A346653 Numbers p that are the first of three consecutive primes p,q,r such that p*q*r-(p+q+r) and p*q*r+(p+q+r) are both in A001043.
3, 1579, 3967, 14323, 30763, 32189, 41389, 61471, 70117, 74051, 74707, 79691, 95239, 154157, 157181, 157433, 169003, 184321, 215063, 237563, 265271, 300877, 303217, 320741, 326119, 366713, 382241, 392531, 408689, 544723, 572749, 584099, 587219, 615103, 639487, 653561, 674231, 687151, 698483
Offset: 1
Keywords
Examples
a(3) = 3967 is a term because 3967, 3989, 4001 are consecutive primes with 3967*3989*4001-(3967+3989+4001) = 63313264406 = 31656632197+31656632209, 3967*3989*4001+(3967+3989+4001) = 63313288320 = 31656644153+31656644167, 31656632197 and 31656632209 are consecutive primes and 31656644153 and 31656644167 are consecutive primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A001043.
Programs
-
Maple
q:= 2: r:= 3: R:= NULL: count:= 0: while count < 40 do p:= q; q:= r; r:= nextprime(r); s:= p+q+r; v:= p*q*r+s; t:= prevprime(v/2); if nextprime(t)+t <> v then next fi; v:= v-2*s; t:= prevprime(v/2); if nextprime(t)+t = v then count:= count+1; R:= R, p; fi od: R;
Comments