cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 67 results. Next

A000309 Number of rooted planar bridgeless cubic maps with 2n nodes.

Original entry on oeis.org

1, 1, 4, 24, 176, 1456, 13056, 124032, 1230592, 12629760, 133186560, 1436098560, 15774990336, 176028860416, 1990947110912, 22783499599872, 263411369705472, 3073132646563840, 36143187370967040, 428157758086840320, 5105072641718353920, 61228492804372561920
Offset: 0

Views

Author

Keywords

Comments

Also counts rooted planar non-separable triangulations with 3n edges. - Valery A. Liskovets, Dec 01 2003
Equivalently, rooted planar loopless triangulations with 2n triangles. - Noam Zeilberger, Oct 06 2016
Description trees of type (2,2) with n edges. (A description tree of type (a,b) is a rooted plane tree where every internal node is labeled by an integer between a and [b + sum of labels of its children], every leaf is labeled a, and the root is labeled [b + sum of labels of its children]. See Definition 1 and Section 5.2 of Cori and Schaeffer 2003.) - Noam Zeilberger, Oct 08 2017
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • GAP
    List([0..20], n -> 2^(n+1)*Factorial(3*n)/(Factorial(n)* Factorial(2*n+2))); # G. C. Greubel, Nov 29 2018
  • Magma
    [2^(n+1)*Factorial(3*n)/(Factorial(n)*Factorial(2*n+2)): n in [0..20]]; // Vincenzo Librandi, Aug 10 2014
    
  • Maple
    a := n -> 2^(n+1)*(3*n)!/(n!*(2*n+2)!);
    A000309 := n -> -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1): seq(simplify(A000309(n)), n = 0..21); # Peter Luschny, Oct 28 2022
  • Mathematica
    f[n_] := 2^n(3n)!/((n + 1)!(2n + 1)!); Table[f[n], {n, 0, 19}] (* Robert G. Wilson v, Sep 21 2004 *)
    Join[{1},RecurrenceTable[{a[1]==1,a[n]==4a[n-1] Binomial[3n,3]/ Binomial[2n+2,3]}, a[n],{n,20}]] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n) = 2^(n+1)*(3*n)!/(n!*(2*n+2)!); \\ Michel Marcus, Aug 09 2014
    
  • Sage
    [2^n*factorial(3*n)/(factorial(n+1)*factorial(2*n+1))for n in range(20)] # G. C. Greubel Nov 29 2018
    

Formula

a(n) = 2^(n-1) * A000139(n) for n > 0.
a(n) = 4*a(n-1)*binomial(3*n, 3) / binomial(2*n+2, 3).
a(n) = 2^n*(3*n)!/ ( (n+1)!*(2*n+1)! ).
G.f.: (1/(6*x)) * (hypergeom([ -2/3, -1/3],[1/2],(27/2)*x)-1). - Mark van Hoeij, Nov 02 2009
a(n) ~ 3^(3*n+1/2)/(sqrt(Pi)*2^(n+2)*n^(5/2)). - Ilya Gutkovskiy, Oct 06 2016
D-finite with recurrence (n+1)*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Nov 02 2018
a(n) = -(-2)^(n-1)*(3*n+2)*hypergeom([-3*(n+1),-n,-n+1/3], [-n-1,-n-2/3], 1). The a(n) are values of the polynomials A358091. - Peter Luschny, Oct 28 2022
From Karol A. Penson, Feb 24 2025: (Start)
G.f.: hypergeom([1/3, 2/3, 1], [3/2, 2], (27*z)/2).
G.f. A(z) satisfies: - 1 + 27*z + (-36*z + 1)*A(z) + 8*z*A(z)^2 + 16*z^2*A(z)^3 = 0.
G.f.: ((4*sqrt(4 - 54*z) + 12*i*sqrt(6)*sqrt(z))^(1/3)*(sqrt(z*(4 - 54*z)) - 9*i*sqrt(6)*z) + (4*sqrt(4 - 54*z) - 12*i*sqrt(6)*sqrt(z))^(1/3)*(9*i*sqrt(6)*z + sqrt(z*(4 - 54*z))) - 8*sqrt(z))/(48*z^(3/2)), where i = sqrt(-1) is the imaginary unit.
a(n) = Integral_{x=0..27/2} x^n*W(x), where W(x) = (6^(1/3)*(9 + sqrt(81 - 6*x))^(2/3)*(9*sqrt(3) - sqrt(27 - 2*x)) - 2^(2/3)*3^(1/6)*(27 + sqrt(81 - 6*x))*x^(1/3))/(48*Pi*(9 + sqrt(81 - 6*x))^(1/3)*x^(2/3)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem for x on (0, 27/2). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with singularity x^(-2/3), and for x > 0 is monotonically decreasing to zero at x = 27/2. (End)

Extensions

Definition clarified by Michael Albert, Oct 24 2008

A286781 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 2, 1, 10, 9, 1, 74, 91, 23, 1, 706, 1063, 416, 46, 1, 8162, 14193, 7344, 1350, 80, 1, 110410, 213953, 134613, 34362, 3550, 127, 1, 1708394, 3602891, 2620379, 842751, 125195, 8085, 189, 1, 29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1, 576037442, 1375636129, 1223392968, 533394516, 124266346, 15653598, 1023340, 31356, 366, 1
Offset: 0

Views

Author

Gheorghe Coserea, May 14 2017

Keywords

Comments

T(n,k) is the number of Feynman's diagrams with k fermionic loops in the order n of the perturbative expansion in dimension zero for the self-energy function in a many-body theory of fermions with two-body interaction (see Molinari link).

Examples

			A(x;t) = 1 + (2 + t)*x + (10 + 9*t + t^2)*x^2 + (74 + 91*t + 23*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k  [0]       [1]       [2]       [3]       [4]      [5]     [6]    [7]  [8]
[0]  1;
[1]  2,        1;
[2]  10,       9,        1;
[3]  74,       91,       23,       1;
[4]  706,      1063,     416,      46,       1;
[5]  8162,     14193,    7344,     1350,     80,      1;
[6]  110410,   213953,   134613,   34362,    3550,    127,    1;
[7]  1708394,  3602891,  2620379,  842751,   125195,  8085,   189,   1;
[8]  29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1;
[9] ...
		

Crossrefs

For vertex and polarization functions see A286782 and A286783. For GWA of the self-energy and polarization functions see A286784 and A286785.
Columns k=0-8 give: A000698(k=0), A286786(k=1), A286787(k=2), A286788(k=3), A286789(k=4), A286790(k=5), A286791(k=6), A286792(k=7), A286793(k=8).

Programs

  • Mathematica
    max = 10; y0[x_, t_] = 1; y1[x_, t_] = 0; For[n = 1, n <= max, n++, y1[x_, t_] = (1 + x*y0[x, t] + 2*x^2*D[y0[x, t], x])*(1 - x*y0[x, t]*(1 - t))/(1 - x*y0[x, t])^2 + O[x]^n // Normal; y0[x_, t_] = y1[x, t]];
    row[n_] := CoefficientList[Coefficient[y0[x, t], x, n], t];
    Table[row[n], {n, 0, max-1}] // Flatten (* Jean-François Alcover, May 19 2017, adapted from PARI *)
  • PARI
    A286781_ser(N,t='t) = {
      my(x='x+O('x^N), y0=1+O('x^N), y1=0, n=1);
      while(n++,
        y1 = (1 + x*y0 + 2*x^2*y0')*(1 - x*y0*(1-t))/(1-x*y0)^2;
        if (y1 == y0, break()); y0 = y1;);
      y0;
    };
    concat(apply(p->Vecrev(p), Vec(A286781_ser(10))))
    \\ test: y = A286781_ser(50); y*(1-x*y)^2 == (1 + x*y + 2*x^2*deriv(y,'x)) * (1 - x*y*(1-t))

Formula

y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y * (1-x*y)^2 = (1 + x*y + 2*x^2*deriv(y,x)) * (1 - x*y*(1-t)), with y(0;t) = 1, where P_n(t) = Sum_{k=0..n} T(n,k)*t^k, 0<=n, 0<=k<=n.
A000698(n+1)=T(n,0), A101986(n)=T(n,n-1), A000108(n)=P_n(-1), A286794(n)=P_n(1).

A105615 Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^((2*p-1)/2)) = (2*p-1)*(column p of T), or [T^((2*p-1)/2)](m,0) = (2*p-1)*T(p+m,p+1) for all m>=1 and p>=0.

Original entry on oeis.org

1, 2, 1, 10, 4, 1, 74, 26, 6, 1, 706, 226, 50, 8, 1, 8162, 2426, 522, 82, 10, 1, 110410, 30826, 6498, 1010, 122, 12, 1, 1708394, 451586, 93666, 14458, 1738, 170, 14, 1, 29752066, 7489426, 1532970, 235466, 28226, 2754, 226, 16, 1, 576037442
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2005

Keywords

Comments

Column 0 is A000698 (related to double factorials), offset 1. Column 1 is A105616 (column 0 of T^(1/2), offset 1). The matrix logarithm divided by 2 yields the integer triangle A105629.
Compare with triangular matrix A107717, which satisfies: SHIFT_LEFT(column 0 of A107717^((3*k-1)/3)) = (3*k-1)*(column k of A107717).

Examples

			SHIFT_LEFT(column 0 of T^(-1/2)) = -1*(column 0 of T);
SHIFT_LEFT(column 0 of T^(1/2)) = 1*(column 1 of T);
SHIFT_LEFT(column 0 of T^(3/2)) = 3*(column 2 of T);
SHIFT_LEFT(column 0 of T^(5/2)) = 5*(column 3 of T).
Triangle begins:
1;
2,1;
10,4,1;
74,26,6,1;
706,226,50,8,1;
8162,2426,522,82,10,1;
110410,30826,6498,1010,122,12,1;
1708394,451586,93666,14458,1738,170,14,1;
29752066,7489426,1532970,235466,28226,2754,226,16,1; ...
Matrix square-root T^(1/2) is A105623 which begins:
1;
1,1;
4,2,1;
26,10,3,1;
226,74,19,4,1;
2426,706,167,31,5,1; ...
compare column 0 of T^(1/2) to column 1 of T;
also, column 1 of T^(1/2) equals column 0 of T.
Matrix inverse square-root T^(-1/2) is A105620 which begins:
1;
-1,1;
-2,-2,1;
-10,-4,-3,1;
-74,-20,-7,-4,1;
-706,-148,-39,-11,-5,1; ...
compare column 0 of T^(-1/2) to column 0 of T.
Matrix inverse T^-1 is A105619 which begins:
1;
-2,1;
-2,-4,1;
-10,-2,-6,1;
-74,-10,-2,-8,1;
-706,-74,-10,-2,-10,1;
-8162,-706,-74,-10,-2,-12,1; ...
		

Crossrefs

Cf. A000698 (column 0), A105616 (column 1), A105617 (column 2), A105618 (row sums), A105619 (T^-1), A105620 (T^(-1/2)), A105623 (T^(1/2)), A105627 (T^(3/2)), A105629 (matrix log).
Cf. A107717.

Programs

  • PARI
    {T(n,k) = if(n
    				
  • PARI
    {T(n,k) = if(n=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))^-1)[n+1,k+1])}
    for(n=0,10,for(k=0,n,print1(T(n,k),", ")); print(""))

Formula

T(n, k) = 2*(k+1)*T(n, k+1) + Sum_{j=1..n-k-1} T(j, 0)*T(n, j+k+1) for n>k>=0, with T(n, n) = 1 for n>=0. T(n, 0) = A000698(n+1) for n>=0.

A258173 Sum over all Dyck paths of semilength n of products over all peaks p of y_p, where y_p is the y-coordinate of peak p.

Original entry on oeis.org

1, 1, 3, 12, 58, 321, 1975, 13265, 96073, 743753, 6113769, 53086314, 484861924, 4641853003, 46441475253, 484327870652, 5252981412262, 59132909030463, 689642443691329, 8319172260103292, 103645882500123026, 1331832693574410475, 17629142345935969713
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.
Number of general rooted ordered trees with n edges and "back edges", which are additional edges connecting vertices to their ancestors. Every vertex specifies an ordering on the edges to its children and back edges to its ancestors altogether; it may be connected to the same ancestor by multiple back edges, distinguishable only by their relative ordering under that vertex. - Li-yao Xia, Mar 06 2017

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
         `if`(x=0, 1, b(x-1, y-1, 0)*y^t+b(x-1, y+1, 1)))
        end:
    a:= n-> b(2*n, 0$2):
    seq(a(n), n=0..25);
  • Mathematica
    nmax = 25; Clear[g]; g[nmax+1] = 1; g[k_] := g[k] = 1 - x/(k*x + 2*x - 1/g[k+1]); CoefficientList[Series[g[0], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2015, after Sergei N. Gladkovskii *)

Formula

G.f.: T(0), where T(k) = 1 - x/(k*x + 2*x - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 20 2015
Conjecture: a(n) = A371567(n-1,0) for n > 0 with a(0) = 1. - Mikhail Kurkov, Nov 07 2024

A267827 Number of closed indecomposable linear lambda terms with 2n+1 applications and abstractions.

Original entry on oeis.org

1, 2, 20, 352, 8624, 266784, 9896448, 426577920, 20918138624, 1149216540160, 69911382901760, 4665553152081920, 338942971881472000, 26631920159494995968, 2250690001888540950528, 203595258621775065120768, 19629810220331494121865216
Offset: 0

Views

Author

Noam Zeilberger, Jan 21 2016

Keywords

Comments

A linear lambda term is indecomposable if it has no closed proper subterm.
Equivalently, number of closed bridgeless rooted trivalent maps (on compact oriented surfaces of arbitrary genus) with 2n+1 trivalent vertices (and 1 univalent vertex).
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

Examples

			A(x) = 1 + 2*x + 20*x^2 + 352*x^3 + 8624*x^4 + 266784*x^5 + ...
		

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = (6n-2) a[n-1] + Sum[(6k+2) a[k] a[n-1-k], {k, 1, n-2}];
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Oct 16 2018, after Gheorghe Coserea *)
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 2;
      for(n=2, N,
        a[n] = (6*n-2)*a[n-1] + sum(k=1, n-2, (6*k+2)*a[k]*a[n-1-k]));
      concat(1,a);
    };
    seq(16)
    \\ test 1: y = x^2*subst(Ser(seq(201)),'x,-'x^6); 0 == x^5*y*y' + y - x^2
    \\ test 2: y = Ser(seq(201)); 0 == 6*y*y'*x^2 + 2*y^2*x - y + 1
    \\ Gheorghe Coserea, Nov 10 2017
    F(N) = {
      my(x='x+O('x^N), t='t, F0=x, F1=0, n=1);
      while(n++,
        F1 = t + x*(F0 - subst(F0,t,0))^2 + x*deriv(F0,t);
        if (F1 == F0, break()); F0 = F1;);
      F0;
    };
    seq(N) = my(v=Vec(subst(F(2*N+2),'t,0))); vector((#v+1)\2, n, v[2*n-1]);
    seq(16) \\ Gheorghe Coserea, Apr 01 2017

Formula

The o.g.f. f(z) = z + 2*z^3 + 20*z^5 + 352*z^7 + ... can be defined using a catalytic variable as f(z) = F(z,0), where F(z,x) satisfies the functional-differential equation F(z,x) = x + z*(F(z,x) - F(z,0))^2 + z*(d/dx)F(z,x).
From Gheorghe Coserea, Nov 10 2017: (Start)
0 = x^5*y*y' + y - x^2, where y(x) = x^2*A(-x^6).
0 = 6*y*y'*x^2 + 2*y^2*x - y + 1, where y(x) = A(x).
a(n) = (6*n-2)*a(n-1) + Sum_{k=1..n-2} (6*k+2)*a(k)*a(n-1-k), for n >= 2.
(End)
a(n) = A291843(3*n+1, 2*n), n >= 1. - Danny Rorabaugh, Nov 10 2017

A168467 a(n) = Product_{k=0..n} ((2*k+2)*(2*k+3))^(n-k).

Original entry on oeis.org

1, 6, 720, 3628800, 1316818944000, 52563198423859200000, 327312129899898454671360000000, 428017682605583614976547335700480000000000, 152240508705590071980086429193304853792686080000000000000
Offset: 0

Views

Author

Paul Barry, Nov 26 2009

Keywords

Comments

Hankel transform of A000698(n+1).
The sequence 1,1,6,720,... with general term Product_{k=0..n, ((2k+1)(2k+0^k))^(n-k)} is the Hankel transform of A112934. - Paul Barry, Dec 04 2009
a(n) is also the determinant of the n X n matrix M(i,j) = i^(2*j)*sinh(2*j*arccsch(i))/(2*sqrt(i^2+1)), with i and j from 1 to n, which is the same matrix generated by sequences of length n by the linear recurrences with kernel { 2*(k^2 + z), -k^4 }, and initial conditions { 1, 2*(k^2 + z) }, with k from 1 to n, and z = 2. Regardless of the value of z, for every n, the determinant of the n X n matrix of polynomials generated gives always a(n) as result. - Federico Provvedi, Feb 01 2021

Examples

			From _Federico Provvedi_, Apr 01 2021: (Start)
From both formulas in the comment above and in particular with z=2 from the linear recurrences, the determinant of the 5 X 5 matrix: ( (1,6,35,204,1189), (1,12,128,1344,14080),(1,22,403,7084,123205), (1,36,1040,28224,749824), (1,54,2291,89964,3426181) ) = 1316818944000 = a(5).
For a generic z, the determinant doesn't change as shown in this example, where the determinant of the 3 X 3 square matrix:
( ( 1, 2*(z+1), (2*z + 1)*(2*z+3)  ),
  ( 1, 2*(z+4), 4*(z+6)*(z+2)      ),
  ( 1, 2*(z+9), (2*z + 9)(2*z + 27)) ) = 720 = a(3). (End)
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n^2 + 2*n + 23/24) Glaisher^(3/2) Pi^(-n/2 - 3/4) BarnesG[n + 2] BarnesG[n + 5/2]/E^(1/8), {n, 0, 10}] (* Vladimir Reshetnikov, Sep 06 2016 *)
    Table[Product[((2k+2)(2k+3))^(n-k),{k,0,n}],{n,0,10}] (* Harvey P. Dale, Dec 26 2019 *)
    Table[Det@Table[LinearRecurrence[{2*k^2,-k^4},{1, 2*k^2},n], {k, 1, n}], {n,1,20}] (* Federico Provvedi, Feb 01 2021 *)
    Det@Expand@Array[(#1^(2 #2))/(4 Sqrt[1 + #1^2])((Sqrt[1+1/#1^2]+1/#1)^(2 #2)-(Sqrt[1+1/#1^2]-1/#1)^(2 #2))&,{#,#}]&/@Range[20] (* Federico Provvedi, Apr 01 2021 *)
  • Python
    from math import prod
    def A168467(n): return prod(((m:=k+1<<1)*(m+1))**(n-k) for k in range(1,n+1))*3**n<Chai Wah Wu, Nov 26 2023

Formula

G.f.: Q(0)/(2*x) - 1/x, where Q(k) = 1 + 1/(1 - (2*k+1)!*x/((2*k+1)!*x + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 17 2013
a(n) = Product_{k=1..n} (2*k+1)!. - Vladimir Reshetnikov, Sep 06 2016
a(n) ~ A^(-1/2) * 2^(n^2 + 3*n + 53/24) * exp((-3/2)*n^2 + (-5/2)*n + 1/24) * n^(n^2 + (5/2)*n + 35/24) * Pi^((n+1)/2), where A = A074962 is the Glaisher-Kinkelin constant. - Vladimir Reshetnikov, Sep 06 2016
a(n) = A000178(2*n + 1) / A098694(n). - Vaclav Kotesovec, Oct 28 2017
a(n) = A202768(n)*A000142(n). - Federico Provvedi, Feb 01 2021
For n > 0, a(n) = n * (2*n+1) * sqrt(BarnesG(2*n)) * Gamma(2*n)^2 / (sqrt(Gamma(n)) * 2^((n-3)/2)). - Vaclav Kotesovec, Nov 27 2024

A002005 Number of rooted planar cubic maps with 2n vertices.

Original entry on oeis.org

1, 4, 32, 336, 4096, 54912, 786432, 11824384, 184549376, 2966845440, 48855252992, 820675092480, 14018773254144, 242919827374080, 4261707069259776, 75576645116559360, 1353050213048123392, 24428493151359467520, 444370175232646840320, 8138178004138611179520
Offset: 0

Views

Author

Keywords

Comments

Equivalently, number of rooted planar triangulations with 2n faces.
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018

References

  • R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
Column k=0 of A266240.

Programs

  • Maple
    seq(2*8^n*binomial(n*3/2, n)/((n + 2)*(n + 1)), n = 0..19); # Peter Luschny, Nov 14 2022
  • Mathematica
    Table[2^(2 n + 1) (3 n)!!/((n + 2)! n!!), {n, 0, 20}] (* Vincenzo Librandi, Dec 28 2015 *)
    CoefficientList[Series[(-1 + 96 z + Hypergeometric2F1[-2/3,-1/3,1/2,432z^2]- 96 z Hypergeometric2F1[-1/6,1/6,3/2,432z^2])/(192 z^2), {z, 0, 10}], z] (* Benedict W. J. Irwin, Aug 07 2016 *)
  • PARI
    factorial2(n) = my(x = (2^(n\2)*(n\2)!)); if (n%2, n!/x, x);
    a(n) = 2^(2*n+1)*factorial2(3*n)/((n+2)!*factorial2(n));
    vector(20, i, a(i-1))
    \\ test: y = Ser(vector(201, n, a(n-1))); x*(1-432*x^2)*y' == 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1
    \\ Gheorghe Coserea, Jun 13 2017

Formula

a(n) = 2^(2*n+1)*(3*n)!!/((n+2)!*n!!). - Sean A. Irvine, May 19 2013
a(n) ~ sqrt(6/Pi) * n^(-5/2) * (12*sqrt(3))^n. - Gheorghe Coserea, Feb 25 2016
G.f.: (96*x - 1 + 2F1(-2/3, -1/3; 1/2; 432*x^2) - 96*x*2F1(-1/6, 1/6; 3/2; 432*x^2))/(192*x^2). - Benedict W. J. Irwin, Aug 07 2016
From Gheorghe Coserea, Jun 13 2017: (Start)
G.f. y(x) satisfies:
x*(1-432*x^2)*deriv(y,x) = 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1.
0 = 64*x^3*y^3 + x*(1-96*x)*y^2 + (30*x-1)*y - 27*x + 1.
(End).
D-finite with recurrence (n+2)*(n+1)*a(n) -48*(3*n-2)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Feb 08 2021
From Karol A. Penson and Katarzyna Gorska (katarzyna.gorska@ifj.edu.pl), Nov 02 2022: (Start)
a(n) = Integral_{x=0..12*sqrt(3)} x^n*W(x), where
W(x) = (T1(x) + T2(x)) / T3(x), and
T1(x) = -x^(2/3) * (108 + sqrt(3) * sqrt(432 - x^2));
T2(x) = 3^(1/6)*(36+sqrt(3)*sqrt(432-x^2))^(2/3) * (-432+x^2+36*sqrt(3)* sqrt(432-x^2)) / sqrt(432-x^2);
T3(x) = (128*3^(5/6)*Pi*x^(1/3)*(36+sqrt(3)*sqrt(432-x^2))^(1/3)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with the singularity x^(-1/3), and for x > 0 is monotonically decreasing to zero at x = 12*sqrt(3). (End)
a(n) = 2^(3*n + 1)*binomial(n*3/2, n)/((n + 1)*(n + 2)) = A358367(n) / A000217(n + 1). - Peter Luschny, Nov 14 2022

Extensions

More terms from Sean A. Irvine, May 19 2013

A238396 Triangle T(n,k) read by rows: T(n,k) is the number of rooted genus-k maps with n edges, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 2, 0, 9, 1, 0, 54, 20, 0, 0, 378, 307, 21, 0, 0, 2916, 4280, 966, 0, 0, 0, 24057, 56914, 27954, 1485, 0, 0, 0, 208494, 736568, 650076, 113256, 0, 0, 0, 0, 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0, 17399772, 117822512, 248371380, 167808024, 24635754, 0, 0, 0, 0, 0, 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0
Offset: 0

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Examples

			Triangle starts:
00: 1,
01: 2, 0,
02: 9, 1, 0,
03: 54, 20, 0, 0,
04: 378, 307, 21, 0, 0,
05: 2916, 4280, 966, 0, 0, 0,
06: 24057, 56914, 27954, 1485, 0, 0, 0,
07: 208494, 736568, 650076, 113256, 0, 0, 0, 0,
08: 1876446, 9370183, 13271982, 5008230, 225225, 0, 0, 0, 0,
09: 17399772, 117822512, 248371380, 167808024, 24635754, 0, ...,
10: 165297834, 1469283166, 4366441128, 4721384790, 1495900107, 59520825, 0, ...,
11: 1602117468, 18210135416, 73231116024, 117593590752, 66519597474, 8608033980, 0, ...,
12: 15792300756, 224636864830, 1183803697278, 2675326679856, 2416610807964, 672868675017, 24325703325, 0, ...,
...
		

References

  • David M. Jackson and Terry I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman & Hall/CRC, circa 2000. See page 227.

Crossrefs

Sum of row n is A000698(n+1).
See A267180 for nonorientable analog.
The triangle without the zeros is A269919.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4n - 2)/3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n - k)-1) T[k-1, i] T[n-k-1, g-i] , {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
    Table[T[n, g], {n, 0, 10}, {g, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2018, after Gheorghe Coserea *)
  • PARI
    N=20;
    MEM=matrix(N+1,N+1, r,c, -1);  \\ for memoization
    Q(n,g)=
    {
        if (n<0,  return( (g<=0) ) ); \\ not given in paper
        if (g<0,  return( 0 ) ); \\ not given in paper
        if (n<=0, return( g==0 ) );  \\ as in paper
        my( m = MEM[n+1,g+1] );
        if ( m != -1,  return(m) );  \\ memoized value
        my( t=0 );
        t += (4*n-2)/3 * Q(n-1, g);
        t += (2*n-3)*(2*n-2)*(2*n-1)/12 * Q(n-2, g-1);
        my(l, j);
        t += 1/2*
            sum(k=1, n-1, l=n-k;  \\ l+k == n, both >= 1
                sum(i=0, g, j=g-i;  \\ i+j == g, both >= 0
                    (2*k-1)*(2*l-1) * Q(k-1, i) * Q(l-1, j)
                );
            );
        t *= 6/(n+1);
        MEM[n+1, g+1] = t;  \\ memoize
        return(t);
    }
    for (n=0, N, for (g=0, n, print1(Q(n, g),", "); );  print(); ); /* print triangle */

Formula

From Gheorghe Coserea, Mar 11 2016: (Start)
(n+1)/6 * T(n, g) = (4*n-2)/3 * T(n-1, g) + (2*n-3)*(2*n-2)*(2*n-1)/12 * T(n-2, g-1) + 1/2 * Sum_{k=1..n-1} Sum_{i=0..g} (2*k-1) * (2*(n-k)-1) * T(k-1, i) * T(n-k-1, g-i) for all n >= 1 and 0 <= g <= n/2, with the initial conditions T(0,0) = 1 and T(n,g) = 0 for g < 0 or g > n/2.
For column g, as n goes to infinity we have T(n,g) ~ t(g) * n^(5*(g-1)/2) * 12^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function.
(End)

A089949 Triangle T(n,k), read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 12, 34, 24, 0, 1, 20, 110, 210, 120, 0, 1, 30, 270, 974, 1452, 720, 0, 1, 42, 560, 3248, 8946, 11256, 5040, 0, 1, 56, 1036, 8792, 38338, 87504, 97296, 40320, 0, 1, 72, 1764, 20580, 129834, 463050, 920184, 930960, 362880
Offset: 0

Views

Author

Philippe Deléham, Jan 11 2004

Keywords

Comments

Row reverse appears to be A111184. - Peter Bala, Feb 17 2017

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,  2;
  0, 1,  6,   6;
  0, 1, 12,  34,  24;
  0, 1, 20, 110, 210,  120;
  0, 1, 30, 270, 974, 1452, 720; ...
		

Crossrefs

Row sums: A003319.

Programs

  • Mathematica
    m = 10;
    gf = (1/x)*(1-1/(1+Sum[Product[(1+k*y), {k, 0, n-1}]*x^n, {n, 1, m}]));
    CoefficientList[#, y]& /@ CoefficientList[gf + O[x]^m, x] // Flatten (* Jean-François Alcover, May 11 2019 *)
  • PARI
    T(n,k)=if(nPaul D. Hanna, Aug 16 2005

Formula

Sum_{k=0..n} x^(n-k)*T(n,k) = A111528(x, n); see A000142, A003319, A111529, A111530, A111531, A111532, A111533 for x = 0, 1, 2, 3, 4, 5, 6. - Philippe Deléham, Aug 09 2005
Sum_{k=0..n} T(n,k)*3^k = A107716(n). - Philippe Deléham, Aug 15 2005
Sum_{k=0..n} T(n,k)*2^k = A000698(n+1). - Philippe Deléham, Aug 15 2005
G.f.: A(x, y) = (1/x)*(1 - 1/(1 + Sum_{n>=1} [Product_{k=0..n-1}(1+k*y)]*x^n )). - Paul D. Hanna, Aug 16 2005

A258172 Sum over all Dyck paths of semilength n of products over all peaks p of x_p, where x_p is the x-coordinate of peak p.

Original entry on oeis.org

1, 1, 5, 40, 434, 5901, 95997, 1812525, 38875265, 932135347, 24678938063, 714385754446, 22428656766320, 758632387171075, 27489135956517315, 1061913384743418360, 43550536908458238570, 1889211624465639489675, 86406059558668152123975, 4154647501527354507485040
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, x, 1) +
                       b(x-1, y+1, true)  ))
        end:
    a:= n-> b(2*n, 0, false):
    seq(a(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False]*If[t, x, 1] + b[x - 1, y + 1, True]]];
    a[n_] := b[2*n, 0, False];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
Previous Showing 11-20 of 67 results. Next