cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 207 results. Next

A134108 Number of integral solutions with nonnegative y to Mordell's equation y^2 = x^3 + n.

Original entry on oeis.org

3, 1, 1, 1, 1, 0, 0, 4, 5, 1, 0, 2, 0, 0, 2, 1, 8, 1, 1, 0, 0, 1, 0, 4, 1, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 4, 3, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 3, 0, 0, 0, 0, 0, 2, 3, 4, 0, 0, 2, 0, 0, 1, 1, 6, 0, 0, 1, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 4, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 6, 2, 0, 0, 0, 1
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007, Oct 14 2007

Keywords

Comments

a(n) = A081119(n)/2 if A081119(n) is even, (A081119(n)+1)/2 if A081119(n) is odd (i.e. if n is a cubic number).
Comment from T. D. Noe, Oct 12 2007: In sequences A134108 (this entry) and A134109 dealing with the equation y^2 = x^3 + n, one could note that these are Mordell equations. Here are some related sequences: A054504, A081119, A081120, A081121. The link "Integer points on Mordell curves" has data on 20000 values of n. A134108 and A134109 count only solutions with y >= 0 and can be derived from A081119 and A081120.

Examples

			y^2 = x^3 + 1 has solutions (y, x) = (0, -1), (1, 0) and (3, 2), hence a(1) = 3.
y^2 = x^3 + 6 has no solutions, hence a(6) = 0.
y^2 = x^3 + 17 has 8 solutions (see A029727, A029728), hence a(17) = 8.
y^2 = x^3 + 27 has solution (y, x) = (0, -3), hence a(27) = 1.
		

Crossrefs

Programs

A024004 a(n) = 1 - n^6.

Original entry on oeis.org

1, 0, -63, -728, -4095, -15624, -46655, -117648, -262143, -531440, -999999, -1771560, -2985983, -4826808, -7529535, -11390624, -16777215, -24137568, -34012223, -47045880, -63999999, -85766120, -113379903, -148035888, -191102975, -244140624, -308915775, -387420488, -481890303
Offset: 0

Views

Author

N. J. A. Sloane, corrected Mar 01 2007

Keywords

Crossrefs

Cf. A001014.
a(n) = -A123866(n) for n > 0.

Programs

Formula

From G. C. Greubel, May 11 2017: (Start)
G.f.: (1 - 7*x - 42*x^2 - 322*x^3 - 287*x^4 - 63*x^5)/(1 - x)^7.
E.g.f.: (1 - x - 31*x^2 - 90*x^3 - 65*x^4 - 15*x^5 - x^6)*exp(x). (End)
Sum_{k>=2} -1/a(k) = 11/12 - Pi*tanh(sqrt(3)*Pi/2)/(2*sqrt(3)) = A339529. - Vaclav Kotesovec, Dec 08 2020

A031508 a(n) = smallest k > 0 such that the elliptic curve y^2 = x^3 - k has rank n, or -1 if no such k exists.

Original entry on oeis.org

1, 2, 11, 174, 2351, 28279, 975379
Offset: 0

Views

Author

Keywords

Comments

See A031507 for the smallest k>0 such that the elliptic curve y^2 = x^3 + k has rank n. - Jonathan Sondow, Sep 06 2013
See A060951 for the rank of y^2 = x^3 - n. - Jonathan Sondow, Sep 10 2013
Gebel, Pethö, & Zimmer: "One experimental observation derived from the tables is that the rank r of Mordell's curves grows according to r = O(log |k|/|log log |k||^(2/3))." Hence this fit suggests a(n) >> exp(n (log n)^(1/3)) where >> is the Vinogradov symbol. - Charles R Greathouse IV, Sep 10 2013
a(7) <= 56877643. a(8) <= 2520963512. a(9) <= 463066403167. a(10) <= 56736325657288. a(11) <= 46111487743732324. a(12) <= 6533891544658786928. See Table 3.3 in [Womack 2003]. - Jose Aranda, Jun 30 2024
The three questions for arbitrary k, positive k, and negative k are not very far from each other because the curves for k and -27k are related by a 3-isogeny and therefore have the same rank. It would be most natural to ask for the minimal |k| for k of either sign [see A373795]. - Noam D. Elkies, Jul 02 2024
a(16) <= 1160221354461565256631205207888 (Elkies, ANTS-XVI, 2024). The same article also establishes the existence of a value of k which has rank >= 17. - N. J. A. Sloane, Jul 05 2024

Examples

			From _M. F. Hasler_, Jul 01 2024: (Start)
Sequence A060951 = (0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 1, ...) gives the analytic rank of the elliptic curve y^2 = x^3 - k for k = 1, 2, 3, ...
We can see that:
  - the smallest k that gives rank 0 is k = 1 = a(0);
  - the smallest k that gives rank 1 is k = 2 = a(1);
  - the smallest k that gives rank 2 is k = 11 = a(2); etc. (End)
		

References

  • Noam D. Elkies, Rank of an elliptic curve and 3-rank of a quadratic field via the Burgess bounds, 2024 Algorithmic Number Theory Symposium, ANTS-XVI, MIT, July 2024.

Crossrefs

Programs

  • PARI
    {a(n) = my(k=1); while(ellanalyticrank(ellinit([0, 0, 0, 0, -k]))[1]<>n, k++); k} \\ Seiichi Manyama, Aug 24 2019
    
  • PARI
    {A031508(n)=for(k=1,oo, ellrank(ellinit([0, -k]))[1]==n && return(k))} \\ M. F. Hasler, Jul 01 2024

Formula

a(n) = min { k >= 1 | A060951(k) == n }. - M. F. Hasler, Jul 01 2024

Extensions

Definition clarified by Jonathan Sondow, Oct 26 2013.
Escape clause added to definition by N. J. A. Sloane, Jun 29 2024, because, as John Cremona reminds me, it is not known if k always exists.

A179149 Numbers k such that Mordell's equation y^2 = x^3 + k has exactly 5 integral solutions.

Original entry on oeis.org

1, 64, 729, 1000, 2744, 4096, 15625, 21952, 35937, 46656, 50653, 64000, 117649, 262144, 343000, 531441, 592704, 681472, 729000, 753571, 1000000, 1124864, 1771561, 2000376, 2197000, 2299968, 2744000, 2985984, 3652264, 4096000, 4826809, 5451776, 6229504, 7189057, 7529536
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Comments

Contains all sixth powers: suppose that y^2 = x^3 + t^6, then (y/t^3)^2 = (x/t^2)^3 + 1. The elliptic curve Y^2 = X^3 + 1 has rank 0 and the only rational points on it are (-1,0), (0,+-1), and (2,+-3), so y^2 = x^3 + t^6 has 5 solutions (-t^2,0), (0,+-t^3), and (2*t^2,+-3*t^3). - Jianing Song, Aug 24 2022

Crossrefs

Formula

a(n) = A356711(n)^3.

Extensions

Edited and extended by Ray Chandler, Jul 11 2010
a(31)-a(35) from Max Alekseyev, Jun 01 2023

A272914 Sixth powers ending in digit 6.

Original entry on oeis.org

4096, 46656, 7529536, 16777216, 191102976, 308915776, 1544804416, 2176782336, 7256313856, 9474296896, 24794911296, 30840979456, 68719476736, 82653950016, 164206490176, 192699928576, 351298031616, 404567235136, 689869781056, 782757789696, 1265319018496, 1418519112256, 2194972623936
Offset: 1

Views

Author

Bruno Berselli, May 24 2016

Keywords

Comments

Other sequences of k-th powers ending in digit k are: A017281 (k=1), A017355 (k=3), A017333 (k=5), A017311 (k=7), A017385 (k=9). It is missing k=4 because the fourth powers end with 0, 1, 5 or 6.
Union of A017322 and A017346.
a(h)^(1/6) is a member of A068408 for h = 2, 4, 8, 12, 16, 20, 36, 76, ...

Crossrefs

Similar sequences (see comment): A017281, A017311, A017333, A017355, A017385.

Programs

  • Magma
    /* By definition: */ k:=6; [n^k: n in [0..200] | Modexp(n, k, 10) eq k];
    
  • Magma
    [(10*n-3*(-1)^n-5)^6/64: n in [1..30]];
    
  • Mathematica
    Table[(10 n - 3 (-1)^n - 5)^6/64, {n, 1, 30}]
  • Maxima
    makelist((10*n-3*(-1)^n-5)^6/64, n, 1, 30);
  • PARI
    vector(30, n, nn; (10*n-3*(-1)^n-5)^6/64)
    
  • Sage
    [(10*n-3*(-1)^n-5)^6/64 for n in (1..30)]
    

Formula

O.g.f.: 64*x*(64 + 665*x + 116536*x^2 + 140505*x^3 + 2023280*x^4 + 983830*x^5 + 4720240*x^6 + 983830*x^7 + 2023280*x^8 + 140505*x^9 + 116536*x^10 + 665*x^11 + 64*x^12)/((1 + x)^6*(1 - x)^7).
E.g.f.: (-8192 + 45*(91 + 182*x - 5250*x^2 + 16000*x^3 - 9375*x^4 + 1250*x^5)*exp(-x) + (4097 + 287000*x^2 + 1262500*x^3 + 1253125*x^4 + 375000*x^5 + 31250*x^6)*exp(x))/2.
a(n) = (10*n - 3*(-1)^n - 5)^6/64 = 64*A047221(n)^6.

A284927 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^6.

Original entry on oeis.org

1, 63, 730, 4031, 15626, 45990, 117650, 257983, 532171, 984438, 1771562, 2942630, 4826810, 7411950, 11406980, 16510911, 24137570, 33526773, 47045882, 62988406, 85884500, 111608406, 148035890, 188327590, 244156251, 304089030, 387952660, 474247150, 594823322
Offset: 1

Views

Author

Seiichi Manyama, Apr 06 2017

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A001014 and A062157 which are both multiplicative. - Andrew Howroyd, Jul 20 2018

Crossrefs

Sum_{d|n} (-1)^(n/d+1)*d^k: A000593 (k=1), A078306 (k=2), A078307 (k=3), A284900 (k=4), A284926 (k=5), this sequence (k=6), A321552 (k=7), A321553 (k=8), A321554 (k=9), A321555 (k=10), A321556 (k=11), A321557 (k=12).

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1)*d^6, {d, Divisors[n]}], {n, 50}] (* Indranil Ghosh, Apr 06 2017 *)
    f[p_, e_] := (p^(6*e + 6) - 1)/(p^6 - 1); f[2, e_] := (31*2^(6*e + 1) + 1)/63; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^6); \\ Indranil Ghosh, Apr 06 2017
    
  • Python
    from sympy import divisors
    print([sum([(-1)**(n//d + 1)*d**6 for d in divisors(n)]) for n in range(1, 51)]) # Indranil Ghosh, Apr 06 2017

Formula

G.f.: Sum_{k>=1} k^6*x^k/(1 + x^k). - Ilya Gutkovskiy, Apr 07 2017
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (31*2^(6*e+1)+1)/63, and a(p^e) = (p^(6*e+6) - 1)/(p^6 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^7, where c = 9*zeta(7)/64 = 0.141799... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A016782 a(n) = (3*n+1)^6.

Original entry on oeis.org

1, 4096, 117649, 1000000, 4826809, 16777216, 47045881, 113379904, 244140625, 481890304, 887503681, 1544804416, 2565726409, 4096000000, 6321363049, 9474296896, 13841287201, 19770609664, 27680640625, 38068692544, 51520374361, 68719476736, 90458382169, 117649000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(3*n+1)^6: n in [0..30]]; // Vincenzo Librandi, Sep 21 2011
  • Mathematica
    Table[(3n+1)^6,{n,0,100}] (* Mohammad K. Azarian, Jun 15 2016 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,4096,117649,1000000,4826809,16777216,47045881},20] (* Harvey P. Dale, Sep 30 2016 *)

Formula

a(n) = A001014(A016777(n)). - Michel Marcus, Jun 15 2016
From Ilya Gutkovskiy, Jun 15 2016: (Start)
G.f.: (1 + 4089*x + 88998*x^2 + 262438*x^3 + 154113*x^4 + 15177*x^5 + 64*x^6)/(1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). (End)
Sum_{n>=0} 1/a(n) = PolyGamma(5, 1/3)/87480. - Amiram Eldar, Mar 29 2022

A016794 a(n) = (3*n + 2)^6.

Original entry on oeis.org

64, 15625, 262144, 1771561, 7529536, 24137569, 64000000, 148035889, 308915776, 594823321, 1073741824, 1838265625, 3010936384, 4750104241, 7256313856, 10779215329, 15625000000, 22164361129, 30840979456, 42180533641, 56800235584, 75418890625, 98867482624, 128100283921
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001014.

Programs

Formula

From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016789(n)^6 = A016790(n)^3 = A016791(n)^2.
Sum_{n>=0} 1/a(n) = PolyGamma(5, 2/3)/87480. (End)

A016950 a(n) = (6*n + 3)^6.

Original entry on oeis.org

729, 531441, 11390625, 85766121, 387420489, 1291467969, 3518743761, 8303765625, 17596287801, 34296447249, 62523502209, 107918163081, 177978515625, 282429536481, 433626201009, 646990183449, 941480149401, 1340095640625, 1870414552161, 2565164201769, 3462825991689
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^6 = A016946(n)^3 = A016947(n)^2.
a(n) = 3^6*A016758(n).
Sum_{n>=0} 1/a(n) = Pi^6/699840. (End)

A016962 a(n) = (6*n + 4)^6.

Original entry on oeis.org

4096, 1000000, 16777216, 113379904, 481890304, 1544804416, 4096000000, 9474296896, 19770609664, 38068692544, 68719476736, 117649000000, 192699928576, 304006671424, 464404086784, 689869781056, 1000000000000, 1418519112256, 1973822685184, 2699554153024, 3635215077376
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+4)^6: n in [0..25]]; // Vincenzo Librandi, May 06 2011
  • Mathematica
    (6Range[0,20]+4)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{4096,1000000,16777216,113379904,481890304,1544804416,4096000000},20] (* Harvey P. Dale, Aug 08 2019 *)

Formula

From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016957(n)^6 = A016958(n)^3 = A016959(n)^2.
a(n) = 64*A016794(n).
Sum_{n>=0} 1/a(n) = PolyGamma(5, 2/3)/5598720. (End)
Previous Showing 51-60 of 207 results. Next