cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 193 results. Next

A097988 a(n) = Sum_{d dividing n} tau(d)^3 = (Sum_{d dividing n} tau(d))^2.

Original entry on oeis.org

1, 9, 9, 36, 9, 81, 9, 100, 36, 81, 9, 324, 9, 81, 81, 225, 9, 324, 9, 324, 81, 81, 9, 900, 36, 81, 100, 324, 9, 729, 9, 441, 81, 81, 81, 1296, 9, 81, 81, 900, 9, 729, 9, 324, 324, 81, 9, 2025, 36, 324, 81, 324, 9, 900, 81, 900, 81, 81, 9, 2916, 9, 81, 324
Offset: 1

Views

Author

Lekraj Beedassy, Sep 07 2004

Keywords

Comments

When n = p^e is a prime power, we have the corollary a(n) = Sum_{r=1..e+1} r^3 = (Sum_{r=1..e+1} r)^2, i.e. A000537(n) = (A000217(n))^2.
3^A001221(n) always divides a(n) except if n > 1 and included in A000578. - Enrique Pérez Herrero, Jul 12 2010

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 47.
  • Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 562, pp. 75, 265; Ellipses Paris 2004.
  • William J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 85, Problem 2.
  • William J. LeVeque, Fundamentals of Number Theory, Dover Publications Inc, 1977, p. 125.
  • Joe Roberts, The Lure of Integers, MAA, 1992, Integer 3, pages 8-9.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 84.

Crossrefs

Programs

  • Maple
    with(numtheory); f:=proc(n) local t1; t1:=divisors(n); add(sigma[0](i), i in t1)^2; end;
  • Mathematica
    tau[1,n_Integer] := 1; SetAttributes[tau, Listable]; tau[k_Integer,n_Integer] := Plus@@(tau[k-1,Divisors[n]]); A097988[n_] := tau[3,n]^2; Table[A097988[n], {n, 100}] (* Enrique Pérez Herrero, Jul 12 2010 *)
    f[n_]:=Total[DivisorSigma[0,Divisors[n]]]^2;f/@Range[100] (* Ivan N. Ianakiev, Mar 05 2015 *)
    a[n_] := DivisorSum[n, DivisorSigma[0, #]&]^2; Array[a, 100] (* Jean-François Alcover, Dec 02 2015 *)
    f[p_, e_] := ((e+1)*(e+2)/2)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)
  • PARI
    a(n)=sumdiv(n,d,numdiv(d))^2 \\ Charles R Greathouse IV, Jan 22 2013
    
  • PARI
    a(n)=sumdiv(n, d, numdiv(d)^3); \\ Michel Marcus, Nov 21 2013

Formula

a(n) = (Sum_{d dividing n} tau(d))^2 = (A007425(n))^2.
Multiplicative with a(p^e) = ((e+1)*(e+2)/2)^2. - Amiram Eldar, Sep 20 2020
Dirichlet g.f.: zeta(s)^5 * Product_{p prime} (1 + 4/p^s + 1/p^(2*s)). - Amiram Eldar, Sep 14 2023

Extensions

More terms from Carl Najafi, Oct 19 2011
Entry revised by N. J. A. Sloane, May 22 2012

A101101 a(1)=1, a(2)=5, and a(n)=6 for n >= 3.

Original entry on oeis.org

1, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004

Keywords

Comments

Previous name was: The first summation of row 3 of Euler's triangle - a row that will recursively accumulate to the power of 3.
Decimal expansion of 47/30. - Elmo R. Oliveira, Aug 09 2024

Crossrefs

Within the "cube" of related sequences with construction based upon MaginNKZ formula, with n downward, k rightward and z backward:
Before: this_sequence, A008458, A003215, A000578, A000537, A024166 or A024166, A101094, A101097, A101102.
Above: this_sequence, below: A101104, A101100.
Within the "cube" of related sequences with construction based upon SeriesAtLevelR formula, with n downward, x rightward and r backward:
Above: this_sequence, below: A101103, A101096.

Programs

  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 3, 3}, {z, 1, 1}, {k, 0, 34}] (* OR *)
    SeriesAtLevelR = Sum[Eulerian[n, i - 1]*Binomial[n + x - i + r, n + r], {i, 1, n}]; Table[SeriesAtLevelR, {n, 3, 3}, {r, -3, -3}, {x, 4, 35}]
    Join[{1, 5},LinearRecurrence[{1},{6},78]] (* Ray Chandler, Sep 23 2015 *)

Formula

G.f.: x*(1+4*x+x^2)/(1-x). - L. Edson Jeffery, Jan 29 2012

Extensions

I wish the sequence was as interesting as the list of references! - N. J. A. Sloane
New name from Joerg Arndt, Nov 30 2014

A108674 a(n) = (n+1)^2 * (n+2)^2 * (2*n+3) / 12.

Original entry on oeis.org

1, 15, 84, 300, 825, 1911, 3920, 7344, 12825, 21175, 33396, 50700, 74529, 106575, 148800, 203456, 273105, 360639, 469300, 602700, 764841, 960135, 1193424, 1470000, 1795625, 2176551, 2619540, 3131884, 3721425, 4396575, 5166336, 6040320, 7028769, 8142575
Offset: 0

Views

Author

Emeric Deutsch, Jun 17 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.
This is the case P(3,n) of the family of sequences defined in A132458. - Ottavio D'Antona (dantona(AT)dico.unimi.it), Oct 31 2007
Using the triangular numbers 0, 1, 3, ..., create a sequence of advancing sums of k-tuples with k=n*(n+1)/2 of the odd numbers: 0, 1, 15, 84, 300, 825, 1911, 3920, ... . This begins 0, then 1, then 3+5+7=15, then 9+11+13+15+17+19=84, then 21+23+...+39=300 and so on. - J. M. Bergot, Dec 08 2014
Partial sums of A008354. - J. M. Bergot, Dec 19 2014
Coefficients in the terminating series identity 1 - 15*n/(n + 4) + 84*n*(n - 1)/((n + 4)*(n + 5)) - 300*n*(n - 1)*(n - 2)/((n + 4)*(n + 5)*(n + 6)) + ... = 0 for n = 2,3,4,.... Cf. A000330. - Peter Bala, Feb 12 2019

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 231, # 33).

Crossrefs

Cf. A000217, A000330, A008354 (first diffs.), A132458.

Programs

Formula

G.f.: (1+z)*(1+8*z+z^2)/(1-z)^6.
a(n) = Sum_{j=1..n+1} j^2 Sum_{i=1..n+1} i. - Alexander Adamchuk, Jun 25 2006
a(n) = A000330(n+1) * A000217(n+1). - Daniel Suteu, Nov 26 2020
E.g.f.: exp(x)*(12 + 168*x + 330*x^2 + 184*x^3 + 35*x^4 + 2*x^5)/12. - Stefano Spezia, Mar 02 2022
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) 192*log(2) - 132.
Sum_{n>=0} (-1)^n/a(n) = 2*Pi^2 - 48*Pi + 132. (End)

A153976 a(n) = n^3 + (n+2)^3.

Original entry on oeis.org

8, 28, 72, 152, 280, 468, 728, 1072, 1512, 2060, 2728, 3528, 4472, 5572, 6840, 8288, 9928, 11772, 13832, 16120, 18648, 21428, 24472, 27792, 31400, 35308, 39528, 44072, 48952, 54180, 59768, 65728, 72072, 78812, 85960, 93528, 101528, 109972, 118872, 128240
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n^3+(n+2)^3: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
    
  • Mathematica
    f[n_]:=n^3;lst={};Do[AppendTo[lst,(f[n]+f[n+2])],{n,0,6!}];lst
    Array[#^3+(#+2)^3&,40,0] (* or *) LinearRecurrence[{4,-6,4,-1},{8,28,72,152},40] (* Harvey P. Dale, Aug 02 2011 *)
  • Python
    def a(n): return n**3 + (n+2)**3
    print([a(n) for n in range(40)]) # Michael S. Branicky, Aug 28 2021

Formula

For n>3, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Aug 02 2011
G.f.: 4*( 2-x+2*x^2 ) / (x-1)^4 . - R. J. Mathar, Apr 11 2016
a(n) = 4*A229183(n+1). - R. J. Mathar, Apr 11 2016

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 26 2011

A153978 a(n) = n*(n-1)*(n+1)*(3*n-2)/12.

Original entry on oeis.org

0, 2, 14, 50, 130, 280, 532, 924, 1500, 2310, 3410, 4862, 6734, 9100, 12040, 15640, 19992, 25194, 31350, 38570, 46970, 56672, 67804, 80500, 94900, 111150, 129402, 149814, 172550, 197780, 225680, 256432, 290224, 327250, 367710, 411810, 459762
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A011379.
Antidiagonal sums of the convolution array A213819. - Clark Kimberling, Jul 04 2012

Crossrefs

Programs

  • Mathematica
    With[{r=Range[0,50]},Accumulate[r^2+r^3]] (* Harvey P. Dale, Jan 16 2011 *)
    Rest[CoefficientList[Series[-2 x^2 * (2 x + 1)/(x - 1)^5, {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 30 2014 *)
    LinearRecurrence[{5,-10,10,-5,1}, {0,2,14,50,130}, 25] (* G. C. Greubel, Sep 01 2016 *)
  • PARI
    concat(0, Vec(-2*x^2*(2*x+1)/(x-1)^5 + O(x^100))) \\ Colin Barker, Jun 28 2014
    
  • PARI
    a(n) = n*(n-1)*(n+1)*(3*n-2)/12 \\ Charles R Greathouse IV, Sep 01 2016

Formula

a(n) = 2 * A001296(n-1) = (n-1)*n*(n+1)*(3*n-2)/12 (n>0). - Bruno Berselli, Apr 21 2010
a(n) = Sum_{i=1..n-1} binomial(i+1,i)*i^2. - Enrique Pérez Herrero, Jun 28 2014
G.f.: 2*x^2*(2*x+1) / (1 - x)^5. - Colin Barker, Jun 28 2014
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4. - Vincenzo Librandi, Jun 30 2014
a(n) = Sum_{k=1..n-1}k*((n-1)*n/2 + k) for n > 1. - J. M. Bergot, Feb 16 2018
From Amiram Eldar, Aug 23 2022: (Start)
Sum_{n>=2} 1/a(n) = 141/5 - 9*sqrt(3)*Pi/5 - 81*log(3)/5.
Sum_{n>=2} (-1)^n/a(n) = 18*sqrt(3)*Pi/5 + 48*log(2)/5 - 129/5. (End)

Extensions

Edited by Bruno Berselli, Jun 15 2010
Simpler definition as suggested by Wesley Ivan Hurt, Jun 29 2014

A254371 Sum of cubes of the first n even numbers (A016743).

Original entry on oeis.org

0, 8, 72, 288, 800, 1800, 3528, 6272, 10368, 16200, 24200, 34848, 48672, 66248, 88200, 115200, 147968, 187272, 233928, 288800, 352800, 426888, 512072, 609408, 720000, 845000, 985608, 1143072, 1318688, 1513800, 1729800, 1968128, 2230272, 2517768, 2832200, 3175200
Offset: 0

Views

Author

Luciano Ancora, Mar 16 2015

Keywords

Comments

Property: for n >= 2, each (a(n), a(n)+1, a(n)+2) is a triple of consecutive terms that are the sum of two nonzero squares; precisely: a(n) = (n*(n + 1))^2 + (n*(n + 1))^2, a(n)+1 = (n^2+2n)^2 + (n^2-1)^2 and a(n)+2 = (n^2+n+1)^2 + (n^2+n-1)^2 (see Diophante link). - Bernard Schott, Oct 05 2021

Crossrefs

Cf. A000537 (sum of first n cubes); A002593 (sum of first n odd cubes).
Cf. A060300 (2*a(n)).
First bisection of A105636; second bisection of A212892.

Programs

  • GAP
    List([0..35],n->2*(n*(n+1))^2); # Muniru A Asiru, Oct 24 2018
  • Magma
    [2*n^2*(n+1)^2: n in [0..40]]; // Bruno Berselli, Mar 23 2015
    
  • Maple
    A254371:=n->2*n^2*(n + 1)^2: seq(A254371(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[2 n^2 (n+1)^2, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 8, 72, 288, 800}, 40]
    Accumulate[Range[0,80,2]^3] (* Harvey P. Dale, Jun 26 2017 *)
  • PARI
    a(n)=sum(i=0, n, 8*i^3); \\ Michael B. Porter, Mar 16 2015
    

Formula

G.f.: 8*x*(1 + 4*x + x^2)/(1 - x)^5.
a(n) = 2*n^2*(n + 1)^2.
a(n) = 2*A035287(n+1) = 2*A002378(n)^2 = 8*A000217(n)^2. - Bruce J. Nicholson, Apr 23 2017
a(n) = 8*A000537(n). - Michel Marcus, Apr 23 2017
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/6 - 3/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3/2 - 2*log(2). (End)
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: 2*x*(2 + x)*(2 + 6*x + x^2)*exp(x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 4*A163102(n) = A060300(n)/2. (End)

A254869 Seventh partial sums of cubes (A000578).

Original entry on oeis.org

1, 15, 111, 561, 2211, 7293, 21021, 54483, 129558, 286858, 598026, 1184118, 2242266, 4083366, 7184166, 12257850, 20348031, 32951985, 52179985, 80958735, 123288165, 184562235, 271965915, 394962165, 565884540, 800652996, 1119632580, 1548656956
Offset: 1

Views

Author

Luciano Ancora, Feb 17 2015

Keywords

Examples

			2nd differences:   0,  6,  12,  18,   24,   30, ... (A008588)
1st differences:   1,  7,  19,  37,   61,   91, ... (A003215)
-------------------------------------------------------------------
The cubes:         1,  8,  27,  64,  125,  216, ... (A000578)
-------------------------------------------------------------------
1st partial sums:  1,  9,  36, 100,  225,  441, ... (A000537)
2nd partial sums:  1, 10,  46, 146,  371,  812, ... (A024166)
3rd partial sums:  1, 11,  57, 203,  574, 1386, ... (A101094)
4th partial sums:  1, 12,  69, 272,  846, 2232, ... (A101097)
5th partial sums:  1, 13,  82, 354, 1200, 3432, ... (A101102)
6th partial sums:  1, 14,  96, 450, 1650, 5082, ... (A254469)
7th partial sums:  1, 15, 111, 561, 2211, 7293, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(7+n)*(7+7*n+n^2)/604800: n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) (7 + 7 n + n^2)/604800, {n, 26}] (* or *)
    CoefficientList[Series[(- 1 - 4 x - x^2)/(- 1 + x)^11, {x, 0, 25}], x]
    Nest[Accumulate,Range[30]^3,7] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,15,111,561,2211,7293,21021,54483,129558,286858,598026},30] (* Harvey P. Dale, Apr 24 2017 *)
  • PARI
    vector(50, n, n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(7 + 7*n + n^2)/604800) \\ Derek Orr, Feb 19 2015
    

Formula

G.f.: x*(1 + 4*x + x^2)/(1 - x)^11.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(7 + 7*n + n^2)/604800.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + n^3.
Sum_{n>=1} 1/a(n) = 1920*sqrt(3/7)*Pi*tan(sqrt(21)*Pi/2) - 251488/49. - Amiram Eldar, Jan 26 2022

A346642 a(n) = Sum_{j=1..n} Sum_{i=1..j} j^3*i^3.

Original entry on oeis.org

0, 1, 73, 1045, 7445, 35570, 130826, 399738, 1063290, 2539515, 5564515, 11362351, 21875503, 40068860, 70321460, 118921460, 194681076, 309689493, 480223005, 727832905, 1080632905, 1574809126, 2256376958, 3183210350, 4427370350, 6077760975, 8243141751
Offset: 0

Views

Author

Roudy El Haddad, Jan 24 2022

Keywords

Comments

a(n) is the sum of all products of two cubes of positive integers up to n, i.e., the sum of all products of two elements from the set of cubes {1^3, ..., n^3}.

Examples

			For n=3,
a(3) = (1*1)^3+(2*1)^3+(2*2)^3+(3*1)^3+(3*2)^3+(3*3)^3 = 1045,
a(3) = 1^3*(1^3)+2^3*(1^3+2^3)+3^3*(1^3+2^3+3^3) = 1045.
		

Crossrefs

Cf. A000537 (sum of first n cubes), A347107 (for distinct cubes).
Cf. A001296 (for power 1), A060493 (for squares).

Programs

  • Mathematica
    CoefficientList[Series[-(8 x^5 + 179 x^4 + 584 x^3 + 424 x^2 + 64 x + 1) x/(x - 1)^9, {x, 0, 26}], x] (* Michael De Vlieger, Feb 04 2022 *)
  • PARI
    {a(n) = n*(n+1)*(n+2)*(21n^5+69n^4+45n^3-21n^2-6n+4)/672};
    
  • PARI
    a(n) = sum(i=1, n, sum(j=1, i, i^3*j^3)); \\ Michel Marcus, Jan 27 2022
    
  • Python
    def A346642(n): return n*(n**2*(n*(n*(n*(n*(21*n + 132) + 294) + 252) + 21) - 56) + 8)//672 # Chai Wah Wu, Feb 17 2022

Formula

a(n) = n*(n+1)*(n+2)*(21*n^5+69*n^4+45*n^3-21*n^2-6*n+4)/672 (from the recurrent form of Faulhaber's formula).
G.f.: -(8*x^5+179*x^4+584*x^3+424*x^2+64*x+1)*x/(x-1)^9. - Alois P. Heinz, Jan 27 2022

A347107 a(n) = Sum_{1 <= i < j <= n} j^3*i^3.

Original entry on oeis.org

0, 0, 8, 251, 2555, 15055, 63655, 214918, 616326, 1561110, 3586110, 7612385, 15139553, 28506101, 51229165, 88438540, 147420940, 238291788, 374813076, 575377095, 864177095, 1272587195, 1840775123, 2619572626, 3672629650, 5078879650, 6935344650, 9360309933
Offset: 0

Views

Author

Roudy El Haddad, Jan 27 2022

Keywords

Comments

a(n) is the sum of all products of two distinct cubes of positive integers up to n, i.e., the sum of all products of two distinct elements from the set of cubes {1^3, ..., n^3}.

Examples

			For n=3, a(3) = (2*1)^3+(3*1)^3+(3*2)^3 = 251.
		

Crossrefs

Cf. A346642 (for nondistinct cubes).
Cf. A000217 (for power 0), A000914 (for power 1), A000596 (for squares).

Programs

  • Mathematica
    CoefficientList[Series[-(x^5 + 64 x^4 + 424 x^3 + 584 x^2 + 179 x + 8) x^2/(x - 1)^9, {x, 0, 27}], x] (* Michael De Vlieger, Feb 04 2022 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,0,8,251,2555,15055,63655,214918,616326},30] (* Harvey P. Dale, Jul 07 2025 *)
  • PARI
    a(n) = sum(i=2, n, sum(j=1, i-1, i^3*j^3));
    
  • PARI
    {a(n) = n*(n+1)*(n-1)*(21*n^5+36*n^4-21*n^3-48*n^2+8)/672};
    
  • Python
    def A347107(n): return n*(n**2*(n*(n*(n*(n*(21*n + 36) - 42) - 84) + 21) + 56) - 8)//672 # Chai Wah Wu, Feb 17 2022

Formula

a(n) = Sum_{j=2..n} Sum_{i=1..j-1} j^3*i^3.
a(n) = n*(n+1)*(n-1)*(21*n^5+36*n^4-21*n^3-48*n^2+8)/672 (from the generalized form of Faulhaber's formula).
From Alois P. Heinz, Jan 27 2022: (Start)
a(n) = Sum_{i=1..n} A000578(i)*A000537(i-1) = Sum_{i=1..n} i^3*(i*(i-1)/2)^2.
G.f.: -(x^5+64*x^4+424*x^3+584*x^2+179*x+8)*x^2/(x-1)^9. (End)

A078618 a(n) = floor(average of first n cubes).

Original entry on oeis.org

1, 4, 12, 25, 45, 73, 112, 162, 225, 302, 396, 507, 637, 787, 960, 1156, 1377, 1624, 1900, 2205, 2541, 2909, 3312, 3750, 4225, 4738, 5292, 5887, 6525, 7207, 7936, 8712, 9537, 10412, 11340, 12321, 13357, 14449, 15600, 16810, 18081, 19414, 20812, 22275
Offset: 1

Views

Author

Joseph L. Pe, Dec 10 2002

Keywords

Examples

			a(3) = floor((1 + 8 + 27)/3) = 12.
		

Crossrefs

Cf. A000537.

Programs

  • Maple
    ZL:=n->sum(i^3, i=1..n): a:=n->floor(numer(ZL(n))/n): seq(a(n), n=1..44); # Zerinvary Lajos, Mar 28 2007
  • Mathematica
    s = 0; a = {}; For[i = 1, i <= 100, i++, s = s + i^3; a = Append[a, Floor[(1/i) s]]]; a
  • PARI
    a(n)=n*(n^2+2*n+1)\4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = floor((1/n)*(Sum_{i=1..n} i^3)) = floor(n*(n+1)^2/4).
G.f.: x*(1+x+x^4+3*x^2) / ( (1+x)*(x^2+1)*(x-1)^4 ). - R. J. Mathar, Feb 20 2011
Previous Showing 71-80 of 193 results. Next