A264569
T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having directed index change 1,0 1,1 0,-1 or -1,1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 4, 4, 2, 2, 8, 10, 8, 2, 4, 24, 44, 31, 16, 3, 4, 64, 143, 192, 79, 32, 4, 7, 160, 633, 1130, 888, 224, 64, 5, 9, 384, 2172, 8356, 7808, 4104, 646, 128, 7, 13, 960, 8409, 47571, 96429, 57265, 18540, 1784, 256, 9, 18, 2432, 32046, 305844, 868613
Offset: 1
Some solutions for n=4 k=4
..1..2..3..4..8....1..5..6..4..8....1..5..3..4..8....1..2..3..4..8
..0..7.11..9.13....0..7..2..9..3....0..7..2..9.13....0.10.11.12.13
..5..6.16.17.18...11.15.16.17.18...11..6.16.17.18....5..6..7.14..9
.10.20.21.12.14...10.20.12.13.14...10.20.21.12.14...16.20.21.19.23
.15.22.23.24.19...21.22.23.24.19...15.22.23.24.19...15.22.17.24.18
A023434
Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-4).
Original entry on oeis.org
0, 1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 27, 36, 48, 64, 85, 113, 150, 199, 264, 350, 464, 615, 815, 1080, 1431, 1896, 2512, 3328, 4409, 5841, 7738, 10251, 13580, 17990, 23832, 31571, 41823, 55404, 73395, 97228, 128800, 170624, 226029, 299425, 396654, 525455
Offset: 0
G.f. = x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + ...
a(7)=8, with (n-1)=6. The partially ordered partitions of 6 are (33),(321,312,132=one),(231,213,123=one),(3111,1311,1131,1113=one),(222),(2211,1122,1221,2112,1212,2121=one),(21111,12111,11211,11121,11112=one),(111111). - _David Neil McGrath_, Apr 26 2015
- Robert Israel, Table of n, a(n) for n = 0..7360
- O. Bouillot, The Algebra of Multitangent Functions, arXiv:1404.0992 [math.NT], 2014.
- O. Bouillot, The Algebra of Multitangent Functions, Journal of Algebra, Volume 410, 15 July 2014, Pages 148-238.
- J. H. E. Cohn, Letter to the editor, Fib. Quart. 2 (1964), 108.
- V. E. Hoggatt, Jr. and D. A. Lind, The dying rabbit problem, Fib. Quart. 7 (1969), 482-487.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1070
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1).
-
[0,1] cat [ n le 4 select (n) else Self(n-1)+Self(n-2)-Self(n-4): n in [1..45] ]; // Vincenzo Librandi, Apr 27 2015
-
f:= gfun:-rectoproc({a(n)=a(n-1)+a(n-2)-a(n-4),seq(a(i)=[0,1,1,2][i+1],i=0..3)},a(n),remember):
seq(f(i),i=0..100); # Robert Israel, May 04 2015
-
a[ n_] := If[ n < 0, SeriesCoefficient[ -x^3 / (1 - x^2 - x^3 + x^4), {x, 0, -n}], SeriesCoefficient[ x / (1 - x - x^2 + x^4), {x, 0, n}]]; (* Michael Somos, Nov 29 2013 *)
LinearRecurrence[{1, 1, 0, -1}, {0, 1, 1, 2}, 50] (* Vincenzo Librandi, Apr 27 2015 *)
-
{a(n) = polcoeff( if( n<0, -x^3 / (1 - x^2 - x^3 + x^4), x / (1 - x - x^2 + x^4)) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, Nov 29 2013 */
-
x='x+O('x^99); concat(0, Vec(x/((1-x)*(1-x^2-x^3)))) \\ Altug Alkan, Apr 09 2018
A053088
a(n) = 3*a(n-2) + 2*a(n-3) for n > 2, a(0)=1, a(1)=0, a(2)=3.
Original entry on oeis.org
1, 0, 3, 2, 9, 12, 31, 54, 117, 224, 459, 906, 1825, 3636, 7287, 14558, 29133, 58248, 116515, 233010, 466041, 932060, 1864143, 3728262, 7456549, 14913072, 29826171, 59652314, 119304657, 238609284, 477218599, 954437166, 1908874365
Offset: 0
Pauline Gorman (pauline(AT)gorman65.freeserve.co.uk), Feb 26 2000
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Iwan Duursma, Xiao Li, and Hsin-Po Wang, Multilinear Algebra for Distributed Storage, arXiv:2006.08911 [cs.IT], 2020.
- Index entries for linear recurrences with constant coefficients, signature (0,3,2).
-
CoefficientList[Series[1/(1 - 3 x^2 - 2 x^3), {x, 0, 32}], x] (* Michael De Vlieger, Sep 30 2019 *)
-
c(n)=(2^(n+1)-(-1)^n*(3*n+2))/9; a(n)=c(n+1); \\ Stanislav Sykora, Nov 27 2013
A264476
T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having directed index change 0,1 1,0 2,1 or -1,-1.
Original entry on oeis.org
0, 1, 1, 0, 2, 0, 0, 4, 4, 1, 1, 8, 6, 8, 1, 0, 17, 16, 16, 16, 1, 0, 36, 57, 120, 49, 32, 2, 1, 76, 160, 456, 456, 124, 64, 2, 0, 160, 484, 2272, 3540, 2232, 384, 128, 3, 0, 337, 1449, 11044, 28489, 24773, 10116, 1041, 256, 4, 1, 710, 4250, 49200, 215607, 310748
Offset: 1
Some solutions for n=4 k=4
..6..0..1..9..3....6..0..1..2..3....6..7..8..9..3....6..7..8..2..3
.11..5..2..7..4...11.12.13.14..4....0..1..2.14..4....0..1.13.14..4
.16.10.18..8.13....5.10..7.19..9...16.10.11.19.13...16.17.11.12..9
.21.22.23.24.14...21.22.16.24..8...21..5.12.24.18...10..5.23.24.18
.15.20.17.12.19...15.20.17.18.23...15.20.17.22.23...15.20.21.22.19
A052921
Expansion of (1 - x)/(1 - 3*x + 2*x^2 - x^3).
Original entry on oeis.org
1, 2, 4, 9, 21, 49, 114, 265, 616, 1432, 3329, 7739, 17991, 41824, 97229, 226030, 525456, 1221537, 2839729, 6601569, 15346786, 35676949, 82938844, 192809420, 448227521, 1042002567, 2422362079, 5631308624, 13091204281, 30433357674, 70748973084, 164471408185
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
G.f. = 1 + 2*x + 4*x^2 + 9*x^3 + 21*x^4 + 49*x^5 + 114*x^6 + 265*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
- I. M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 905
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
-
a:=[1,2,4];; for n in [4..40] do a[n]:=3*a[n-1]-2*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Oct 16 2019
-
I:=[1,2,4]; [n le 3 select I[n] else 3*Self(n-1)-2*Self(n-2) +Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-3*x+2*x^2-x^3) )); // Marius A. Burtea, Oct 16 2019
-
spec := [S,{S=Sequence(Union(Z,Z,Prod(Sequence(Z),Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..29);
A052921 := proc(n): add(binomial(n+k+1, n-2*k),k=0..n+1) end: seq(A052921(n), n=0..29); # Johannes W. Meijer, Aug 16 2011
-
LinearRecurrence[{3,-2,1},{1,2,4},40] (* Vincenzo Librandi, Feb 14 2012 *)
CoefficientList[Series[(1-x)/(1-3*x+2*x^2-x^3),{x,0,30}],x] (* Harvey P. Dale, Nov 09 2019 *)
-
my(x='x+O('x^40)); Vec((1-x)/(1 -3*x +2*x^2 -x^3)) \\ G. C. Greubel, Oct 16 2019
-
def A077952_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1-x)/(1 -3*x +2*x^2 -x^3)).list()
A077952_list(40) # G. C. Greubel, Oct 16 2019
A103373
a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1 and for n>6: a(n) = a(n-5) + a(n-6).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 7, 8, 8, 8, 9, 12, 15, 16, 16, 17, 21, 27, 31, 32, 33, 38, 48, 58, 63, 65, 71, 86, 106, 121, 128, 136, 157, 192, 227, 249, 264, 293, 349, 419, 476, 513, 557, 642, 768, 895, 989, 1070, 1199, 1410, 1663, 1884, 2059, 2269
Offset: 1
a(22) = 9 because a(22) = a(22-5) + a(22-6) = a(17) + a(16) = 5 + 4 = 9.
- Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [The hal link does not always work. - _N. J. A. Sloane_, Feb 19 2025]
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [Local copy with annotations and a correction from _N. J. A. Sloane_, Feb 19 2025]
- Richard Padovan, Dom Hans van der Laan and the Plastic Number.
- E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956) 287-302.
- J. Shallit, A generalization of automatic sequences, Theoretical Computer Science, 61 (1988) 1-16.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,1).
-
k = 5; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 65]
RecurrenceTable[{a[n] == a[n - 5] + a[n - 6], a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == 1}, a, {n, 65}] (* or *)
Rest@ CoefficientList[Series[-x (1 + x + x^2 + x^3 + x^4)/(-1 + x^5 + x^6), {x, 0, 65}], x] (* Michael De Vlieger, Oct 03 2016 *)
LinearRecurrence[{0,0,0,0,1,1},{1,1,1,1,1,1},70] (* Harvey P. Dale, Jul 20 2019 *)
-
a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,1,0,0,0,0]^(n-1)*[1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
x='x+O('x^50); Vec(x*(1+x+x^2+x^3+x^4)/(1-x^5-x^6 )) \\ G. C. Greubel, May 01 2017
A020720
Pisot sequences E(7,9), P(7,9).
Original entry on oeis.org
7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456, 696081, 922111, 1221537
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- S. B. Ekhad, N. J. A. Sloane, and D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT], 2016.
- Yuksel Soykan, Vedat Irge, and Erkan Tasdemir, A Comprehensive Study of K-Circulant Matrices Derived from Generalized Padovan Numbers, Asian Journal of Probability and Statistics 26 (12):152-70, (2024). See p. 154.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1).
See
A008776 for definitions of Pisot sequences.
-
LinearRecurrence[{0, 1, 1}, {7, 9, 12}, 50] (* Jean-François Alcover, Aug 31 2018 *)
CoefficientList[Series[(7 + 9 x + 5 x^2)/(1 - x^2 - x^3), {x, 0, 50}], x] (* Stefano Spezia, Aug 31 2018 *)
A089068
a(n) = a(n-1)+a(n-2)+a(n-3)+2 with a(0)=0, a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 0, 1, 3, 6, 12, 23, 43, 80, 148, 273, 503, 926, 1704, 3135, 5767, 10608, 19512, 35889, 66011, 121414, 223316, 410743, 755475, 1389536, 2555756, 4700769, 8646063, 15902590, 29249424, 53798079, 98950095, 181997600, 334745776, 615693473
Offset: 0
-
Join[{a=0,b=0,c=1},Table[d=a+b+c+2;a=b;b=c;c=d,{n,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
RecurrenceTable[{a[0]==a[1]==0,a[2]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+2}, a[n],{n,40}] (* or *) LinearRecurrence[{2,0,0,-1},{0,0,1,3},40] (* Harvey P. Dale, Sep 19 2011 *)
Definition based on arbitrarily set floating-point precision removed by
R. J. Mathar, Sep 30 2010
A219967
Number A(n,k) of tilings of a k X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 0, 2, 4, 3, 4, 2, 0, 1, 1, 0, 3, 8, 8, 8, 8, 3, 0, 1, 1, 1, 4, 13, 21, 28, 21, 13, 4, 1, 1, 1, 0, 5, 19, 31, 65, 65, 31, 19, 5, 0, 1, 1, 0, 7, 35, 70, 170, 267, 170, 70, 35, 7, 0, 1
Offset: 0
A(4,4) = 3, because there are 3 tilings of a 4 X 4 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:
._._____. ._____._. ._._._._.
| |_____| |_____| | | . | . |
| | . | | | | . | | |___|___|
|_|___| | | |___|_| | . | . |
|_____|_| |_|_____| |___|___| .
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 1, 0, 0, 1, 0, 0, ...
1, 0, 1, 1, 1, 2, 2, 3, 4, ...
1, 1, 1, 2, 3, 4, 8, 13, 19, ...
1, 0, 1, 3, 3, 8, 21, 31, 70, ...
1, 0, 2, 4, 8, 28, 65, 170, 456, ...
1, 1, 2, 8, 21, 65, 267, 804, 2530, ...
1, 0, 3, 13, 31, 170, 804, 2744, 12343, ...
1, 0, 4, 19, 70, 456, 2530, 12343, 66653, ...
Columns (or rows) k=0-10 give:
A000012,
A079978,
A000931(n+3),
A219968,
A202536,
A219969,
A219970,
A219971,
A219972,
A219973,
A219974.
-
b:= proc(n, l) option remember; local k, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od;
b(n, subsop(k=3, l))+
`if`(k `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, l_] := b[n, l] = Module[{ k, t}, If [Max[l] > n, 0, If[n == 0 || l == {}, 1, If[ Min[l] > 0 ,t = Min[l]; b[n-t, l-t], k = Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k -> 3]] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 2, k+1 -> 2}]], 0] + If[k+1 < Length[l] && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1, k+2 -> 1}]], 0] ] ] ] ]; a[n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 16 2013, translated from Maple *)
A103374
a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = 1 and for n>7: a(n) = a(n-6) + a(n-7).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 17, 21, 27, 31, 32, 32, 33, 38, 48, 58, 63, 64, 65, 71, 86, 106, 121, 127, 129, 136, 157, 192, 227, 248, 256, 265, 293, 349, 419, 475, 504, 521, 558, 642, 768, 894, 979, 1025, 1079
Offset: 1
a(32) = 17 because a(32) = a(32-6) + a(32-7) = a(26) + a(25) = 9 + 8 = 17.
- Zanten, A. J. van, "The golden ratio in the arts of painting, building and mathematics", Nieuw Archief voor Wiskunde, 4 (17) (1999) 229-245.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [The hal link does not always work. - _N. J. A. Sloane_, Feb 19 2025]
- J.-P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in G. Assayag, M. Chemillier, and C. Eloy, Troisièmes Journées d'Informatique Musicale, JIM '96, Île de Tatihou, France, 1996, pp. 2-7. [Local copy with annotations and a correction from _N. J. A. Sloane_, Feb 19 2025]
- Richard Padovan, Dom Hans van der Laan and the Plastic Number.
- E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956) 287-302.
- J. Shallit, A generalization of automatic sequences, Theoretical Computer Science, 61 (1988) 1-16.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,1).
-
k = 6; Do[a[n] = 1, {n, k + 1}]; a[n_] := a[n] = a[n - k] + a[n - k - 1]; Array[a, 70]
RecurrenceTable[{a[n] == a[n - 6] + a[n - 7], a[1] == a[2] == a[3] == a[4] == a[5] == a[6] == a[7] == 1}, a, {n, 70}] (* or *)
Rest@ CoefficientList[Series[-x (1 + x) (1 + x + x^2) (x^2 - x + 1)/(-1 + x^6 + x^7), {x, 0, 70}], x] (* Michael De Vlieger, Oct 03 2016 *)
LinearRecurrence[{0,0,0,0,0,1,1},{1,1,1,1,1,1,1},80] (* Harvey P. Dale, Sep 02 2024 *)
-
a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 1,1,0,0,0,0,0]^(n-1)*[1;1;1;1;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
x='x+O('x^50); Vec(x*(1+x)*(1+x+x^2)*(x^2-x+1)/(1-x^6-x^7)) \\ G. C. Greubel, May 01 2017
Comments