A051583
a(n) = (2*n+9)!!/9!!, related to A001147 (odd double factorials).
Original entry on oeis.org
1, 11, 143, 2145, 36465, 692835, 14549535, 334639305, 8365982625, 225881530875, 6550564395375, 203067496256625, 6701227376468625, 234542958176401875, 8678089452526869375, 338445488648547905625, 13876265034590464130625
Offset: 0
-
List([0..20], n-> Product([0..n-1], j-> 2*j+11) ); # G. C. Greubel, Nov 12 2019
-
[1] cat [(&*[2*j+11: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
-
seq(2^n*pochhammer(11/2,n), n = 0..20); # G. C. Greubel, Nov 12 2019
-
(2*Range[0,20]+9)!!/945 (* Harvey P. Dale, Apr 10 2019 *)
Table[2^n*Pochhammer[11/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
-
vector(20, n, prod(j=0,n-2, 2*j+11) ) \\ G. C. Greubel, Nov 12 2019
-
[product( (2*j+11) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
A035101
E.g.f. x*(c(x/2)-1)/(1-2*x), where c(x) = g.f. for Catalan numbers A000108.
Original entry on oeis.org
0, 1, 9, 87, 975, 12645, 187425, 3133935, 58437855, 1203216525, 27125492625, 664761133575, 17600023616175, 500706514833525, 15234653491682625, 493699195087473375, 16977671416936605375, 617528830880480644125, 23687738668934964248625
Offset: 1
a(2)=1 for the forest: {r1-1, r2-2} (with root labels r1 and r2). The order between the components of the forest is irrelevant (like for sets).
a(3)=9 increasing ternary 2-forest with n=3 vertices: there are three 2-forests (the one vertex tree together with any of the three different 2-vertex trees) each with three increasing labelings. - _Wolfdieter Lang_, Sep 14 2007
- Robert Israel, Table of n, a(n) for n = 1..370
- Selden Crary, Richard Diehl Martinez, Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ib. Integrals of Matern-correlation functions for all odd-half-integer class parameters, arXiv:1707.00705 [stat.ME], 2017, Table 2.
- Alexander Kreinin, Integer Sequences and Laplace Continued Fraction, Preprint 2016.
- Alexander Kreinin, Integer Sequences Connected to the Laplace Continued Fraction and Ramanujan's Identity, Journal of Integer Sequences, 19 (2016), #16.6.2.
- Donovan Young, A critical quartet for queuing couples, arXiv:2007.13868 [math.CO], 2020.
Cf.
A001147 (m=1 column of
A035342). See a D. Callan comment there on the number of increasing ordered rooted trees on n+1 vertices.
-
I:=[0,1,9]; [n le 3 select I[n] else - 2*(n-1)*(2*n-3)*Self(n-2)+(4*n-3)*Self(n-1): n in [1..30]]; // Vincenzo Librandi, Sep 12 2015
-
F:= gfun:-rectoproc({(4*n^2+6*n+2)*a(n)+(-4*n-5)*a(n+1)+a(n+2),a(1)=0,a(2)=1,a(3)=9},a(n),remember):
map(f, [$1..30]); # Robert Israel, Sep 11 2015
-
Table[Round [n! (4^(n - 1) - Binomial[2 n, n]/2)/2^(n - 1)], {n, 1, 20}] (* Vincenzo Librandi, Sep 12 2015 *)
-
a(n) = n!*(4^(n-1)-binomial(2*n, n)/2)/2^(n-1);
vector(40, n, a(n)) \\ Altug Alkan, Oct 01 2015
A081405
a(n) = (n+1)*a(n-2) with a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 3, 4, 15, 24, 105, 192, 945, 1920, 10395, 23040, 135135, 322560, 2027025, 5160960, 34459425, 92897280, 654729075, 1857945600, 13749310575, 40874803200, 316234143225, 980995276800, 7905853580625, 25505877196800, 213458046676875
Offset: 0
G.f. = 1 + x + 3*x^2 + 4*x^3 + 15*x^4 + 24*x^5 + 105*x^6 + 192*x^7 + ...
-
a:= function(n)
if n<2 then return 1;
else return (n+1)*a(n-2);
fi;
end;
List([0..30], n-> a(n) ); # G. C. Greubel, Aug 24 2019
-
[n le 1 select 1 else (n+1)*Self(n-1): n in [0..30]]; // Vincenzo Librandi, Oct 26 2014
-
a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=(a[n-2]*(n+1)^2) od: seq(sqrt(a[n]), n=0..26); # Zerinvary Lajos, Mar 04 2008
-
f[n_]:= (n+1)*f[n-2]; f[0] = 1; f[1] = 1; Table[f[n], {n, 1, 30}]
a[ n_]:= If[ n < 0, 0, If[OddQ[n], 2^((n-1)/2) ((n+1)/2)!, (n+1)!!]]; (* Michael Somos, Jan 24 2014 *)
RecurrenceTable[{a[0]==a[1]==1,a[n]==(n+1)a[n-2]},a,{n,30}] (* Harvey P. Dale, Nov 05 2021 *)
-
{a(n) = if( n<2, n>=0, (n+1) * a(n-2))}; /* Michael Somos, Jan 24 2014 */
-
{a(n) = if( n<0, 0, if( n%2, 2^(n\2) * (n\2 + 1)!, (n+1)! / (2^(n\2) * (n\2)!)))}; /* Michael Somos, Jan 24 2014 */
-
def a(n):
if n<2: return 1
else: return (n+1)*a(n-2)
[a(n) for n in (0..30)] # G. C. Greubel, Aug 24 2019
A144829
Partial products of successive terms of A017209; a(0)=1 .
Original entry on oeis.org
1, 4, 52, 1144, 35464, 1418560, 69509440, 4031547520, 270113683840, 20528639971840, 1744934397606400, 164023833375001600, 16894454837625164800, 1892178941814018457600, 228953651959496233369600, 29763974754734510338048000, 4137192490908096936988672000
Offset: 0
a(0)=1, a(1)=4, a(2)=4*13=52, a(3)=4*13*22=1144, a(4)=4*13*22*31=35464, ...
-
[n le 2 select 4^(n-1) else (9*n-14)*Self(n-1): n in [1..30]]; // G. C. Greubel, May 26 2022
-
Table[4*9^(n-1)*Pochhammer[13/9, n-1], {n, 0, 20}] (* Vaclav Kotesovec, Nov 29 2021 *)
-
a(n) = (-5)^n*sum(k=0, n, (9/5)^k*stirling(n+1,n+1-k, 1)); \\ Michel Marcus, Feb 20 2015
-
[9^n*rising_factorial(4/9, n) for n in (0..30)] # G. C. Greubel, May 26 2022
a(9) originally given incorrectly as 20520639971840 corrected by
Peter Bala, Feb 20 2015
A156992
Triangle T(n,k) = n!*binomial(n-1, k-1) for 1 <= k <= n, read by rows.
Original entry on oeis.org
1, 2, 2, 6, 12, 6, 24, 72, 72, 24, 120, 480, 720, 480, 120, 720, 3600, 7200, 7200, 3600, 720, 5040, 30240, 75600, 100800, 75600, 30240, 5040, 40320, 282240, 846720, 1411200, 1411200, 846720, 282240, 40320, 362880, 2903040, 10160640, 20321280, 25401600, 20321280, 10160640, 2903040, 362880
Offset: 1
The triangle starts:
1;
2, 2;
6, 12, 6;
24, 72, 72, 24;
120, 480, 720, 480, 120;
720, 3600, 7200, 7200, 3600, 720;
5040, 30240, 75600, 100800, 75600, 30240, 5040;
40320, 282240, 846720, 1411200, 1411200, 846720, 282240, 40320;
From _Dennis P. Walsh_, Nov 26 2011: (Start)
T(3,2) = 12 since there are 12 ways to arrange books b1, b2, and b3 on shelves <shelf1><shelf2>:
<b1><b2,b3>, <b1><b3,b2>, <b2><b1,b3>, <b2><b3,b1>,
<b3><b1,b2>, <b3><b2,b1>, <b2,b3><b1>, <b3,b2><b1>,
<b1,b3><b2>, <b3,b1><b2>, <b1,b2><b3>, <b2,b1><b3>.
(End)
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 98
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
-
[Factorial(n)*Binomial(n-1,k-1): k in [1..n], n in [1..10]]; // G. C. Greubel, May 10 2021
-
seq(seq(n!*binomial(n-1,k-1),k=1..n),n=1..10); # Dennis P. Walsh, Nov 26 2011
with(PolynomialTools): p := (n,x) -> (n+1)!*hypergeom([-n],[],-x);
seq(CoefficientList(simplify(p(n,x)),x),n=0..5); # Peter Luschny, Apr 08 2015
-
Table[n!*Binomial[n-1, k-1], {n,10}, {k,n}]//Flatten
-
flatten([[factorial(n)*binomial(n-1,k-1) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, May 10 2021
A370419
A(n, k) = 2^n*Pochhammer(k/2, n). Square array read by ascending antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 8, 3, 1, 0, 105, 48, 15, 4, 1, 0, 945, 384, 105, 24, 5, 1, 0, 10395, 3840, 945, 192, 35, 6, 1, 0, 135135, 46080, 10395, 1920, 315, 48, 7, 1, 0, 2027025, 645120, 135135, 23040, 3465, 480, 63, 8, 1
Offset: 0
The array starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 3, 8, 15, 24, 35, 48, 63, 80, ...
[3] 0, 15, 48, 105, 192, 315, 480, 693, 960, ...
[4] 0, 105, 384, 945, 1920, 3465, 5760, 9009, 13440, ...
[5] 0, 945, 3840, 10395, 23040, 45045, 80640, 135135, 215040, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 3, 2, 1;
[4] 0, 15, 8, 3, 1;
[5] 0, 105, 48, 15, 4, 1;
[6] 0, 945, 384, 105, 24, 5, 1;
.
From _Werner Schulte_, Mar 07 2024: (Start)
Illustrating the LU decomposition of A:
/ 1 \ / 1 1 1 1 1 ... \ / 1 1 1 1 1 ... \
| 0 1 | | 1 2 3 4 ... | | 0 1 2 3 4 ... |
| 0 3 2 | * | 1 3 6 ... | = | 0 3 8 15 24 ... |
| 0 15 18 6 | | 1 4 ... | | 0 15 48 105 192 ... |
| 0 105 174 108 24 | | 1 ... | | 0 105 384 945 1920 ... |
| . . . | | . . . | | . . . |. (End)
-
A := (n, k) -> 2^n*pochhammer(k/2, n):
for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
# Using the exponential generating functions of the columns:
EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 2*x)^(-k/2);
ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
seq(lprint(EGFcol(n, 9)), n = 0..8);
# Using the generating polynomials for the rows:
P := (n, x) -> local k; add(Stirling1(n, k)*(-2)^(n - k)*x^k, k=0..n):
seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
# Implementing the comment of Werner Schulte about the LU decomposition of A:
with(LinearAlgebra):
L := Matrix(7, 7, (n, k) -> A371025(n - 1, k - 1)):
U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
MatrixMatrixMultiply(L, Transpose(U)); # Peter Luschny, Mar 08 2024
-
A370419[n_, k_] := 2^n*Pochhammer[k/2, n];
Table[A370419[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 06 2024 *)
-
def A(n, k): return 2**n * rising_factorial(k/2, n)
for n in range(6): print([A(n, k) for k in range(9)])
A131222
Exponential Riordan array [1, log((1-x)/(1-2x))].
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 14, 9, 1, 0, 90, 83, 18, 1, 0, 744, 870, 275, 30, 1, 0, 7560, 10474, 4275, 685, 45, 1, 0, 91440, 143892, 70924, 14805, 1435, 63, 1, 0, 1285200, 2233356, 1274196, 324289, 41160, 2674, 84, 1
Offset: 0
Number triangle starts:
1,
0, 1;
0, 3, 1;
0, 14, 9, 1;
0, 90, 83, 18, 1;
0, 744, 870, 275, 30, 1;
...
-
RioExp := (d,h,n,k) -> coeftayl(d*h^k, x=0,n)*n!/k!:
A131222 := (n,k) -> RioExp(1,log((1-x)/(1-2*x)),n,k):
seq(print(seq(A131222(n,k),k=0..n)),n=0..5); # Peter Luschny, Apr 15 2015
# The function BellMatrix is defined in A264428.
BellMatrix(n -> `if`(n=0,1,n!*(2^(n+1)-1)), 9); # Peter Luschny, Jan 27 2016
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[If[# == 0, 1, #! (2^(#+1) - 1)]&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
T(n,m):=if n=0 and m=0 then 1 else n!*sum((stirling1(k,m)*2^(n-k)*binomial(n-1,k-1))/k!,k,m,n); /* Vladimir Kruchinin, Sep 27 2012 */
-
def Lah(n, k):
if n == k: return 1
if k<0 or k>n: return 0
return (k*n*gamma(n)^2)/(gamma(k+1)^2*gamma(n-k+1))
matrix(ZZ, 8, Lah) * matrix(ZZ, 8, stirling_number1) # as a square matrix Peter Luschny, Apr 12 2015
# alternatively:
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: A029767(n+1), 10) # Peter Luschny, Jan 18 2016
A308876
Expansion of e.g.f. exp(x)*(1 - x)/(1 - 2*x).
Original entry on oeis.org
1, 2, 7, 40, 317, 3166, 37987, 531812, 8508985, 153161722, 3063234431, 67391157472, 1617387779317, 42052082262230, 1177458303342427, 35323749100272796, 1130359971208729457, 38432239021096801522, 1383560604759484854775, 52575302980860424481432
Offset: 0
-
a:= n-> n! * add(ceil(2^(n-k-1))/k!, k=0..n):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 12 2019
-
nmax = 19; CoefficientList[Series[Exp[x] (1 - x)/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!
Table[1 + Sum[Binomial[n,k] 2^(k - 1) k!, {k, 1, n}], {n, 0, 19}]
A364324
a(n) = n!*tribonacci(n+2).
Original entry on oeis.org
1, 1, 4, 24, 168, 1560, 17280, 221760, 3265920, 54069120, 994291200, 20118067200, 444034483200, 10617070464000, 273391121203200, 7542665754624000, 221969877921792000, 6940528784437248000, 229781192298577920000, 8030036368187817984000, 295390797322766745600000
Offset: 0
a(5) = 1560 since the number of ways to partition [5] into blocks of size at most 3, order the blocks, and order the elements within each block are the following:
1) 1,2,3,4,5: 120 ordered blocks; 120 ways;
2) 12,3,4,5: 240 ordered blocks; 480 ways;
3) 12,34,5: 90 ordered blocks; 360 ways;
4) 123,45: 20 ordered blocks; 240 ways;
5) 123,4,5: 60 ordered blocks; 360 ways.
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(n, i)*i!, i=1..min(n, 3)))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 18 2023
-
With[{m = 21}, Range[0, m - 1]! * LinearRecurrence[{1, 1, 1}, {1, 1, 2}, m]] (* Amiram Eldar, Jul 28 2023 *)
A167594
A triangle related to the GF(z) formulas of the rows of the ED4 array A167584.
Original entry on oeis.org
1, 2, 2, 9, 2, 13, 60, -12, 68, 76, 525, -300, 774, 132, 789, 5670, -5250, 11820, -3636, 6702, 7734, 72765, -92610, 212415, -143340, 143307, 19086, 110937, 1081080, -1746360, 4286520, -4246200, 4156200, -1204200, 1305000, 1528920
Offset: 1
Row 1: GF(z) = 1/(1-z).
Row 2: GF(z) = (2*z + 2)/(1-z)^2.
Row 3: GF(z) = (9*z^2 + 2*z + 13)/(1-z)^3.
Row 4: GF(z) = (60*z^3 - 12*z^2 + 68*z + 76)/(1-z)^4.
Row 5: GF(z) = (525*z^4 - 300*z^3 + 774*z^2 + 132*z + 789)/(1-z)^5.
Row 6: GF(z) = (5670*z^5 - 5250*z^4 + 11820*z^3 - 3636*z^2 + 6702*z + 7734)/(1-z)^6.
Row 7: GF(z) = (72765*z^6 - 92610*z^5 + 212415*z^4 - 143340*z^3 + 143307*z^2 + 19086*z + 110937)/ (1-z)^7.
Row 8: GF(z) = (1081080*z^7 - 1746360*z^6 + 4286520*z^5 - 4246200*z^4 + 4156200*z^3 - 1204200*z^2 + 1305000*z + 1528920)/(1-z)^8.
Row 9: GF(z) = (18243225*z^8 - 35675640*z^7 + 95176620*z^6 -121723560*z^5 + 132769350*z^4 - 73816200*z^3 + 45017100*z^2 + 4887720*z + 28018665) / (1-z)^9.
Row 10: GF(z) = (344594250*z^9 - 790539750*z^8 + 2299457160*z^7 - 3567314520*z^6 + 4441299660*z^5 - 3398138100*z^4 + 2160066600*z^3 - 550619640*z^2 + 421244730*z + 497895210)/(1-z)^10.
A001193 equals the first left hand column.
A024199 equals the first right hand column.
Comments