A228074
A Fibonacci-Pascal triangle read by rows: T(n,0) = Fibonacci(n), T(n,n) = n and for n > 0: T(n,k) = T(n-1,k-1) + T(n-1,k), 0 < k < n.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 2, 3, 4, 3, 3, 5, 7, 7, 4, 5, 8, 12, 14, 11, 5, 8, 13, 20, 26, 25, 16, 6, 13, 21, 33, 46, 51, 41, 22, 7, 21, 34, 54, 79, 97, 92, 63, 29, 8, 34, 55, 88, 133, 176, 189, 155, 92, 37, 9, 55, 89, 143, 221, 309, 365, 344, 247, 129, 46, 10
Offset: 0
. 0: 0
. 1: 1 1
. 2: 1 2 2
. 3: 2 3 4 3
. 4: 3 5 7 7 4
. 5: 5 8 12 14 11 5
. 6: 8 13 20 26 25 16 6
. 7: 13 21 33 46 51 41 22 7
. 8: 21 34 54 79 97 92 63 29 8
. 9: 34 55 88 133 176 189 155 92 37 9
. 10: 55 89 143 221 309 365 344 247 129 46 10
. 11: 89 144 232 364 530 674 709 591 376 175 56 11
. 12: 144 233 376 596 894 1204 1383 1300 967 551 231 67 12 .
diagonals T(*,k):
A000045,
A000071,
A001924,
A014162,
A014166,
A053739,
A053295,
A053296,
A053308,
A053309;
diagonals T(k,*):
A001477,
A001245,
A004006,
A027927,
A027928,
A027929,
A027930,
A027931,
A027932,
A027933;
-
T:= function(n,k)
if k=0 then return Fibonacci(n);
elif k=n then return n;
else return T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 05 2019
-
a228074 n k = a228074_tabl !! n !! k
a228074_row n = a228074_tabl !! n
a228074_tabl = map fst $ iterate
(\(u:_, vs) -> (vs, zipWith (+) ([u] ++ vs) (vs ++ [1]))) ([0], [1,1])
-
with(combinat);
T:= proc (n, k) option remember;
if k = 0 then fibonacci(n)
elif k = n then n
else T(n-1, k-1) + T(n-1, k)
end if
end proc;
seq(seq(T(n, k), k = 0..n), n = 0..12); # G. C. Greubel, Sep 05 2019
-
T[n_, k_]:= T[n, k]= If[k==0, Fibonacci[n], If[k==n, n, T[n-1, k-1] + T[n -1, k]]]; Table[T[n, k], {n,0,12}, {k,0,n}] (* G. C. Greubel, Sep 05 2019 *)
-
T(n,k) = if(k==0, fibonacci(n), if(k==n, n, T(n-1, k-1) + T(n-1, k)));
for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 05 2019
-
def T(n, k):
if (k==0): return fibonacci(n)
elif (k==n): return n
else: return T(n-1, k) + T(n-1, k-1)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 05 2019
A004068
Number of atoms in a decahedron with n shells.
Original entry on oeis.org
0, 1, 7, 23, 54, 105, 181, 287, 428, 609, 835, 1111, 1442, 1833, 2289, 2815, 3416, 4097, 4863, 5719, 6670, 7721, 8877, 10143, 11524, 13025, 14651, 16407, 18298, 20329, 22505, 24831, 27312, 29953, 32759, 35735, 38886, 42217, 45733, 49439
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (3).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[5*n^3/6+n/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
-
Table[5*n^3/6+n/6,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
-
A004068(n):=5*n^3/6+n/6$ makelist(A004068(n),n,0,20); /* Martin Ettl, Jan 07 2013 */
-
a(n)=5*n^3/6+n/6 \\ Charles R Greathouse IV, Sep 24 2015
-
def A004068(n): return n*(5*n**2+1)//6 # Chai Wah Wu, Mar 25 2025
A004188
a(n) = n*(3*n^2 - 1)/2.
Original entry on oeis.org
0, 1, 11, 39, 94, 185, 321, 511, 764, 1089, 1495, 1991, 2586, 3289, 4109, 5055, 6136, 7361, 8739, 10279, 11990, 13881, 15961, 18239, 20724, 23425, 26351, 29511, 32914, 36569, 40485, 44671, 49136, 53889, 58939, 64295, 69966, 75961
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[n*(3*n^2-1)/2: n in [0..50]]; //Vincenzo Librandi, May 15 2011
-
seq(binomial(2*n+1,3)+binomial(n+1,3), n=0..37); # Zerinvary Lajos, Jan 21 2007
-
Table[n(3n^2-1)/2,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,11,39},40] (* Harvey P. Dale, Jul 19 2019 *)
-
vector(40, n, n*(3*n^2-1)/2)
A004466
a(n) = n*(5*n^2 - 2)/3.
Original entry on oeis.org
0, 1, 12, 43, 104, 205, 356, 567, 848, 1209, 1660, 2211, 2872, 3653, 4564, 5615, 6816, 8177, 9708, 11419, 13320, 15421, 17732, 20263, 23024, 26025, 29276, 32787, 36568, 40629, 44980, 49631, 54592
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
A063521
a(n) = n*(7*n^2-4)/3.
Original entry on oeis.org
0, 1, 16, 59, 144, 285, 496, 791, 1184, 1689, 2320, 3091, 4016, 5109, 6384, 7855, 9536, 11441, 13584, 15979, 18640, 21581, 24816, 28359, 32224, 36425, 40976, 45891, 51184, 56869, 62960, 69471, 76416, 83809, 91664, 99995, 108816, 118141, 127984, 138359, 149280, 160761
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
A063521:=n->n*(7*n^2-4)/3; seq(A063521(k), k=0..100); # Wesley Ivan Hurt, Oct 24 2013
-
lst={};Do[AppendTo[lst, n*(7*n^2-4)/3], {n, 1, 6!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 02 2008 *)
CoefficientList[Series[x*(1+12*x+x^2)/(1-x)^4, {x, 0, 50}], x] (* G. C. Greubel, Sep 01 2017 *)
-
a(n) = { n*(7*n^2 - 4)/3 } \\ Harry J. Smith, Aug 25 2009
A004126
a(n) = n*(7*n^2 - 1)/6.
Original entry on oeis.org
0, 1, 9, 31, 74, 145, 251, 399, 596, 849, 1165, 1551, 2014, 2561, 3199, 3935, 4776, 5729, 6801, 7999, 9330, 10801, 12419, 14191, 16124, 18225, 20501, 22959, 25606, 28449, 31495, 34751, 38224, 41921, 45849, 50015, 54426, 59089, 64011
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[n*(7*n^2-1)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
-
seq(binomial(2*n+1,3)-binomial(n+1,3), n=0..38); # Zerinvary Lajos, Jan 21 2007
-
Table[n (7 n^2 - 1)/6, {n, 0, 80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
-
makelist(n*(7*n^2-1)/6,n,0,30); /* Martin Ettl, Jan 08 2013 */
-
vector(100, n, n--; n*(7*n^2 - 1)/6) \\ Altug Alkan, Oct 06 2015
A006522
4-dimensional analog of centered polygonal numbers. Also number of regions created by sides and diagonals of a convex n-gon in general position.
Original entry on oeis.org
1, 0, 0, 1, 4, 11, 25, 50, 91, 154, 246, 375, 550, 781, 1079, 1456, 1925, 2500, 3196, 4029, 5016, 6175, 7525, 9086, 10879, 12926, 15250, 17875, 20826, 24129, 27811, 31900, 36425, 41416, 46904, 52921, 59500, 66675, 74481, 82954, 92131
Offset: 0
For a pentagon in general position, 11 regions are formed (Comtet, Fig. 20, p. 74).
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 8.
- Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 102.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. W. Freeman, The number of regions determined by a convex polygon, Math. Mag., 49 (1976), 23-25.
- Math Forum, Regions of a circle Cut by Chords to n points.
- V. Meally, Letter to N. J. A. Sloane, May 1975.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Polygon Diagonal.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[Binomial(n, 4)+Binomial(n-1, 2): n in [0..40]]; // Vincenzo Librandi, Jun 09 2013
-
A006522 := n->(1/24)*(n-1)*(n-2)*(n^2-3*n+12):
seq(A006522(n), n=0..40);
A006522:=-(1-z+z**2)/(z-1)**5; # Simon Plouffe in his 1992 dissertation; gives sequence except for three leading terms
-
a=2;b=3;s=4;lst={1,0,0,1,s};Do[a+=n;b+=a;s+=b;AppendTo[lst,s],{n,2,6!,1}];lst (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
Table[Binomial[n,4]+Binomial[n-1,2],{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,0,0,1,4},40] (* Harvey P. Dale, Jul 11 2011 *)
CoefficientList[Series[-(((x - 1) x (x (4 x - 5) + 5) + 1) / (x - 1)^5), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
a[n_] := If[n==0, 1, Sum[PolygonalNumber[n-k+1, k], {k, 0, n-2}]];
a /@ Range[0, 40] (* Jean-François Alcover, Jan 21 2020 *)
-
a(n)=1/24*n^4 - 1/4*n^3 + 23/24*n^2 - 7/4*n + 1 \\ Charles R Greathouse IV, Feb 09 2017
A292508
Number A(n,k) of partitions of n with k kinds of 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 2, 1, 4, 7, 7, 5, 2, 1, 5, 11, 14, 12, 7, 4, 1, 6, 16, 25, 26, 19, 11, 4, 1, 7, 22, 41, 51, 45, 30, 15, 7, 1, 8, 29, 63, 92, 96, 75, 45, 22, 8, 1, 9, 37, 92, 155, 188, 171, 120, 67, 30, 12, 1, 10, 46, 129, 247, 343, 359, 291, 187, 97, 42, 14
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
1, 2, 4, 7, 11, 16, 22, 29, 37, ...
1, 3, 7, 14, 25, 41, 63, 92, 129, ...
2, 5, 12, 26, 51, 92, 155, 247, 376, ...
2, 7, 19, 45, 96, 188, 343, 590, 966, ...
4, 11, 30, 75, 171, 359, 702, 1292, 2258, ...
4, 15, 45, 120, 291, 650, 1352, 2644, 4902, ...
7, 22, 67, 187, 478, 1128, 2480, 5124, 10026, ...
Columns k=0-10 give:
A002865,
A000041,
A000070,
A014153,
A014160,
A014161,
A120477,
A320753,
A320754,
A320755,
A320756.
-
A:= proc(n, k) option remember; `if`(n=0, 1, add(
(numtheory[sigma](j)+k-1)*A(n-j, k), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
# second Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1,
A(n, k+1)-A(n-1, k+1), `if`(k=1, combinat[numbpart](n),
A(n-1, k)+A(n, k-1))))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
# third Maple program:
b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Binomial[k + n - 1, n], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 17 2018, translated from 3rd Maple program *)
A063522
a(n) = n*(5*n^2 - 3)/2.
Original entry on oeis.org
0, 1, 17, 63, 154, 305, 531, 847, 1268, 1809, 2485, 3311, 4302, 5473, 6839, 8415, 10216, 12257, 14553, 17119, 19970, 23121, 26587, 30383, 34524, 39025, 43901, 49167, 54838, 60929, 67455, 74431, 81872, 89793, 98209, 107135, 116586, 126577, 137123, 148239, 159940
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
(1/12)*t*(n^3 - n) + n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[n*(5*n^2 -3)/2: n in [0..30]]; // G. C. Greubel, May 02 2018
-
lst={};Do[AppendTo[lst, LegendreP[3, n]], {n, 10^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
CoefficientList[Series[x*(1 + 13*x + x^2)/(1-x)^4, {x, 0, 50}], x] (* G. C. Greubel, Sep 01 2017 *)
LinearRecurrence[{4,-6,4,-1},{0,1,17,63},40] (* Harvey P. Dale, Sep 06 2023 *)
-
a(n) = { n*(5*n^2 - 3)/2 } \\ Harry J. Smith, Aug 25 2009
A004467
a(n) = n*(11*n^2 - 5)/6.
Original entry on oeis.org
0, 1, 13, 47, 114, 225, 391, 623, 932, 1329, 1825, 2431, 3158, 4017, 5019, 6175, 7496, 8993, 10677, 12559, 14650, 16961, 19503, 22287, 25324, 28625, 32201, 36063, 40222, 44689, 49475, 54591, 60048
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[n*(11*n^2-5)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
-
Table[n(11n^2-5)/6,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,13,47},80] (* Harvey P. Dale, Sep 22 2013 *)
-
a(n)=n*(11*n^2-5)/6 \\ Charles R Greathouse IV, Sep 28 2011
Comments