3, 11, 7, 19, 29, 59, 15, 61, 31, 7, 2, 65, 33, 67, 17, 69, 35, 71, 3, 73, 37, 15, 19, 77, 13, 79, 5, 3
Offset: 1

Views

Author

Franz Vrabec, Aug 26 2005

Keywords

Comments

a(n)=2 iff n=2^k (k>0); otherwise a(n) is odd. If p is prime, a(p)=p; the converse is false, e.g.: a(15)=15. It is remarkable that this sequence often coincides with A006530, the largest prime P dividing n. Theorem: a(n)=P if and only if for every prime p < P in n there is some prime q in n with p|(q-1). - Franz Vrabec, Aug 30 2005

Examples

			a(10) = 10/gcd(10,phi(10)) = 10/gcd(10,4) = 10/2 = 5.
		

Crossrefs

Cf. A076512 for the numerator.
Phi(m)/m = k: A000079 \ {1} (k=1/2), A033845 (k=1/3), A000244 \ {1} (k=2/3), A033846 (k=2/5), A000351 \ {1} (k=4/5), A033847 (k=3/7), A033850 (k=4/7), A000420 \ {1} (k=6/7), A033848 (k=5/11), A001020 \ {1} (k=10/11), A288162 (k=6/13), A001022 \ {1} (12/13), A143207 (k=4/15), A033849 (k=8/15), A033851 (k=24/35).

Programs

Formula

a(n) = n/gcd(n, phi(n)) = n/A009195(n).
From Antti Karttunen, Feb 09 2019: (Start)
a(n) = denominator of A173557(n)/A007947(n).
a(2^n) = 2 for all n >= 1.
(End)
From Amiram Eldar, Jul 31 2020: (Start)
Asymptotic mean of phi(n)/n: lim_{m->oo} (1/m) * Sum_{n=1..m} A076512(n)/a(n) = 6/Pi^2 (A059956).
Asymptotic mean of n/phi(n): lim_{m->oo} (1/m) * Sum_{n=1..m} a(n)/A076512(n) = zeta(2)*zeta(3)/zeta(6) (A082695). (End)

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A055643 Babylonian numbers: integers in base 60 with each sexagesimal digit represented by 2 decimal digits, leading zeros omitted.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2000

Keywords

Comments

From Wolfdieter Lang, Jan 16 2018: (Start)
The symbols used for 0..9 in this base 60 notation are 00, 01, ..., 09, but leading zeros are omitted.
For the Sumerian-Babylonian sexagesimal-decimal number system which uses two positions for each base-60 position filled with only one-digit numbers alternating between ranges of 0 to 9 and 0 to 5 see the link below.
(End)
For n < 1440, US and NATO military time designation of n minutes since midnight. - J. Lowell, Dec 29 2020

References

  • Mohammad K. Azarian, Meftah al-hesab: A Summary, MJMS, Vol. 12, No. 2, Spring 2000, pp. 75-95. Mathematical Reviews, MR 1 764 526. Zentralblatt MATH, Zbl 1036.01002.
  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.
  • Georges Ifrah, Histoire Universelle des Chiffres, Paris, 1981.
  • Georges Ifrah, From one to zero, A universal history of numbers, Viking Penguin Inc., 1985.
  • Georges Ifrah, Universalgeschichte der Zahlen, Campus Verlag, Frankfurt, New York, 2. Auflage, 1987, pp. 210-221.

Crossrefs

Note also that A250073 = a(A000079(n)), A250089 = a(A051037(n)), A254334 = a(A000244(n)), A254335 = a(A000351(n)), A254336 = a(A011557(n)).
See also A281863 (value of the 0,1,2,...,n-th digit of a(n), counted from the right), A282622 (length of a(n), #digits, for n >= 1).

Programs

  • Mathematica
    Array[FromDigits@ Apply[Join, PadLeft[#, 2] & /@ IntegerDigits@ IntegerDigits[#, 60]] &, 71, 0] (* Michael De Vlieger, Jan 11 2018 *)
  • PARI
    A055643(n)=fromdigits(digits(n,60),100) \\ M. F. Hasler, Jan 09 2018
    
  • Python
    def a(n): return n if n < 60 else 100*a(n//60) + n%60
    print([a(n) for n in range(71)]) # Michael S. Branicky, Oct 22 2022

Formula

a(60*n+r) = 100*a(n) + r, 0 <= r <= 59. - Jianing Song, Oct 22 2022

Extensions

a(69) and a(70) from WG Zeist, Sep 08 2012

A056272 Word structures of length n using a 5-ary alphabet.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 202, 855, 3845, 18002, 86472, 422005, 2079475, 10306752, 51263942, 255514355, 1275163905, 6368612302, 31821472612, 159042661905, 795019337135, 3974515030652, 19870830712482, 99348921288655
Offset: 0

Views

Author

Keywords

Comments

Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.
Density of regular language L over {1,2,3,4}^* (i.e., number of strings of length n in L) described by regular expression 11* + 11*2(1+2)* + 11*2(1+2)*3(1+2+3)* + 11*2(1+2)*3(1+2+3)*4(1+2+3+4)* + 11*2(1+2)*3(1+2+3)*4(1+2+3+4)*5(1+2+3+4+5)* - Nelma Moreira, Oct 10 2004
Number of set partitions of [n] into at most 5 parts. - Joerg Arndt, Apr 18 2014

Examples

			For a(4)=15, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABBC, ABCA, and ABCD; the 8 chiral patterns are the 4 pairs AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

A row of the array in A278984.
Cf. A056324 (unoriented), A320935 (chiral), A305751 (achiral).

Programs

  • GAP
    List([0..25],n->Sum([0..5],k->Stirling2(n,k))); # Muniru A Asiru, Oct 30 2018
  • Magma
    I:=[1,1,2,5,15]; [n le 5 select I[n] else 11*Self(n-1)-41*Self(n-2)+61*Self(n-3)-30*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 19 2014
    
  • Maple
    seq(add(combinat:-stirling2(n, j), j=0..5), n=0..23); # Zerinvary Lajos, Dec 04 2007
    # Alternative:
    (x*(x*(x*(11*x-37)+32)-10)+1)/(x*(x*(x*(30*x-61)+41)-11)+1):
    series(%, x, 32): seq(coeff(%, x, n), n=0..23); # Peter Luschny, Nov 05 2018
  • Mathematica
    CoefficientList[Series[(1 - 10 x + 32 x^2 - 37 x^3 + 11 x^4)/((x - 1) (3 x - 1) (2 x - 1) (5 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 19 2014 *)
    LinearRecurrence[{11,-41,61,-30},{1,1,2,5,15},30] (* Harvey P. Dale, Feb 25 2018 *)
    Table[Sum[StirlingS2[n, k], {k, 0, 5}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *)
    CoefficientList[Series[1/120 (44 + 45 E^x + 20 E^(2 x) + 10 E^(3 x) + E^(5 x)), {x, 0, 30}], x]*Table[k!, {k, 0, 30}] (* Stefano Spezia, Nov 06 2018 *)
  • PARI
    a(n) = sum(k=0,5, stirling(n, k, 2) ); \\ Joerg Arndt, Apr 18 2014
    

Formula

a(n) = Sum_{k=0..5} Stirling2(n, k).
a(n) = (5^n + 10*3^n + 20*2^n + 45)/5! for n >= 1. - Vladeta Jovovic, Aug 17 2003
From Nelma Moreira, Oct 10 2004: (Start)
For c=5, a(n) = c^n/c! + Sum_{k=0..c-2} (k^n/k!*(Sum_{j=2..c-k} (-1)^j/j!)).
a(n) = Sum_{k=1..c} g(k, c)*k^n where g(1, 1) = 1, g(1, c) = g(1, c-1) + (-1)^(c-1)/(c-1)! if c > 1; g(k, c) = g(k-1, c-1)/k if c > 1, 2 <= k <= c and n >= 1. (End)
a(n+1) is the top entry of the vector M^n*[1,1,1,1,1,0,0,0,...], where M is an infinite bidiagonal matrix with M(r,r+1)=1 in the superdiagonal and M(r,r)=r, r>=1 as the main diagonal, and the rest zeros. The n-th power of the matrix is multiplied from the right with a column vector starting with 5 1's. - Gary W. Adamson, Jun 24 2011
G.f.: (1 - 10x + 32x^2 - 37x^3 + 11x^4)/((1 - x)*(1 - 2x)*(1 - 3x)*(1 - 5x)). - R. J. Mathar, Jul 06 2011 [Adapted to offset 0 by Robert A. Russell, Oct 30 2018]
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=5. - Robert A. Russell, Apr 25 2018
E.g.f.: (1/120)*(44 + 45*exp(x) + 20*exp(2*x) + 10*exp(3*x) + exp(5*x)). - Stefano Spezia, Nov 06 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 06 2018

A126791 Binomial matrix applied to A111418.

Original entry on oeis.org

1, 4, 1, 17, 7, 1, 75, 39, 10, 1, 339, 202, 70, 13, 1, 1558, 1015, 425, 110, 16, 1, 7247, 5028, 2400, 771, 159, 19, 1, 34016, 24731, 12999, 4872, 1267, 217, 22, 1, 160795, 121208, 68600, 28882, 8890, 1940, 284, 25, 1, 764388, 593019, 355890, 164136
Offset: 0

Views

Author

Philippe Deléham, Mar 14 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1.
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
From R. J. Mathar, Mar 12 2013: (Start)
The matrix inverse starts
1;
-4, 1;
11, -7, 1;
-29, 31, -10, 1;
76, -115, 60, -13, 1;
-199, 390, -285, 98, -16, 1;
521, -1254, 1185, -566, 145, -19, 1;
-1364, 3893, -4524, 2785, -985, 201, -22, 1; ... (End)

Examples

			Triangle begins:
      1;
      4,     1;
     17,     7,     1;
     75,    39,    10,    1;
    339,   202,    70,   13,    1;
   1558,  1015,   425,  110,   16,   1;
   7247,  5028,  2400,  771,  159,  19,  1;
  34016, 24731, 12999, 4872, 1267, 217, 22, 1; ...
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  4, 1
  1, 3, 1
  0, 1, 3, 1
  0, 0, 1, 3, 1
  0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 0, 1, 3, 1
  0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
		

Programs

  • Maple
    A126791 := proc(n,k)
        if n=0 and k = 0 then
            1 ;
        elif k <0 or k>n then
            0;
        elif k= 0 then
            4*procname(n-1,0)+procname(n-1,1) ;
        else
            procname(n-1,k-1)+3*procname(n-1,k)+procname(n-1,k+1) ;
        end if;
    end proc: # R. J. Mathar, Mar 12 2013
    T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1, -n+1, 3/2)): seq(seq(T(n,k),k=1..n),n=1..10); # Peter Luschny, May 13 2016
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
    T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 4, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A026378(m+n+1).
Sum_{k=0..n} T(n,k) = 5^n = A000351(n).
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1,-n+1,3/2)). - Peter Luschny, May 13 2016
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 + x )*(1 + 3*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022

A329332 Table of powers of squarefree numbers, powers of A019565(n) in increasing order in row n. Square array A(n,k) n >= 0, k >= 0 read by descending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 6, 1, 1, 16, 27, 36, 5, 1, 1, 32, 81, 216, 25, 10, 1, 1, 64, 243, 1296, 125, 100, 15, 1, 1, 128, 729, 7776, 625, 1000, 225, 30, 1, 1, 256, 2187, 46656, 3125, 10000, 3375, 900, 7, 1, 1, 512, 6561, 279936, 15625, 100000, 50625, 27000, 49, 14
Offset: 0

Views

Author

Peter Munn, Nov 10 2019

Keywords

Comments

The A019565 row order gives the table neat relationships with A003961, A003987, A059897, A225546, A319075 and A329050. See the formula section.
Transposition of this table, that is reflection about its main diagonal, has subtle symmetries. For example, consider the unique factorization of a number into powers of distinct primes. This can be restated as factorization into numbers from rows 2^n (n >= 0) with no more than one from each row. Reflecting about the main diagonal, this factorization becomes factorization (of a related number) into numbers from columns 2^k (k >= 0) with no more than one from each column. This is also unique and is factorization into powers of squarefree numbers with distinct exponents that are powers of two. See the example section.

Examples

			Square array A(n,k) begins:
n\k |  0   1     2      3        4          5           6             7
----+------------------------------------------------------------------
   0|  1   1     1      1        1          1           1             1
   1|  1   2     4      8       16         32          64           128
   2|  1   3     9     27       81        243         729          2187
   3|  1   6    36    216     1296       7776       46656        279936
   4|  1   5    25    125      625       3125       15625         78125
   5|  1  10   100   1000    10000     100000     1000000      10000000
   6|  1  15   225   3375    50625     759375    11390625     170859375
   7|  1  30   900  27000   810000   24300000   729000000   21870000000
   8|  1   7    49    343     2401      16807      117649        823543
   9|  1  14   196   2744    38416     537824     7529536     105413504
  10|  1  21   441   9261   194481    4084101    85766121    1801088541
  11|  1  42  1764  74088  3111696  130691232  5489031744  230539333248
  12|  1  35  1225  42875  1500625   52521875  1838265625   64339296875
Reflection of factorization about the main diagonal: (Start)
The canonical (prime power) factorization of 864 is 2^5 * 3^3 = 32 * 27. Reflecting the factors about the main diagonal of the table gives us 10 * 36 = 10^1 * 6^2 = 360. This is the unique factorization of 360 into powers of squarefree numbers with distinct exponents that are powers of two.
Reflection about the main diagonal is given by the self-inverse function A225546(.). Clearly, all positive integers are in the domain of A225546, whether or not they appear in the table. It is valid to start from 360, observe that A225546(360) = 864, then use 864 to derive 360's factorization into appropriate powers of squarefree numbers as above.
(End)
		

Crossrefs

The range of values is A072774.
Rows (abbreviated list): A000079(1), A000244(2), A000400(3), A000351(4), A011557(5), A001024(6), A009974(7), A000420(8), A001023(9), A009965(10), A001020(16), A001022(32), A001026(64).
A019565 is column 1, A334110 is column 2, and columns that are sorted in increasing order (some without the 1) are: A005117(1), A062503(2), A062838(3), A113849(4), A113850(5), A113851(6), A113852(7).
Other subtables: A182944, A319075, A329050.
Re-ordered subtable of A297845, A306697, A329329.
A000290, A003961, A003987, A059897 and A225546 are used to express relationships between terms of this sequence.
Cf. A285322.

Formula

A(n,k) = A019565(n)^k.
A(k,n) = A225546(A(n,k)).
A(n,2k) = A000290(A(n,k)) = A(n,k)^2.
A(2n,k) = A003961(A(n,k)).
A(n,2k+1) = A(n,2k) * A(n,1).
A(2n+1,k) = A(2n,k) * A(1,k).
A(A003987(n,m), k) = A059897(A(n,k), A(m,k)).
A(n, A003987(m,k)) = A059897(A(n,m), A(n,k)).
A(2^n,k) = A319075(k,n+1).
A(2^n, 2^k) = A329050(n,k).
A(n,k) = A297845(A(n,1), A(1,k)) = A306697(A(n,1), A(1,k)), = A329329(A(n,1), A(1,k)).
Sum_{n>=0} 1/A(n,k) = zeta(k)/zeta(2*k), for k >= 2. - Amiram Eldar, Dec 03 2022

A066001 Sum of digits of 5^n.

Original entry on oeis.org

1, 5, 7, 8, 13, 11, 19, 23, 25, 26, 40, 38, 28, 23, 34, 44, 58, 56, 64, 59, 61, 62, 67, 74, 82, 77, 79, 89, 85, 83, 91, 104, 106, 89, 103, 92, 109, 104, 124, 134, 130, 137, 145, 149, 151, 116, 112, 128, 145, 158, 151, 152, 130, 119, 127, 167, 196, 215, 211, 191
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2001

Keywords

Comments

We can expect and conjecture that a(n) ~ 4.5*log_10(5)*n, but for n ~ 10^3..10^4 there are still fluctuations of +- 1%, e.g., a(10^3)/log_10(5) ~ 4538, a(10^4)/log_10(5) ~ 44518. Modulo 9, the sequence is periodic with period (1, 5, 7, 8, 4, 2) of length 6. No term is divisible by 3, a(n) = (-1)^n (mod 3). - M. F. Hasler, May 18 2017

Crossrefs

Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), this sequence (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).

Programs

Formula

a(n) = A007953(A000351(n)). - Michel Marcus, Aug 05 2025

A303656 Number of ways to write n as a^2 + b^2 + 3^c + 5^d, where a,b,c,d are nonnegative integers with a <= b.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 3, 2, 4, 3, 4, 2, 4, 4, 3, 2, 4, 4, 3, 2, 4, 3, 4, 1, 4, 5, 6, 4, 6, 5, 5, 6, 6, 5, 8, 4, 6, 6, 5, 4, 7, 5, 7, 5, 6, 4, 5, 3, 4, 7, 6, 7, 8, 5, 4, 7, 5, 5, 9, 3, 6, 5, 6, 4, 6, 5, 7, 7, 4, 5, 5, 5, 4, 6, 5, 6, 10, 5, 4, 5, 7, 4, 9, 2, 9, 8, 5, 6, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 27 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. In other words, any integer n > 1 can be written as the sum of two squares, a power of 3 and a power of 5.
It has been verified that a(n) > 0 for all n = 2..2*10^10.
It seems that any integer n > 1 also can be written as the sum of two squares, a power of 2 and a power of 3.
The author would like to offer 3500 US dollars as the prize for the first proof of his conjecture that a(n) > 0 for all n > 1. - Zhi-Wei Sun, Jun 05 2018
Jiao-Min Lin (a student at Nanjing University) has verified a(n) > 0 for all 1 < n <= 2.4*10^11. - Zhi-Wei Sun, Jul 30 2022

Examples

			a(2) = 1 with 2 = 0^2 + 0^2 + 3^0 + 5^0.
a(5) = 1 with 5 = 0^2 + 1^2 + 3^1 + 5^0.
a(25) = 1 with 25 = 1^2 + 4^2 + 3^1 + 5^1.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[n-3^k-5^m],Do[If[SQ[n-3^k-5^m-x^2],r=r+1],{x,0,Sqrt[(n-3^k-5^m)/2]}]],{k,0,Log[3,n]},{m,0,If[n==3^k,-1,Log[5,n-3^k]]}];tab=Append[tab,r],{n,1,90}];Print[tab]
Previous Showing 31-40 of 324 results. Next