cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 227 results. Next

A074650 Table T(n,k) read by downward antidiagonals: number of Lyndon words (aperiodic necklaces) with n beads of k colors, n >= 1, k >= 1.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 3, 2, 0, 5, 6, 8, 3, 0, 6, 10, 20, 18, 6, 0, 7, 15, 40, 60, 48, 9, 0, 8, 21, 70, 150, 204, 116, 18, 0, 9, 28, 112, 315, 624, 670, 312, 30, 0, 10, 36, 168, 588, 1554, 2580, 2340, 810, 56, 0, 11, 45, 240, 1008, 3360, 7735, 11160, 8160, 2184, 99, 0
Offset: 1

Views

Author

Christian G. Bower, Aug 28 2002

Keywords

Comments

D. E. Knuth uses the term 'prime strings' for Lyndon words because of the fundamental theorem stating the unique factorization of strings into nonincreasing prime strings (see Knuth 7.2.1.1). With this terminology T(n,k) is the number of k-ary n-tuples (a_1,...,a_n) such that the string a_1...a_n is prime. - Peter Luschny, Aug 14 2012
Also, for k a power of a prime, the number of monic irreducible polynomials of degree n over GF(k). - Andrew Howroyd, Dec 23 2017
An equivalent description: Array read by antidiagonals: T(n,k) = number of conjugacy classes of primitive words of length k >= 1 over an alphabet of size n >= 1.
There are a few incorrect values in Table 1 in the Perrin-Reutenauer paper (Christophe Reutenauer, personal communication), see A294438. - Lars Blomberg, Dec 05 2017
The fact that T(3,4) = 20 coincides with the number of the amino acids encoded by DNA made Francis Crick, John Griffith and Leslie Orgel conjecture in 1957 that the genetic code is a comma-free code, which later turned out to be false. [Hayes] - Andrey Zabolotskiy, Mar 24 2018

Examples

			T(4, 3) counts the 18 ternary prime strings of length 4 which are: 0001, 0002, 0011, 0012, 0021, 0022, 0102, 0111, 0112, 0121, 0122, 0211, 0212, 0221, 0222, 1112, 1122, 1222.
Square array starts:
  1,  2,   3,    4,     5,     6,      7, ...
  0,  1,   3,    6,    10,    15,     21, ...
  0,  2,   8,   20,    40,    70,    112, ...
  0,  3,  18,   60,   150,   315,    588, ...
  0,  6,  48,  204,   624,  1554,   3360, ...
  0,  9, 116,  670,  2580,  7735,  19544, ...
  0, 18, 312, 2340, 11160, 39990, 117648, ...
  ...
The transposed array starts:
   1  0  0     0     0      0       0        0         0          0,
   2  1  2     3     6      9      18       30        56         99,
   3  3  8    18    48    116     312      810      2184       5880,
   4  6  20   60   204    670    2340     8160     29120     104754,
   5 10  40  150   624   2580   11160    48750    217000     976248,
   6 15  70  315  1554   7735   39990   209790   1119720    6045837,
   7 21 112  588  3360  19544  117648   720300   4483696   28245840,
   8 28 168 1008  6552  43596  299592  2096640  14913024  107370900,
   9 36 240 1620 11808  88440  683280  5380020  43046640  348672528,
  10 45 330 2475 19998 166485 1428570 12498750 111111000  999989991,
  11 55 440 3630 32208 295020 2783880 26793030 261994040 2593726344,
  12 66 572 5148 49764 497354 5118828 53745120 573308736 6191711526,
  ...
The initial antidiagonals are:
   1
   2  0
   3  1   0
   4  3   2    0
   5  6   8    3    0
   6 10  20   18    6     0
   7 15  40   60   48     9     0
   8 21  70  150  204   116    18     0
   9 28 112  315  624   670   312    30     0
  10 36 168  588 1554  2580  2340   810    56    0
  11 45 240 1008 3360  7735 11160  8160  2184   99   0
  12 55 330 1620 6552 19544 39990 48750 29120 5880 186 0
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 97 (2.3.74)
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 495.
  • D. E. Knuth, Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, pp. 26-27, Addison-Wesley, 2005.

Crossrefs

Columns k: A001037 (k=2), A027376 (k=3), A027377 (k=4), A001692 (k=5), A032164 (k=6), A001693 (k=7), A027380 (k=8), A027381 (k=9), A032165 (k=10), A032166 (k=11), A032167 (k=12), A060216 (k=13), A060217 (k=14), A060218 (k=15), A060219 (k=16), A060220 (k=17), A060221 (k=18), A060222 (k=19).
Rows n: A000027 (n=1), A000217(k-1) (n=2), A007290(k+1) (n=3), A006011 (n=4), A208536(k+1) (n=5), A292350 (n=6), A208537(k+1) (n=7).
Cf. A000010, A008683, A075147 (main diagonal), A102659, A215474 (preprime strings), A383011.

Programs

  • Magma
    t:= func< n,k | (&+[MoebiusMu(Floor(n/d))*k^d: d in Divisors(n)])/n >; // array
    A074650:= func< n,k | t(k, n-k+1) >; // downward diagonals
    [A074650(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Aug 01 2024
  • Maple
    with(numtheory):
    T:= proc(n, k) add(mobius(n/d)*k^d, d=divisors(n))/n end:
    seq(seq(T(i, 1+d-i), i=1..d), d=1..11);  # Alois P. Heinz, Mar 28 2008
  • Mathematica
    max = 12; t[n_, k_] := Total[ MoebiusMu[n/#]*k^# & /@ Divisors[n]]/n; Flatten[ Table[ t[n-k+1, k], {n, 1, max}, {k, n, 1, -1}]] (* Jean-François Alcover, Oct 18 2011, after Maple *)
  • PARI
    T(n,k)=sumdiv(n,d,moebius(n/d)*k^d)/n \\ Charles R Greathouse IV, Oct 18 2011
    
  • Sage
    # This algorithm generates and counts all k-ary n-tuples (a_1,..,a_n) such
    # that the string a_1...a_n is prime. It is algorithm F in Knuth 7.2.1.1.
    def A074650(n, k):
        a = [0]*(n+1); a[0]=-1
        j = 1; count = 0
        while(j != 0) :
            if j == n : count += 1; # print("".join(map(str,a[1:])))
            else: j = n
            while a[j] >= k-1 : j -= 1
            a[j] += 1
            for i in (j+1..n): a[i] = a[i-j]
        return count   # Peter Luschny, Aug 14 2012
    

Formula

T(n,k) = (1/n) * Sum_{d|n} mu(n/d)*k^d.
T(n,k) = (k^n - Sum_{dAlois P. Heinz, Mar 28 2008
From Richard L. Ollerton, May 10 2021: (Start)
T(n,k) = (1/n)*Sum_{i=1..n} mu(gcd(n,i))*k^(n/gcd(n,i))/phi(n/gcd(n,i)).
T(n,k) = (1/n)*Sum_{i=1..n} mu(n/gcd(n,i))*k^gcd(n,i)/phi(n/gcd(n,i)). (End)
From Seiichi Manyama, Apr 12 2025: (Start)
G.f. of column k: -Sum_{j>=1} mu(j) * log(1 - k*x^j) / j.
Product_{n>=1} 1/(1 - x^n)^T(n,k) = 1/(1 - k*x). (End)

A051168 Triangular array T(h,k) for 0 <= k <= h read by rows: T(h,k) = number of binary Lyndon words with k ones and h-k zeros.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 3, 5, 5, 3, 1, 0, 0, 1, 3, 7, 8, 7, 3, 1, 0, 0, 1, 4, 9, 14, 14, 9, 4, 1, 0, 0, 1, 4, 12, 20, 25, 20, 12, 4, 1, 0, 0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 0, 0, 1, 5, 18, 40, 66, 75, 66, 40, 18, 5, 1, 0, 0, 1, 6
Offset: 0

Views

Author

Keywords

Comments

T(h,k) is the number of classes of aperiodic binary words of k ones and h-k zeros; words u,v are in the same class if v is a cyclic permutation of u (e.g., u=111000, v=110001) and a word is aperiodic if not a juxtaposition of 2 or more identical subwords.
T(2n, n), T(2n+1, n), T(n, 3) match A022553, A000108, A001840, respectively. Row sums match A001037.
From R. J. Mathar, Jul 31 2008: (Start)
This triangle may also be regarded as the square array A(r,n), the n-th term of the r-th Witt transform of the all-1 sequence, r >= 1, n >= 0, read by antidiagonals:
This array begins as follows:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
0 1 2 3 5 7 9 12 15 18 22 26 30 35 40 45 51 57 63
0 1 2 5 8 14 20 30 40 55 70 91 112 140 168 204 240 285 330
0 1 3 7 14 25 42 66 99 143 200 273 364 476 612 775 969 1197 1463
0 1 3 9 20 42 75 132 212 333 497 728 1026 1428 1932 2583 3384 4389 5598
0 1 4 12 30 66 132 245 429 715 1144 1768 2652 3876 5537 7752 10659 14421 19228
0 1 4 15 40 99 212 429 800 1430 2424 3978 6288 9690 14520 21318 30624 43263 60060
0 1 5 18 55 143 333 715 1430 2700 4862 8398 13995 22610 35530 54477 81719 120175
0 1 5 22 70 200 497 1144 2424 4862 9225 16796 29372 49742 81686 130750 204248
0 1 6 26 91 273 728 1768 3978 8398 16796 32065 58786 104006 178296 297160 482885
0 1 6 30 112 364 1026 2652 6288 13995 29372 58786 112632 208012 371384 643842
0 1 7 35 140 476 1428 3876 9690 22610 49742 104006 208012 400023 742900 1337220
0 1 7 40 168 612 1932 5537 14520 35530 81686 178296 371384 742900 1432613 2674440
...
It is essentially symmetric: A(r,r+i) = A(r,r-i+1).
Some of the diagonals are:
A(r,r+1): A000108
A(r,r): A022553
A(r,r-1): A000108
A(r,r+2): A000150
A(r,r+3): A050181
A(r,r+4): A050182
A(r,r+5): A050183
A(r,r-2): A000150 (End)
Fredman (1975) proved that the number S(n, k, v) of vectors (a_0, ..., a_{n-1}) of nonnegative integer components that satisfy a_0 + ... + a_{n-1} = k and Sum_{i=0..n-1} i*a_i = v (mod n) is given by S(n, k, v) = (1/(n + k)) * Sum_{d | gcd(n, k)} A054533(d, v) * binomial((n + k)/d, k/d) = S(k, n, v). This was also proved by Elashvili et al. (1999), who also proved that S(n, k, v) = Sum_{d | gcd(n, k, v)} S(n/d, k/d, 1). Here, S(n, k, 1) = T(n + k, k). - Petros Hadjicostas, Jul 09 2019

Examples

			Triangle begins with:
h=0: 1
h=1: 1, 1
h=2: 0, 1, 0
h=3: 0, 1, 1, 0
h=4: 0, 1, 1, 1,  0
h=5: 0, 1, 2, 2,  1,  0
h=6: 0, 1, 2, 3,  2,  1, 0
h=7: 0, 1, 3, 5,  5,  3, 1, 0
h=8: 0, 1, 3, 7,  8,  7, 3, 1, 0
h=9: 0, 1, 4, 9, 14, 14, 9, 4, 1, 0
...
T(6,3) counts classes {111000},{110100},{110010}, each of 6 aperiodic. The class {100100} contains 3 periodic words, counted by T(3,1) as {100}, consisting of 3 aperiodic words 100,010,001.
		

Crossrefs

Columns 1-11: A000012, A004526(n-1), A001840(n-4), A006918(n-4), A011795(n-1), A011796(n-6), A011797(n-1), A031164(n-9), A011845, A032168, A032169. See also A000150.

Programs

  • Maple
    A := proc(r,n) local gf,d,genf; genf := 1/(1-x) ; gf := 0 ; for d in numtheory[divisors](r) do gf := gf + numtheory[mobius](d)*(subs(x= x^d,genf))^(r/d) ; od: gf := expand(gf/r) ; coeftayl(gf,x=0,n) ; end proc:
    A051168 := proc(n,k) if n<=1 then 1; elif n=0 or n=k then 0; else A(n-k,k) ; end if;
    end proc:
    seq(seq(A051168(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Mar 29 2011
  • Mathematica
    Table[If[n===0,1,1/n Plus@@(MoebiusMu[ # ]Binomial[n/#,k/# ]&/@ Divisors[GCD[n,k]])],{n,0,12},{k,0,n}] (* Wouter Meeussen, Jul 20 2008 *)
  • PARI
    {T(n, k) = local(A, ps, c); if( k<0 || k>n, 0, if( n==0 && k==0, 1, A = x * O(x^n) + y * O(y^n); ps = 1 - x - y + A; for( m=1, n, for( i=0, m, c = polcoeff( polcoeff(ps, i, x), m-i, y); if( m==n && i==k, break(2), ps *= (1 -y^(m-i) * x^i + A)^c))); -c))} /* Michael Somos, Jul 03 2004 */
    
  • PARI
    T(n,k) = if (n==0, 1, (1/n) * sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d,k/d)));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 16 2018

Formula

T(h, k) = 1 for (h, k) in {(0, 0), (1, 0), (1, 1)}; T(h, k) = 0 if h >= 2 and k = 0 or k = h. Otherwise, T(h, k) = (1/h)*(C(h, k)-S(h, k)), where S(h, k) = Sum_{d <= 2, d|h, d|k} (h/d)*T(h/d, k/d).
1 - x - y = Product_{i,j} (1 - x^i * y^j)^T(i+j, j) where i >= 0, j >= 0 are not both zero. - Michael Somos, Jul 03 2004
The prime rows are given by (1+x)^p/p with noninteger coefficients rounded to zero. E.g., for h = 2 below, (1 + x)^2/2 = (1 + 2*x + x^2)/2 = 0.5 + x + 0.5*x^2 gives (0,1,0). - Tom Copeland, Oct 21 2014
T(n,k) = (1/n) * Sum_{d | gcd(n,k)} mu(d) * binomial(n/d, k/d), for n > 0. - Andrew Howroyd, Mar 26 2017
From Petros Hadjicostas, Jun 16 2019: (Start)
O.g.f. for column k >= 1: (x^k/k) * Sum_{d|k} mu(d)/(1 - x^d)^(k/d).
Bivariate o.g.f.: Sum_{n,k >= 0} T(n, k)*x^n*y^k = 1 - Sum_{d >= 1} (mu(d)/d) *log(1 - x^d * (1 + y^d)).
(End)

A102659 List of Lyndon words on {1,2} sorted first by length and then lexicographically.

Original entry on oeis.org

1, 2, 12, 112, 122, 1112, 1122, 1222, 11112, 11122, 11212, 11222, 12122, 12222, 111112, 111122, 111212, 111222, 112122, 112212, 112222, 121222, 122222, 1111112, 1111122, 1111212, 1111222, 1112112, 1112122, 1112212, 1112222, 1121122
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

A Lyndon word is primitive (not a power of another word) and is earlier in lexicographic order than any of its cyclic shifts.

Crossrefs

The "co" version is A329318.
A triangular version is A296657.
A sequence listing all Lyndon compositions is A294859.
Numbers whose binary expansion is Lyndon are A328596.
Length of the Lyndon factorization of the binary expansion is A211100.

Programs

  • Haskell
    cf. link.
    
  • Mathematica
    lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And];
    Join@@Table[FromDigits/@Select[Tuples[{1,2},n],lynQ],{n,5}] (* Gus Wiseman, Nov 14 2019 *)
  • PARI
    is_A102659(n)={ vecsort(d=digits(n))!=d&&for(i=1,#d-1, n>[1,10^(#d-i)]*divrem(n,10^i)&&return); fordiv(#d,L,L<#d && d==concat(Col(vector(#d/L,i,1)~*vecextract(d,2^L-1))~)&&return); !setminus(Set(d),[1,2])} \\ The last check is the least expensive one, but not useful if we test only numbers with digits {1,2}.
    for(n=1,6,p=vector(n,i,10^(n-i))~;forvec(d=vector(n,i,[1,2]),is_A102659(m=d*p)&&print1(m","))) \\ One could use is_A102660 instead of is_A102659 here. - M. F. Hasler, Mar 08 2014

Formula

A102659 = A102660 intersect A007931 = A213969 intersect A239016. - M. F. Hasler, Mar 10 2014

Extensions

More terms from Franklin T. Adams-Watters, Dec 14 2006
Definition improved by Reinhard Zumkeller, Mar 23 2012

A211100 Number of factors in Lyndon factorization of binary expansion of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 2, 4, 3, 4, 4, 5, 2, 3, 2, 4, 3, 3, 2, 5, 3, 4, 3, 5, 4, 5, 5, 6, 2, 3, 2, 4, 2, 3, 2, 5, 3, 4, 2, 4, 3, 3, 2, 6, 3, 4, 3, 5, 4, 4, 3, 6, 4, 5, 4, 6, 5, 6, 6, 7, 2, 3, 2, 4, 2, 3, 2, 5, 3, 3, 2, 4, 2, 3, 2, 6, 3, 4, 3, 5, 4, 3, 2, 5, 3, 4, 3, 4, 3, 3, 2, 7, 3, 4, 3, 5, 3, 4, 3, 6, 4, 5, 3, 5, 4, 4, 3, 7, 4, 5, 4, 6, 5, 5, 4, 7
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2012

Keywords

Comments

Any binary word has a unique factorization as a product of nonincreasing Lyndon words (see Lothaire). a(n) = number of factors in Lyndon factorization of binary expansion of n.
It appears that a(n) = k for the first time when n = 2^(k-1)+1.
We define the Lyndon product of two or more finite sequences to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon word is a finite sequence that is prime with respect to the Lyndon product. Equivalently, a Lyndon word is a finite sequence that is lexicographically strictly less than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into Lyndon words, and if these factors are arranged in lexicographically decreasing order, their concatenation is equal to their Lyndon product. - Gus Wiseman, Nov 12 2019

Examples

			n=25 has binary expansion 11001, which has Lyndon factorization (1)(1)(001) with three factors, so a(25) = 3.
Here are the Lyndon factorizations for small values of n:
.0.
.1.
.1.0.
.1.1.
.1.0.0.
.1.01.
.1.1.0.
.1.1.1.
.1.0.0.0.
.1.001.
.1.01.0.
.1.011.
.1.1.0.0.
...
		

References

  • M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983. See Theorem 5.1.5, p. 67.
  • G. Melançon, Factorizing infinite words using Maple, MapleTech Journal, vol. 4, no. 1, 1997, pp. 34-42

Crossrefs

Cf. A001037 (number of Lyndon words of length m); A102659 (list thereof).
A211095 and A211096 give information about the smallest (or rightmost) factor. Cf. A211097, A211098, A211099.
Row-lengths of A329314.
The "co-" version is A329312.
Positions of 2's are A329327.
The reversed version is A329313.
The inverted version is A329312.
Ignoring the first digit gives A211097.

Programs

  • Mathematica
    lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And];
    lynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[lynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],lynQ[Take[q,#]]&]]]];
    Table[Length[lynfac[IntegerDigits[n,2]]],{n,0,30}] (* Gus Wiseman, Nov 12 2019 *)

A070933 Expansion of Product_{k>=1} 1/(1 - 2*t^k).

Original entry on oeis.org

1, 2, 6, 14, 34, 74, 166, 350, 746, 1546, 3206, 6550, 13386, 27114, 54894, 110630, 222794, 447538, 898574, 1801590, 3610930, 7231858, 14480654, 28983246, 58003250, 116054034, 232186518, 464475166, 929116402, 1858449178, 3717247638, 7434950062, 14870628026, 29742206138, 59485920374, 118973809798, 237950730522, 475905520474
Offset: 0

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 21 2002

Keywords

Comments

See A083355 for a similar formula. - Thomas Wieder, May 07 2008
Partitions of n into 2 sorts of parts: the parts are unordered, but not the sorts; see example and formula by Wieder. - Joerg Arndt, Apr 28 2013
Convolution inverse of A070877. - George Beck, Dec 02 2018
Number of conjugacy classes of n X n matrices over GF(2). Cf. Morrison link, section 2.9. - Geoffrey Critzer, May 26 2021

Examples

			From _Joerg Arndt_, Apr 28 2013: (Start)
There are a(3)=14 partitions of 3 with 2 ordered sorts. Here p:s stands for "part p of sort s":
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:1  1:0  ]
04:  [ 1:0  1:1  1:1  ]
05:  [ 1:1  1:0  1:0  ]
06:  [ 1:1  1:0  1:1  ]
07:  [ 1:1  1:1  1:0  ]
08:  [ 1:1  1:1  1:1  ]
09:  [ 2:0  1:0  ]
10:  [ 2:0  1:1  ]
11:  [ 2:1  1:0  ]
12:  [ 2:1  1:1  ]
13:  [ 3:0  ]
14:  [ 3:1  ]
(End)
		

Crossrefs

Cf. A083355.
Column k=2 of A246935.
Cf. A048651.
Row sums of A256193.
Antidiagonal sums of A322210.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-2*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 07 2014
  • Mathematica
    CoefficientList[ Series[ Product[1 / (1 - 2t^k), {k, 1, 35}], {t, 0, 35}], t]
    CoefficientList[Series[E^Sum[2^k*x^k / (k*(1-x^k)), {k,1,30}],{x,0,30}],x] (* Vaclav Kotesovec, Sep 09 2014 *)
    (O[x]^20 - 1/QPochhammer[2,x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    N=66; q='q+O('q^N); Vec(1/sum(n=0, N, (-2)^n*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ Joerg Arndt, Mar 09 2014
    

Formula

a(n) = (1/n)*Sum_{k=1..n} A054598(k)*a(n-k). - Vladeta Jovovic, Nov 23 2002
a(n) is asymptotic to c*2^n where c=3.46253527447396564949732... - Benoit Cloitre, Oct 26 2003. Right value of this constant is c = 1/A048651 = 3.46274661945506361153795734292443116454075790290443839132935303175891543974042... . - Vaclav Kotesovec, Sep 09 2014
Euler transform of A000031(n). - Vladeta Jovovic, Jun 23 2004
a(n) = Sum_{k=1..n} p(n,k)*A000079(k) where p(n,k) = number of integer partitions of n into k parts. - Thomas Wieder, May 07 2008
a(n) = S(n,1), where S(n,m) = 2 + Sum_{k=m..floor(n/2)} 2*S(n-k,k), S(n,n)=2, S(0,m)=1, S(n,m)=0 for n < m. - Vladimir Kruchinin, Sep 07 2014
a(n) = Sum_{lambda,mu,nu} (c^{lambda}{mu,nu})^2, where lambda ranges over all partitions of n, mu and nu range over all partitions satisfying |mu| + |nu| = n, and c^{lambda}{mu,nu} denotes a Littlewood-Richardson coefficient. - Richard Stanley, Nov 16 2014
G.f.: Sum_{i>=0} 2^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018
G.f.: Product_{j>=1} Product_{i>=1} 1/(1-x^(i*j))^A001037(j) given in Morrison link section 2.9. - Geoffrey Critzer, May 26 2021

Extensions

Edited and extended by Robert G. Wilson v, May 25 2002

A328595 Numbers whose reversed binary expansion is a necklace.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 48, 52, 54, 56, 58, 60, 62, 63, 64, 72, 80, 84, 88, 92, 96, 100, 104, 106, 108, 112, 116, 118, 120, 122, 124, 126, 127, 128, 136, 144, 152, 160, 164, 168, 170, 172, 176, 180
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2019

Keywords

Comments

A necklace is a finite sequence that is lexicographically minimal among all of its cyclic rotations.

Examples

			The sequence of terms together with their binary expansions and binary indices begins:
   1:      1 ~ {1}
   2:     10 ~ {2}
   3:     11 ~ {1,2}
   4:    100 ~ {3}
   6:    110 ~ {2,3}
   7:    111 ~ {1,2,3}
   8:   1000 ~ {4}
  10:   1010 ~ {2,4}
  12:   1100 ~ {3,4}
  14:   1110 ~ {2,3,4}
  15:   1111 ~ {1,2,3,4}
  16:  10000 ~ {5}
  20:  10100 ~ {3,5}
  24:  11000 ~ {4,5}
  26:  11010 ~ {2,4,5}
  28:  11100 ~ {3,4,5}
  30:  11110 ~ {2,3,4,5}
  31:  11111 ~ {1,2,3,4,5}
  32: 100000 ~ {6}
  36: 100100 ~ {3,6}
		

Crossrefs

A similar concept is A065609.
The version with the most significant digit ignored is A328607.
Lyndon words are A328596.
Aperiodic words are A328594.
Binary necklaces are A000031.
Necklace compositions are A008965.

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Select[Range[100],neckQ[Reverse[IntegerDigits[#,2]]]&]
  • Python
    from itertools import count, islice
    from sympy.utilities.iterables import necklaces
    def a_gen():
        for n in count(1):
            t = []
            for i in necklaces(n,2):
                if sum(i)>0:
                    t.append(sum(2**j for j in range(len(i)) if i[j] > 0))
            yield from sorted(t)
    A328595_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, May 24 2024

A329312 Length of the co-Lyndon factorization of the binary expansion of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 4, 1, 2, 2, 3, 1, 3, 2, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 2, 3, 2, 3, 2, 4, 1, 2, 3, 4, 2, 3, 2, 5, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 2, 3, 2, 3, 2, 4, 1, 3, 3, 4, 2, 3, 2, 5, 1, 2, 2, 3, 1, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 10 2019

Keywords

Comments

The co-Lyndon product of two or more finite sequences is defined to be the lexicographically minimal sequence obtainable by shuffling the sequences together. For example, the co-Lyndon product of (231) and (213) is (212313), the product of (221) and (213) is (212213), and the product of (122) and (2121) is (1212122). A co-Lyndon word is a finite sequence that is prime with respect to the co-Lyndon product. Equivalently, a co-Lyndon word is a finite sequence that is lexicographically strictly greater than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into co-Lyndon words, and if these factors are arranged in a certain order, their concatenation is equal to their co-Lyndon product. For example, (1001) has sorted co-Lyndon factorization (1)(100).
Also the length of the Lyndon factorization of the inverted binary expansion of n, where the inverted digits are 1 minus the binary digits.

Examples

			The binary indices of 1..20 together with their co-Lyndon factorizations are:
   1:     (1) = (1)
   2:    (10) = (10)
   3:    (11) = (1)(1)
   4:   (100) = (100)
   5:   (101) = (10)(1)
   6:   (110) = (110)
   7:   (111) = (1)(1)(1)
   8:  (1000) = (1000)
   9:  (1001) = (100)(1)
  10:  (1010) = (10)(10)
  11:  (1011) = (10)(1)(1)
  12:  (1100) = (1100)
  13:  (1101) = (110)(1)
  14:  (1110) = (1110)
  15:  (1111) = (1)(1)(1)(1)
  16: (10000) = (10000)
  17: (10001) = (1000)(1)
  18: (10010) = (100)(10)
  19: (10011) = (100)(1)(1)
  20: (10100) = (10100)
		

Crossrefs

The non-"co" version is A211100.
Positions of 1's are A275692.
The reversed version is A329326.

Programs

  • Mathematica
    colynQ[q_]:=Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And];
    colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]]@Last[Select[Range[Length[q]],colynQ[Take[q,#]]&]]];
    Table[Length[colynfac[IntegerDigits[n,2]]],{n,100}]

A334028 Number of distinct parts in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 77th composition is (3,1,2,1), so a(77) = 3.
		

Crossrefs

Number of distinct prime indices is A001221.
Positions of first appearances (offset 1) are A246534.
Positions of 1's are A272919.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Aperiodic compositions are A328594.
- Rotational period is A333632.
- Dealings are A333939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[stc[n]]],{n,0,100}]

A065609 Positive m such that when written in binary, no rotated value of m is greater than m.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 20, 24, 26, 28, 30, 31, 32, 36, 40, 42, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 72, 80, 84, 96, 98, 100, 104, 106, 108, 112, 114, 116, 118, 120, 122, 124, 126, 127, 128, 136, 144, 160, 164, 168, 170, 192, 194, 196, 200, 202
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Nov 06 2001

Keywords

Comments

Rotated values of m are defined as the numbers which occur when m is shifted 1, 2, ... bits to the right with the last bits added to the front; e.g., the rotated values of 1011 are 1011, 1101, 1110 and 0111.
The number of k-bit binary numbers in this sequence is A008965. This gives the row lengths when the sequence is regarded as a table.
If m is in the sequence, then so is 2m. All odd terms are of the form 2^k - 1. - Ivan Neretin, Aug 04 2016
First differs from A328595 in lacking 44, with binary expansion {1, 0, 1, 1, 0, 0}, and 92, with binary expansion {1, 0, 1, 1, 1, 0, 0}. - Gus Wiseman, Oct 31 2019

Examples

			14 is included because 14 in binary is 1110. 1110 has the rotated values of 0111, 1011 and 1101 -- 7, 11 and 13 -- which are all smaller than 14.
		

Crossrefs

A similar concept is A328595.
The version with the most significant digit ignored is A328668 or A328607.
Numbers whose reversed binary expansion is a Lyndon word are A328596.
Numbers whose binary expansion is aperiodic are A328594.
Binary necklaces are A000031.
Necklace compositions are A008965.

Programs

  • Maple
    filter:= proc(n) local L, k;
      if n::odd then return evalb(n+1 = 2^ilog2(n+1)) fi;
      L:= convert(convert(n,binary),string);
      for k from 1 to length(L)-1 do
        if not lexorder(StringTools:-Rotate(L,k),L) then return false fi;
      od;
      true
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 05 2016
  • Mathematica
    Select[Range[200], # == Max[FromDigits[#, 2] & /@ NestList[RotateLeft, dg = IntegerDigits[#, 2], Length@dg]] &] (* Ivan Neretin, Aug 04 2016 *)
  • Python
    def ok(n):
        b = bin(n)[2:]
        return b > "0" and all(b[i:] + b[:i] <= b for i in range(1, len(b)))
    print([k for k in range(203) if ok(k)]) # Michael S. Branicky, May 26 2022

Extensions

Edited by Franklin T. Adams-Watters, Apr 09 2010

A027376 Number of ternary irreducible monic polynomials of degree n; dimensions of free Lie algebras.

Original entry on oeis.org

1, 3, 3, 8, 18, 48, 116, 312, 810, 2184, 5880, 16104, 44220, 122640, 341484, 956576, 2690010, 7596480, 21522228, 61171656, 174336264, 498111952, 1426403748, 4093181688, 11767874940, 33891544368, 97764009000, 282429535752, 817028131140, 2366564736720, 6863037256208, 19924948267224, 57906879556410
Offset: 0

Views

Author

Keywords

Comments

Number of Lyndon words of length n on {1,2,3}. A Lyndon word is primitive (not a power of another word) and is earlier in lexicographic order than any of its cyclic shifts. - John W. Layman, Jan 24 2006
Exponents in an expansion of the Hardy-Littlewood constant Product(1 - (3*p - 1)/(p - 1)^3, p prime >= 5), whose decimal expansion is in A065418: the constant equals Product_{n >= 2} (zeta(n)*(1 - 2^(-n))*(1 - 3^(-n)))^(-a(n)). - Michael Somos, Apr 05 2003
Number of aperiodic necklaces with n beads of 3 colors. - Herbert Kociemba, Nov 25 2016
Number of irreducible harmonic polylogarithms, see page 299 of Gehrmann and Remiddi reference and table 1 of Maître article. - F. Chapoton, Aug 09 2021
For n>=2, a(n) is the number of Hesse loops of length 2*n, see Theorem 22 of Dutta, Halbeisen, Hungerbühler link. - Sayan Dutta, Sep 22 2023
For n>=2, a(n) is the number of orbits of size n of isomorphism classes of elliptic curves under the Hesse derivative, see Theorem 2 of Kettinger link. - Jake Kettinger, Aug 07 2024

Examples

			For n = 2 the a(2)=3 polynomials are  x^2+1, x^2+x+2, x^2+2*x+2. - _Robert Israel_, Dec 16 2015
		

References

  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.

Crossrefs

Programs

  • Maple
    with(numtheory): A027376 := n -> `if`(n = 0, 1,
    add(mobius(d)*3^(n/d), d = divisors(n))/n):
    seq(A027376(n), n = 0..32);
  • Mathematica
    a[0]=1; a[n_] := Module[{ds=Divisors[n], i}, Sum[MoebiusMu[ds[[i]]]3^(n/ds[[i]]), {i, 1, Length[ds]}]/n]
    a[0]=1; a[n_] := DivisorSum[n, MoebiusMu[n/#]*3^#&]/n; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 01 2015 *)
    mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,3],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
  • PARI
    a(n)=if(n<1,n==0,sumdiv(n,d,moebius(n/d)*3^d)/n)

Formula

a(n) = (1/n)*Sum_{d|n} mu(d)*3^(n/d).
(1 - 3*x) = Product_{n>0} (1 - x^n)^a(n).
G.f.: k = 3, 1 - Sum_{i >= 1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
a(n) ~ 3^n / n. - Vaclav Kotesovec, Jul 01 2018
a(n) = 2*A046211(n) + A046209(n). - R. J. Mathar, Oct 21 2021
Previous Showing 21-30 of 227 results. Next