A051836
a(n) = n*(n+1)*(n+2)*(n+3)*(3*n+2)/120.
Original entry on oeis.org
0, 1, 8, 33, 98, 238, 504, 966, 1716, 2871, 4576, 7007, 10374, 14924, 20944, 28764, 38760, 51357, 67032, 86317, 109802, 138138, 172040, 212290, 259740, 315315, 380016, 454923, 541198, 640088, 752928, 881144, 1026256, 1189881, 1373736, 1579641, 1809522, 2065414
Offset: 0
By the fourth comment: A000217(1..6) and A000326(1..6) give the term a(6) = 1*21+5*15+12*10+22*6+35*3+51*1 = 504. - _Bruno Berselli_, Jun 27 2013
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Andrásfai Graph.
- Eric Weisstein's World of Mathematics, Chordless Cycle.
- Eric Weisstein's World of Mathematics, Graph Complement.
- Index to sequences related to pyramidal numbers.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Cf.
A093560 ((3, 1) Pascal, column m=5).
-
[0] cat [Binomial(n+4, n)*(3*n+5)/5: n in [0..40]]; // Vincenzo Librandi, Jul 04 2017
-
with (combinat):a[0]:=0:for n from 1 to 50 do a[n]:=stirling2(n+2,n)+a[n-1] od: seq(a[n], n=0..34); # Zerinvary Lajos, Mar 17 2008
-
Table[n(n + 1)(n + 2)(n + 3)(3n + 2)/120, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *)
CoefficientList[Series[x (1 + 2 x) / (1 - x)^6, {x, 0, 33}], x] (* Vincenzo Librandi, Jul 04 2017 *)
LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,8,33,98,238},40] (* Harvey P. Dale, Jun 01 2018 *)
-
a(n)=n*(n+1)*(n+2)*(n+3)*(3*n+2)/120 \\ Charles R Greathouse IV, Oct 07 2015
-
[((3*n+2)/(n+4))*binomial(n+4,5) for n in range(41)] # G. C. Greubel, Dec 27 2023
Simpler definition from Ben Creech (mathroxmysox(AT)yahoo.com), Nov 13 2005
A094262
Triangle read by rows: T(n,k) is the number of rooted trees with k nodes which are disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.
Original entry on oeis.org
1, 1, 2, 1, 1, 6, 12, 10, 3, 1, 14, 61, 124, 131, 70, 15, 1, 30, 240, 890, 1830, 2226, 1600, 630, 105, 1, 62, 841, 5060, 16990, 35216, 47062, 40796, 22225, 6930, 945, 1, 126, 2772, 25410, 127953, 401436, 836976, 1196532, 1182195, 795718, 349020, 90090, 10395
Offset: 1
Row 5 contains 1,30,240,890,1830,2226,1600,630,105, so the formula generating Stirling2(n+4,n) numbers (A001298) will be the following: 1 + 30*(n-5) + 240*C(n-5,2) + 890*C(n-5,3) + 1830*C(n-5,4) + 2226*C(n-5,5) + 1600*C(n-5,6) + 630*C(n-5,7) + 105*C(n-5,8). For example, taking n = 9 gives Stirling2(13,9) = 359502.
Triangle starts:
1;
1, 2, 1;
1, 6, 12, 10, 3;
1, 14, 61, 124, 131, 70, 15;
1, 30, 240, 890, 1830, 2226, 1600, 630, 105;
...
From _Peter Bala_, Jun 14 2016: (Start)
Connection with row polynomials of A134991:
R(2,z) = (1 + z)^2*z
R(3,z) = (1 + z)^2*(z + 3*z^2)
R(4,z) = (1 + z)^4*(z + 10*z^2 + 15*z^3)
R(5,z) = (1 + z)^5*(z + 25*z^2 + 105*z^3 + 105*z^4). (End)
From _Andrew Howroyd_, Mar 28 2025: (Start)
The T(3,3) = 12 trees up to relabeling have one of the following 3 forms:
{} {1} {1}
/ \ / \ |
{1} {2,3} {2} {3} {2}
|
{3}
(End)
- Andrew Howroyd, Table of n, a(n) for n = 1..2500 (rows 1..50)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions (with Formulas, Graphs and Mathematical Tables), U.S. Dept. of Commerce, National Bureau of Standards, Applied Math. Series 55, 1964, 1046 pages (9th Printing: November 1970) - Combinatorial Analysis, Table 24.4, Stirling Numbers of the Second Kind (author: Francis L. Miksa), p. 835.
- J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3) (2015), #P3.37.
- M. Kazarian, KP hierarchy for Hodge integrals, p. 2, arxiv:0809.3263 [math.AG], 18 Sep 2008. [From _Tom Copeland_, Jun 12 2015]
- F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10.
- F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Stirling numbers of the 2nd kind.
-
row_poly := n -> (1+z)^(n+1)*add(z^k*add((-1)^(m+k)*binomial(n+k,n+m)*Stirling2(n+m,m), m=0..k), k=0..n): T_row := n -> seq(coeff(row_poly(n),z,j),j=1..2*n+1):
seq(T_row(n),n=0..6); # Peter Luschny, Jun 15 2016
-
Clear[T, q, u]; T[0] = q[1];T[n_] := Sum[m*(u^2*q[m] + 2*u*q[m+1] + q[m+2])*D[T[n-1], q[m]], {m, 1, 2*n+1}]; row[n_] := List @@ Expand[T[n-1]] /. {u -> 1, q[] -> 1}; Table[row[n], {n, 1, 7}] // Flatten (* _Jean-François Alcover, Jun 12 2015 *)
-
T(n)={my(g=serreverse(log(((1+1/y)*x+1)/exp(x + O(x*x^n))))); [Vecrev(p/y) | p<-Vec(serlaplace(g))]}
{ my(A=T(5)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 28 2025
Edited and Name changed by
Peter Bala, Jun 16 2016
A215771
Number T(n,k) of undirected labeled graphs on n nodes with exactly k cycle graphs as connected components; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 3, 7, 6, 1, 0, 12, 25, 25, 10, 1, 0, 60, 127, 120, 65, 15, 1, 0, 360, 777, 742, 420, 140, 21, 1, 0, 2520, 5547, 5446, 3157, 1190, 266, 28, 1, 0, 20160, 45216, 45559, 27342, 10857, 2898, 462, 36, 1, 0, 181440, 414144, 427275, 264925, 109935, 31899, 6300, 750, 45, 1
Offset: 0
T(4,1) = 3: .1-2. .1 2. .1-2.
. .| |. .|X|. . X .
. .3-4. .3 4. .3-4.
.
T(4,2) = 7: .1 2. .1-2. .1 2. o1 2. .1 2o .1-2. .1-2.
. .| |. . . . X . . /|. .|\ . . \|. .|/ .
. .3 4. .3-4. .3 4. .3-4. .3-4. o3 4. .3 4o
.
T(4,3) = 6: .1 2o .1-2. o1 2. o1 2o o1 2. .1 2o
. .| . . . . |. . . . / . . \ .
. .3 4o o3 4o o3 4. .3-4. .3 4o o3 4.
.
T(4,4) = 1: o1 2o
. . .
. o3 4o
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 3, 7, 6, 1;
0, 12, 25, 25, 10, 1;
0, 60, 127, 120, 65, 15, 1;
0, 360, 777, 742, 420, 140, 21, 1;
Columns k=0-10 give:
A000007,
A001710(n-1) for n>0,
A215772,
A215763,
A215764,
A215765,
A215766,
A215767,
A215768,
A215769,
A215770.
-
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1,
add(binomial(n-1, i)*T(n-1-i, k-1)*ceil(i!/2), i=0..n-k)))
end:
seq(seq(T(n, k), k=0..n), n=0..12);
# Alternatively, with the function BellMatrix defined in A264428:
BellMatrix(n -> `if`(n<2, 1, n!/2), 8); # Peter Luschny, Jan 21 2016
-
t[n_, k_] := t[n, k] = If[k < 0 || k > n, 0, If[n == 0, 1, Sum[Binomial[n-1, i]*t[n-1-i, k-1]*Ceiling[i!/2], {i, 0, n-k}]]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
rows = 10;
t = Table[If[n<2, 1, n!/2], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: factorial(n)//2 if n>=2 else 1, 8)
A001298
Stirling numbers of the second kind S(n+4, n).
Original entry on oeis.org
0, 1, 31, 301, 1701, 6951, 22827, 63987, 159027, 359502, 752752, 1479478, 2757118, 4910178, 8408778, 13916778, 22350954, 34952799, 53374629, 79781779, 116972779, 168519505, 238929405, 333832005, 460192005, 626551380, 843303006, 1122998436, 1480692556
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Griffiths, Remodified Bessel Functions via Coincidences and Near Coincidences, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 29.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Stirling numbers of the 2nd kind.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
[n*(n+1)*(n+2)*(n+3)*(n+4)*(15*n^3 + 30*n^2 + 5*n - 2)/5760: n in [0..50]]; // G. C. Greubel, Oct 22 2017
-
A001298:=-(1+22*z+58*z**2+24*z**3)/(z-1)**9; # Simon Plouffe in his 1992 dissertation, without the leading 0
-
Table[StirlingS2[n+4, n], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
a[ n_] := n (n + 1) (n + 2) (n + 3) (n + 4) (15 n^3 + 30 n^2 + 5 n - 2) / 5760; (* Michael Somos, Sep 04 2017 *)
-
{a(n) = n * (n+1) * (n+2) * (n+3) * (n+4) * (15*n^3 + 30*n^2 + 5*n - 2) / 5760}; /* Michael Somos, Sep 04 2017 */
-
[stirling_number2(n+4,n) for n in range(0, 24)] # Zerinvary Lajos, May 16 2009
Original entry on oeis.org
0, 0, 2, 12, 39, 95, 195, 357, 602, 954, 1440, 2090, 2937, 4017, 5369, 7035, 9060, 11492, 14382, 17784, 21755, 26355, 31647, 37697, 44574, 52350, 61100, 70902, 81837, 93989, 107445, 122295, 138632, 156552, 176154, 197540, 220815, 246087
Offset: 0
a(3) = t(t(3))-3^2 = t(6)-9 = 21-9 = 12.
- Q. T. Bach, R. Paudyal, J. B. Remmel, A Fibonacci analogue of Stirling numbers, arXiv preprint arXiv:1510.04310 [math.CO], 2015-2016.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[n*(n-1)*(n^2+3*n-2)/8: n in [0..40]]; // Vincenzo Librandi, Jun 26 2016
-
seq(3*binomial(n+2,4)-binomial(n,2), n=0..35); # Zerinvary Lajos, May 02 2007
-
Table[n (n - 1) (n^2 + 3 n - 2)/8, {n, 0, 40}] (* Bruno Berselli, Aug 27 2014 *)
LinearRecurrence[{5,-10,10,-5,1},{0,0,2,12,39},60] (* Harvey P. Dale, Apr 04 2023 *)
-
t(i)=i*(i+1)/2
vector(40,i,t(t(i))-i^2)
A133713
Array read by antidiagonals, giving the sizes pi_l(c_l(m,n)) of minimal covers (see reference for precise definition).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 25, 13, 1, 1, 15, 65, 81, 22, 1, 1, 21, 140, 325, 226, 34, 1, 1, 28, 266, 995, 1371, 561, 50, 1, 1, 36, 462, 2541, 5901, 5087, 1277, 70, 1, 1, 45, 750, 5698, 20097, 30569, 17080, 2706, 95, 1
Offset: 2
Array begins:
1 1 1 1 1 1 1 1 1 ...
1 3 7 13 22 34 50 ...
1 6 25 81 226 561 1277 ...
1 10 65 325 1371 5087 17080 ...
1 15 140 995 5901 30569 142375 ...
...
-
A133713 := proc(l,cl)
g := 1 ;
for k from 1 to cl+1 do
add( binomial(binomial(l,k+1)+i-1,i)*t^(i*k),i=0..ceil(cl/k)) ;
g := g*% ;
end do:
g := expand(g) ;
coeftayl(g,t=0,cl) ;
end proc:
seq(seq(A133713(d-k, k), k=0..d-2), d=2..11); # R. J. Mathar, Nov 23 2011
-
A133713[l_, cl_] := Module[{g, k, s}, g = 1; For[k = 1, k <= cl+1, k++, s = Sum[Binomial[Binomial[l, k+1]+i-1, i]*t^(i*k), {i, 0, Ceiling[cl/k]}]; g = g*s]; g = Expand[g]; SeriesCoefficient[g, {t, 0, cl}]]; A133713[A133713%5Bl-cl+2,%20cl%5D,%20%7Bl,%200,%209%7D,%20%7Bcl,%200,%20l%7D%5D%20//%20Flatten%20(*%20_Jean-Fran%C3%A7ois%20Alcover">, 0] = 1; Table[A133713[l-cl+2, cl], {l, 0, 9}, {cl, 0, l}] // Flatten (* _Jean-François Alcover, Jan 07 2014, translated from Maple *)
A144385
Triangle read by rows: T(n,k) is the number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2 or 3 (n >= 0, 0 <= k <= 3n).
Original entry on oeis.org
1, 0, 1, 1, 1, 0, 0, 1, 3, 7, 10, 10, 0, 0, 0, 1, 6, 25, 75, 175, 280, 280, 0, 0, 0, 0, 1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400, 0, 0, 0, 0, 0, 1, 15, 140, 980, 5565, 26145, 102025, 323400, 800800, 1401400, 1401400, 0, 0, 0, 0, 0, 0, 1, 21, 266, 2520, 19425, 125895, 695695, 3273270, 12962950, 42042000, 106506400, 190590400, 190590400
Offset: 0
Triangle begins:
[1]
[0, 1, 1, 1]
[0, 0, 1, 3, 7, 10, 10]
[0, 0, 0, 1, 6, 25, 75, 175, 280, 280]
[0, 0, 0, 0, 1, 10, 65, 315, 1225, 3780, 9100, 15400, 15400]
[0, 0, 0, 0, 0, 1, 15, 140, 980, 5565, 26145, 102025, 323400, 800800, 1401400, 1401400]
A generalization of the triangle in
A144331 (and in several other entries).
-
T := proc(n, k)
option remember;
if n = k then 1;
elif k < n then 0;
elif n < 1 then 0;
else T(n - 1, k - 1) + (k - 1)*T(n - 1, k - 2) + 1/2*(k - 1)*(k - 2)*T(n - 1, k - 3);
end if;
end proc;
for n from 0 to 12 do lprint([seq(T(n,k),k=0..3*n)]); od:
-
t[n_, n_] = 1; t[n_ /; n >= 0, k_] /; 0 <= k <= 3*n := t[n, k] = t[n-1, k-1] + (k-1)*t[n-1, k-2] + (1/2)*(k-1)*(k-2)*t[n-1, k-3]; t[, ] = 0; Table[t[n, k], {n, 0, 12}, {k, 0, 3*n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
A220212
Convolution of natural numbers (A000027) with tetradecagonal numbers (A051866).
Original entry on oeis.org
0, 1, 16, 70, 200, 455, 896, 1596, 2640, 4125, 6160, 8866, 12376, 16835, 22400, 29240, 37536, 47481, 59280, 73150, 89320, 108031, 129536, 154100, 182000, 213525, 248976, 288666, 332920, 382075, 436480, 496496, 562496, 634865, 714000, 800310, 894216, 996151
Offset: 0
Cf. convolution of the natural numbers (
A000027) with the k-gonal numbers (* means "except 0"):
Cf. similar sequences with formula n*(n+1)*(n+2)*(k*n-k+2)/12 listed in
A264850.
-
A051866:=func; [&+[(n-k+1)*A051866(k): k in [0..n]]: n in [0..37]];
-
I:=[0,1,16,70,200]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
-
A051866[k_] := k (6 k - 5); Table[Sum[(n - k + 1) A051866[k], {k, 0, n}], {n, 0, 37}]
CoefficientList[Series[x (1 + 11 x) / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
A107600
Column 5 of array illustrated in A089574 and related to A034261.
Original entry on oeis.org
1, 18, 101, 357, 978, 2274, 4711, 8954, 15915, 26806, 43197, 67079, 100932, 147798, 211359, 296020, 406997, 550410, 733381, 964137, 1252118, 1608090, 2044263, 2574414, 3214015, 3980366, 4892733, 5972491, 7243272, 8731118, 10464639
Offset: 9
A107600(n) can be constructed from five other sequences as follows:
1...7...25...65...140.......A001296
....1...11...56...196.......A034264
....6...42..162...462.......6.*.A005585.
....3...18...60...150.......A006011
....1....5...14....30.......A000330
therefore
1..18..101..357...978.......A107600
-
a:= n-> `if` (n<9, 0, (92292 +(-6580 +(-5745 +(1535 +(-147+5*n) *n) *n) *n) *n) *n /720 -218): seq(a(n), n=9..45); # Alois P. Heinz, Nov 06 2009
-
Select[CoefficientList[Series[(x^5-5x^4+7x^3+4x^2-11x-1)x^9/(x-1)^7, {x,0,50}],x],#>0&] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1,18,101,357,978,2274,4711},42] (* Harvey P. Dale, May 01 2011 *)
A241765
a(n) = n*(n + 1)*(n + 2)*(3*n + 17)/24.
Original entry on oeis.org
0, 5, 23, 65, 145, 280, 490, 798, 1230, 1815, 2585, 3575, 4823, 6370, 8260, 10540, 13260, 16473, 20235, 24605, 29645, 35420, 41998, 49450, 57850, 67275, 77805, 89523, 102515, 116870, 132680, 150040, 169048, 189805, 212415, 236985, 263625, 292448
Offset: 0
a(7) = 4*0 + 5*1 + 6*3 + 7*6 + 8*10 + 9*15 + 10*21 + 11*28 = 798.
-
/* By first comment: */ k:=4; A000217:=func; [&+[(i+k)*A000217(i): i in [0..n]]: n in [0..40]];
-
A241765:=n->n*(n + 1)*(n + 2)*(3*n + 17)/24; seq(A241765(n), n=0..40); # Wesley Ivan Hurt, May 09 2014
-
Table[n (n + 1) (n + 2) (3 n + 17)/24, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 23, 65, 145}, 40]
CoefficientList[Series[x (5 - 2 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *)
-
makelist(coeff(taylor(x*(5-2*x)/(1-x)^5, x, 0, n), x, n), n, 0, 40);
-
a(n)=n*(n+1)*(n+2)*(3*n+17)/24 \\ Charles R Greathouse IV, Oct 07 2015
-
x='x+O('x^99); concat(0, Vec(x*(5-2*x)/(1-x)^5)) \\ Altug Alkan, Apr 10 2016
-
[n*(n+1)*(n+2)*(3*n+17)/24 for n in (0..40)]
Comments