cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 424 results. Next

A109974 Array read by downwards antidiagonals: sigma_k(n) for n >= 1, k >= 0.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 2, 7, 10, 9, 1, 4, 6, 21, 28, 17, 1, 2, 12, 26, 73, 82, 33, 1, 4, 8, 50, 126, 273, 244, 65, 1, 3, 15, 50, 252, 626, 1057, 730, 129, 1, 4, 13, 85, 344, 1394, 3126, 4161, 2188, 257, 1, 2, 18, 91, 585, 2402, 8052, 15626, 16513, 6562, 513, 1
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Rows sums are A108639. Antidiagonal sums are A109976. Matrix inverse is A109977.
From Wolfdieter Lang, Jan 29 2016: (Start)
The sum of the (k-1)th power of the divisors of n, sigma_(k-1)(n), appears also as eigenvalue lambda(k, n) of the Hecke operators T_n, n a positive integer, acting on the normalized Eisenstein series E_k(q) = ((2*Pi*i)^k/((k-1)!*Zeta(k))*G_k(q) with even k >= 4 and q = 2*Pi*i*z, where z is from the upper half of the complex plane: T_n E_k = sigma_(k-1)(n)*E_k. These Eisenstein series are entire modular forms of weight k, and each E_k(q) is a simultaneous eigenform of the Hecke operators T_n, for every n >= 1.
This results from the Fourier coefficients of E_k(q) = Sum_{m>=0} E(k, m)*q^m, with E(k, 0) =1 and E(k, m) = ((2*Pi*i)^k / ((k-1)!*Zeta(k))* sigma_(k-1)(m) for m >= 1, together with the Fourier coefficients of T_n E_k. The eigenvalues lambda(n, k) = (Sum_{d | gcd(n,m)} d^{k-1}*E(k, m*n/d^2)) / E(k, m) for each m >= 0. For m=0 this becomes lambda(n, k) = sigma_(k-1)(n).
For Hecke operators, Fourier coefficients and simultaneous eigenforms see, e.g., the Koecher - Krieg reference, p. 207, eqs. (5) and (6) and p. 211, section 4, or the Apostol reference, p. 120, eq. (13), pp. 129 - 134. (End)

Examples

			Start of array:
  1,  2,  2,   3,   2,    4, ...
  1,  3,  4,   7,   6,   12, ...
  1,  5, 10,  21,  26,   50, ...
  1,  9, 28,  73, 126,  252, ...
  1, 17, 82, 273, 626, 1394, ...
  ...
The triangle T(m, k) with row offset 1 starts:
  m\k 0  1  2   3    4    5    6    7   8  9 ...
  1:  1
  2:  2  1
  3:  2  3  1
  4:  3  4  5   1
  5:  2  7 10   9    1
  6:  4  6 21  28   17    1
  7:  2 12 26  73   82   33    1
  8:  4  8 50 126  273  244   65    1
  9:  3 15 50 252  626 1057  730  129   1
  10: 4 13 85 344 1394 3126 4161 2188 257  1
  ... - _Wolfdieter Lang_, Jan 14 2016
		

References

  • Tom M. Apostol, Modular functions and Dirichlet series in number theory, second Edition, Springer, 1990, pp. 120, 129 - 134.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 207, 211.

Crossrefs

Programs

  • Magma
    A109974:= func< n,k | DivisorSigma(k-1, n-k+1) >;
    [A109974(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 18 2023
    
  • Maple
    with(numtheory):
    seq(seq(sigma[k](1+d-k), k=0..d), d=0..12);  # Alois P. Heinz, Feb 06 2013
  • Mathematica
    rows=12; Flatten[Table[DivisorSigma[k-n, n], {k,1,rows}, {n,k,1,-1}]] (* Jean-François Alcover, Nov 15 2011 *)
  • SageMath
    def A109974(n,k): return sigma(n-k+1, k-1)
    flatten([[A109974(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 18 2023

Formula

Regarded as a triangle, T(n, k) = if(k<=n, sigma(k-1, n-k+1), 0). - Franklin T. Adams-Watters, Jul 17 2006
If the row index (the index of the antidiagonal of the array) is taken as m with offset 1 the triangle is T(m, k) = sigma_k(m-k), 1 <= k+1 <= m, otherwise 0. - Wolfdieter Lang, Jan 14 2016
G.f. for the triangle with offset 1: G(x,y) = Sum_{j>=1} x^j/((1-x^j)*(1-j*x*y)). - Robert Israel, Jan 14 2016

A013959 a(n) = sigma_11(n), the sum of the 11th powers of the divisors of n.

Original entry on oeis.org

1, 2049, 177148, 4196353, 48828126, 362976252, 1977326744, 8594130945, 31381236757, 100048830174, 285311670612, 743375541244, 1792160394038, 4051542498456, 8649804864648, 17600780175361, 34271896307634, 64300154115093, 116490258898220, 204900053024478
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Related to congruence properties of the Ramanujan tau function since A000594(n) == a(n) (mod 691) = A046694(n). - Benoit Cloitre, Aug 28 2002

Crossrefs

Programs

Formula

G.f.: Sum_{k>=1} k^11*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-11)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(11*e+11)-1)/(p^11-1).
Sum_{k=1..n} a(k) = zeta(12) * n^12 / 12 + O(n^13). (End)

A013957 a(n) = sigma_9(n), the sum of the 9th powers of the divisors of n.

Original entry on oeis.org

1, 513, 19684, 262657, 1953126, 10097892, 40353608, 134480385, 387440173, 1001953638, 2357947692, 5170140388, 10604499374, 20701400904, 38445332184, 68853957121, 118587876498, 198756808749, 322687697780, 513002215782, 794320419872, 1209627165996, 1801152661464
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Note that the sequence is not monotonically increasing, with a(4488) > a(4489) being the first of infinitely many examples. - Charles R Greathouse IV, Dec 28 2021

Crossrefs

Programs

Formula

G.f.: Sum_{k>=1} k^9*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^8)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
n^9 + 1 <= a(n) < zeta(9)*n^9. In particular, Grönwall proves lim sup a(n)/n^9 = zeta(9) = A013667. - Charles R Greathouse IV, Dec 27 2021
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/264 = Bernoulli(10)/20. - Vaclav Kotesovec, May 07 2023
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(9*e+9)-1)/(p^9-1).
Dirichlet g.f.: zeta(s)*zeta(s-9).
Sum_{k=1..n} a(k) = zeta(10) * n^10 / 10 + O(n^11). (End)

A080257 Numbers having at least two distinct or a total of at least three prime factors.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 10 2003

Keywords

Comments

Complement of A000430; A080256(a(n)) > 3.
A084114(a(n)) > 0, see also A084110.
Also numbers greater than the square of their smallest prime-factor: a(n)>A020639(a(n))^2=A088377(a(n));
a(n)>A000430(k) for n<=13, a(n) < A000430(k) for n>13.
Numbers with at least 4 divisors. - Franklin T. Adams-Watters, Jul 28 2006
Union of A024619 and A033942; A211110(a(n)) > 2. - Reinhard Zumkeller, Apr 02 2012
Also numbers > 1 that are neither prime nor a square of a prime. Also numbers whose omega-sequence (A323023) has sum > 3. Numbers with omega-sequence summing to m are: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7). - Gus Wiseman, Jul 03 2019
Numbers n such that sigma_2(n)*tau(n) = A001157(n)*A000005(n) >= 4*n^2. Note that sigma_2(n)*tau(n) >= sigma(n)^2 = A072861 for all n. - Joshua Zelinsky, Jan 23 2025

Examples

			8=2*2*2 and 10=2*5 are terms; 4=2*2 is not a term.
From _Gus Wiseman_, Jul 03 2019: (Start)
The sequence of terms together with their prime indices begins:
   6: {1,2}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  27: {2,2,2}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
(End)
		

Crossrefs

Programs

  • Haskell
    a080257 n = a080257_list !! (n-1)
    a080257_list = m a024619_list a033942_list where
       m xs'@(x:xs) ys'@(y:ys) | x < y  = x : m xs ys'
                               | x == y = x : m xs ys
                               | x > y  = y : m xs' ys
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Mathematica
    Select[Range[100],PrimeNu[#]>1||PrimeOmega[#]>2&] (* Harvey P. Dale, Jul 23 2013 *)
  • PARI
    is(n)=omega(n)>1 || isprimepower(n)>2
    
  • PARI
    is(n)=my(k=isprimepower(n)); if(k, k>2, !isprime(n)) \\ Charles R Greathouse IV, Jan 23 2025

Formula

a(n) = n + O(n/log n). - Charles R Greathouse IV, Sep 14 2015

Extensions

Definition clarified by Harvey P. Dale, Jul 23 2013

A059358 Coefficients in expansion of Sum_{n >= 1} x^n/(1-x^n)^4.

Original entry on oeis.org

0, 1, 5, 11, 25, 36, 71, 85, 145, 176, 260, 287, 455, 456, 649, 726, 961, 970, 1376, 1331, 1820, 1866, 2315, 2301, 3175, 2961, 3736, 3830, 4729, 4496, 5966, 5457, 6945, 6842, 8114, 7890, 10196, 9140, 11215, 11126, 13420, 12342, 15730, 14191, 17515, 17106, 19601
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          add(d*(d+1)*(d+2)/6, d=numtheory[divisors](n))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 12 2023
  • Mathematica
    With[{nn=50},CoefficientList[Series[Sum[x^n/(1-x^n)^4,{n,nn}],{x,0,nn}],x]] (* Harvey P. Dale, May 14 2013 *)
  • PARI
    a(n) = if(n==0, 0, sumdiv(n, d, binomial(d+2, 3))); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = if(n==0, 0, my(f = factor(n)); (sigma(f, 3) + 3*sigma(f, 2) + 2 * sigma(f)) / 6); \\ Amiram Eldar, Dec 29 2024

Formula

a(n) = (1/6)*(sigma_3(n) + 3*sigma_2(n) + 2*sigma_1(n)), i.e., this sequence is the inverse Möbius transform of tetrahedral (or pyramidal) numbers: n*(n+1)(n+2)/6 with g.f. 1/(1-x)^4 (cf. A000292). - Vladeta Jovovic, Aug 31 2002
L.g.f.: -log(Product_{k>=1} (1 - x^k)^((k+1)*(k+2)/6)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
From Amiram Eldar, Dec 29 2024: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-3) + 3*zeta(s-2) + 2*zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)

A013956 a(n) = sigma_8(n), the sum of the 8th powers of the divisors of n.

Original entry on oeis.org

1, 257, 6562, 65793, 390626, 1686434, 5764802, 16843009, 43053283, 100390882, 214358882, 431733666, 815730722, 1481554114, 2563287812, 4311810305, 6975757442, 11064693731, 16983563042, 25700456418, 37828630724, 55090232674, 78310985282, 110523825058, 152588281251
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001

Crossrefs

Programs

Formula

G.f.: Sum_{k>=1} k^8*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^7)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(8*e+8)-1)/(p^8-1).
Dirichlet g.f.: zeta(s)*zeta(s-8).
Sum_{k=1..n} a(k) = zeta(9) * n^9 / 9 + O(n^10). (End)

A015759 Numbers k such that phi(k) | sigma_2(k).

Original entry on oeis.org

1, 2, 3, 6, 22, 33, 66, 750, 27798250, 41697375, 76745867, 83394750, 153491734, 207656250, 230237601, 460475202, 917342250, 969062500, 2907187500, 4528006153, 5952812500, 9056012306, 13584018459, 17858437500, 27168036918, 31979062500, 57559400250
Offset: 1

Views

Author

Keywords

Comments

sigma_2(k) is the sum of the squares of the divisors of k (A001157).
All of these terms are solutions to relations for all j as follows: {sigma(j,x)/phi(x) is an integer for exponents j=4k+2}. Proof is possible by individual managements in the knowledge of divisors of x and phi(x). Compare with A015765, A015768, etc. - Labos Elemer, May 25 2004

Crossrefs

Programs

  • Mathematica
    Do[ If[ IntegerQ[ DivisorSigma[2, n]/EulerPhi[n]], Print[n]], {n, 1, 10^7}]
    Empirical test for very high power sums of divisors [e.g., d^2802]. Table[{4*j+2, Union[Table[IntegerQ[DivisorSigma[4*j+2, Part[t, k]]/EulerPhi[Part[t, k]]], {k, 1, 13}]]}, {j, 0, 700}] Output = {True} for all 4j+2. Here t=A015759. (* Labos Elemer, May 20 2004 *)

Extensions

a(9)-a(13) from Labos Elemer, May 20 2004
a(14)-a(18) from Donovan Johnson, Feb 05 2010
a(19)-a(27) from Donovan Johnson, Jun 18 2011

A295901 Unique sequence satisfying SumXOR_{d divides n} a(d) = n^2 for any n > 0, where SumXOR is the analog of summation under the binary XOR operation.

Original entry on oeis.org

1, 5, 8, 20, 24, 40, 48, 80, 88, 120, 120, 160, 168, 240, 240, 320, 288, 312, 360, 480, 384, 408, 528, 640, 616, 520, 648, 960, 840, 816, 960, 1280, 1072, 1440, 1248, 1248, 1368, 1224, 1360, 1920, 1680, 1920, 1848, 1632, 1872, 2640, 2208, 2560, 2384, 3016
Offset: 1

Views

Author

Rémy Sigrist, Nov 29 2017

Keywords

Comments

This sequence is a variant of A256739; both sequences have nice graphical features.
Replacing "SumXOR" by "Sum" in the name leads to the Jordan function J_2 (A007434).
For any sequence f of nonnegative integers with positive indices:
- let x_f be the unique sequence satisfying SumXOR_{d divides n} x_f(d) = f(n) for any n > 0,
- in particular, x_A000027 = A256739 and x_A000290 = a (this sequence),
- also, x_A178910 = A000027 and x_A055895 = A000079,
- see the links section for a gallery of x_f plots for some classic f functions,
- x_f(1) = f(1),
- x_f(p) = f(1) XOR f(p) for any prime p,
- x_f(n) = SumXOR_{d divides n and n/d is squarefree} f(d) for any n > 0,
- the function x: f -> x_f is a bijection,
- A000004 is the only fixed point of x (i.e. x_f = f if and only if f = A000004),
- for any sequence f, x_{2*f} = 2 * x_f,
- for any sequences g and f, x_{g XOR f} = x_g XOR x_f.
From Antti Karttunen, Dec 29 2017: (Start)
The transform x_f described above could be called "Xor-Moebius transform of f" because of its analogous construction to Möbius transform with A008683 replaced by A008966 and the summation replaced by cumulative XOR.
(End)

Crossrefs

Programs

  • PARI
    a(n{, f=k->k^2}) = my (v=0); fordiv(n,d,if (issquarefree(n/d), v=bitxor(v,f(d)))); return (v)

Formula

a(n) = SumXOR_{d divides n and n/d is squarefree} d^2.

A067558 Sum of squares of proper divisors of n.

Original entry on oeis.org

0, 1, 1, 5, 1, 14, 1, 21, 10, 30, 1, 66, 1, 54, 35, 85, 1, 131, 1, 146, 59, 126, 1, 274, 26, 174, 91, 266, 1, 400, 1, 341, 131, 294, 75, 615, 1, 366, 179, 610, 1, 736, 1, 626, 341, 534, 1, 1106, 50, 755, 299, 866, 1, 1184, 147, 1114, 371, 846, 1, 1860, 1, 966, 581, 1365
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 29 2002

Keywords

Examples

			a(12) = 1^2 + 2^2 + 3^2 + 4^2 + 6^2 = 1 + 4 + 9 + 16 + 36 = 66.
		

Crossrefs

Programs

Formula

a(n) = A001157(n) - n^2.
a(n) = 1 if and only if n is prime.
Dirichlet g.f.: zeta(s-2)*(zeta(s) - 1). - Ilya Gutkovskiy, Sep 08 2016
Sum_{k=1..n} a(k) ~ (zeta(3)-1) * n^3 / 3. - Amiram Eldar, Dec 31 2024

A078306 a(n) = Sum_{d divides n} (-1)^(n/d+1)*d^2.

Original entry on oeis.org

1, 3, 10, 11, 26, 30, 50, 43, 91, 78, 122, 110, 170, 150, 260, 171, 290, 273, 362, 286, 500, 366, 530, 430, 651, 510, 820, 550, 842, 780, 962, 683, 1220, 870, 1300, 1001, 1370, 1086, 1700, 1118, 1682, 1500, 1850, 1342, 2366, 1590, 2210, 1710, 2451, 1953
Offset: 1

Views

Author

Vladeta Jovovic, Nov 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n/d+1)*d^2, {d, Divisors[n]}]; Array[a, 50] (* Jean-François Alcover, Apr 17 2014 *)
    Table[CoefficientList[Series[-Log[Product[1/(x^k + 1)^k, {k, 1, 90}]], {x, 0, 80}], x][[n + 1]] n, {n, 1, 80}] (* Benedict W. J. Irwin, Jul 05 2016 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d+1)*d^2); \\ Michel Marcus, Jul 06 2016
    
  • Python
    from sympy import divisors
    print([sum((-1)**(n//d + 1)*d**2 for d in divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Apr 05 2017

Formula

G.f.: Sum_{n >= 1} n^2*x^n/(1+x^n).
Multiplicative with a(2^e) = (2*4^e+1)/3, a(p^e) = (p^(2*e+2)-1)/(p^2-1), p > 2.
L.g.f.: -log(Product_{ k>0 } 1/(x^k+1)^k) = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
G.f.: Sum_{n >= 1} (-1)^(n+1) * x^n*(1 + x^n)/(1 - x^n)^3. - Peter Bala, Jan 14 2021
From Vaclav Kotesovec, Aug 07 2022: (Start)
Dirichlet g.f.: zeta(s) * zeta(s-2) * (1 - 2^(1-s)).
Sum_{k=1..n} a(k) ~ zeta(3) * n^3 / 4. (End)
Previous Showing 71-80 of 424 results. Next